Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 167
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Nat Rev Nephrol ; 20(6): 371-385, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38443711

ABSTRACT

Podocytes form the backbone of the glomerular filtration barrier and are exposed to various mechanical forces throughout the lifetime of an individual. The highly dynamic biomechanical environment of the glomerular capillaries greatly influences the cell biology of podocytes and their pathophysiology. Throughout the past two decades, a holistic picture of podocyte cell biology has emerged, highlighting mechanobiological signalling pathways, cytoskeletal dynamics and cellular adhesion as key determinants of biomechanical resilience in podocytes. This biomechanical resilience is essential for the physiological function of podocytes, including the formation and maintenance of the glomerular filtration barrier. Podocytes integrate diverse biomechanical stimuli from their environment and adapt their biophysical properties accordingly. However, perturbations in biomechanical cues or the underlying podocyte mechanobiology can lead to glomerular dysfunction with severe clinical consequences, including proteinuria and glomerulosclerosis. As our mechanistic understanding of podocyte mechanobiology and its role in the pathogenesis of glomerular disease increases, new targets for podocyte-specific therapeutics will emerge. Treating glomerular diseases by targeting podocyte mechanobiology might improve therapeutic precision and efficacy, with potential to reduce the burden of chronic kidney disease on individuals and health-care systems alike.


Subject(s)
Podocytes , Podocytes/physiology , Humans , Biomechanical Phenomena , Mechanotransduction, Cellular/physiology , Cytoskeleton/physiology , Biophysics , Animals , Cell Adhesion/physiology
2.
J Exp Clin Cancer Res ; 42(1): 223, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37653435

ABSTRACT

BACKGROUND: Acute myeloid leukemia (AML) patients bearing the ITD mutation in the tyrosine kinase receptor FLT3 (FLT3-ITD) present a poor prognosis and a high risk of relapse. FLT3-ITD is retained in the endoplasmic reticulum (ER) and generates intrinsic proteotoxic stress. We devised a strategy based on proteotoxic stress, generated by the combination of low doses of the differentiating agent retinoic acid (R), the proteasome inhibitor bortezomib (B), and the oxidative stress inducer arsenic trioxide (A). METHODS: We treated FLT3-ITD+ AML cells with low doses of the aforementioned drugs, used alone or in combinations and we investigated the induction of ER and oxidative stress. We then performed the same experiments in an in vitro co-culture system of FLT3-ITD+ AML cells and bone marrow stromal cells (BMSCs) to assess the protective role of the niche on AML blasts. Eventually, we tested the combination of drugs in an orthotopic murine model of human AML. RESULTS: The combination RBA exerts strong cytotoxic activity on FLT3-ITD+ AML cell lines and primary blasts isolated from patients, due to ER homeostasis imbalance and generation of oxidative stress. AML cells become completely resistant to the combination RBA when treated in co-culture with BMSCs. Nonetheless, we could overcome such protective effects by using high doses of ascorbic acid (Vitamin C) as an adjuvant. Importantly, the combination RBA plus ascorbic acid significantly prolongs the life span of a murine model of human FLT3-ITD+ AML without toxic effects. Furthermore, we show for the first time that the cross-talk between AML and BMSCs upon treatment involves disruption of the actin cytoskeleton and the actin cap, increased thickness of the nuclei, and relocalization of the transcriptional co-regulator YAP in the cytosol of the BMSCs. CONCLUSIONS: Our findings strengthen our previous work indicating induction of proteotoxic stress as a possible strategy in FLT3-ITD+ AML therapy and open to the possibility of identifying new therapeutic targets in the crosstalk between AML and BMSCs, involving mechanotransduction and YAP signaling.


Subject(s)
Cytoprotection , Tretinoin , Humans , Animals , Mice , Tretinoin/pharmacology , Disease Models, Animal , Mechanotransduction, Cellular , Proteotoxic Stress , Ascorbic Acid , Cell Death
3.
Adv Healthc Mater ; 12(27): e2301081, 2023 10.
Article in English | MEDLINE | ID: mdl-37380172

ABSTRACT

Cells are known to perceive their microenvironment through extracellular and intracellular mechanical signals. Upon sensing mechanical stimuli, cells can initiate various downstream signaling pathways that are vital to regulating proliferation, growth, and homeostasis. One such physiologic activity modulated by mechanical stimuli is osteogenic differentiation. The process of osteogenic mechanotransduction is regulated by numerous calcium ion channels-including channels coupled to cilia, mechanosensitive and voltage-sensitive channels, and channels associated with the endoplasmic reticulum. Evidence suggests these channels are implicated in osteogenic pathways such as the YAP/TAZ and canonical Wnt pathways. This review aims to describe the involvement of calcium channels in regulating osteogenic differentiation in response to mechanical loading and characterize the fashion in which those channels directly or indirectly mediate this process. The mechanotransduction pathway is a promising target for the development of regenerative materials for clinical applications due to its independence from exogenous growth factor supplementation. As such, also described are examples of osteogenic biomaterial strategies that involve the discussed calcium ion channels, calcium-dependent cellular structures, or calcium ion-regulating cellular features. Understanding the distinct ways calcium channels and signaling regulate these processes may uncover potential targets for advancing biomaterials with regenerative osteogenic capabilities.


Subject(s)
Calcium Channels , Mechanotransduction, Cellular , Mechanotransduction, Cellular/physiology , Osteogenesis , Biocompatible Materials/pharmacology , Calcium , Cell Differentiation , Wnt Signaling Pathway
4.
Acta Biomater ; 153: 85-96, 2022 11.
Article in English | MEDLINE | ID: mdl-36113725

ABSTRACT

Signals that recapitulate in vitro the conditions found in vivo, such as hypoxia or mechanical forces, contribute to the generation of tissue-engineered hyaline-like tissues. The cell regulatory processes behind hypoxic and mechanical stimuli rely on ion concentration; iron is required to degrade the hypoxia inducible factor 1a (HIF1α) under normoxia, whereas the initiation of mechanotransduction requires the cytoplasmic increase of calcium concentration. In this work, we propose that ion modulation can be used to improve the biomechanical properties of self-assembled neocartilage constructs derived from rejuvenated expanded minipig rib chondrocytes. The objectives of this work were 1) to determine the effects of iron sequestration on self-assembled neocartilage constructs using two doses of the iron chelator deferoxamine (DFO), and 2) to evaluate the performance of the combined treatment of DFO and ionomycin, a calcium ionophore that triggers cytoplasmic calcium accumulation. This study employed a two-phase approach. In Phase I, constructs treated with a high dose of DFO (100 µM) exhibited an 87% increase in pyridinoline crosslinks, a 57% increase in the Young's modulus, and a 112% increase in the ultimate tensile strength (UTS) of the neotissue. In Phase II, the combined use of both ion modulators resulted in 150% and 176% significant increases in the Young's modulus and UTS of neocartilage constructs, respectively; for the first time, neocartilage constructs achieved a Young's modulus of 11.76±3.29 MPa and UTS of 4.20±1.24 MPa. The results of this work provide evidence that ion modulation can be employed to improve the biomechanical properties in engineered neotissues. STATEMENT OF SIGNIFICANCE: The translation of tissue-engineered products requires the development of strategies capable of producing biomimetic neotissues in a replicable, controllable, and cost-effective manner. Among other functions, Fe2+ and Ca2+ are involved in the control of the hypoxic response and mechanotransduction, respectively. Both stimuli, hypoxia and mechanical forces, are known to favor chondrogenesis. This study utilized ion modulators to improve the mechanical properties self-assembled neocartilage constructs derived from expanded and rejuvenated costal chondrocytes via Fe2+ sequestration and Ca2+ influx, alone or in combination. The results indicate that ion modulation induced tissue maturation and a significant improvement of the mechanical properties, and holds potential as a tool to mitigate the need for bioreactors and engineer hyaline-like tissues.


Subject(s)
Cartilage, Articular , Swine , Animals , Cartilage, Articular/metabolism , Calcium/metabolism , Mechanotransduction, Cellular , Swine, Miniature , Chondrocytes/metabolism , Tissue Engineering/methods , Hypoxia , Iron/pharmacology
5.
Int J Mol Sci ; 23(16)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36012494

ABSTRACT

Acoustical biophysical therapies, including ultrasound, radial pressure waves, and shockwaves, have been shown to harbor both a destructive and regenerative potential depending on physical treatment parameters. Despite the clinical relevance of fungal biofilms, little work exits comparing the efficacy of these modalities on the destruction of fungal biofilms. This study evaluates the impact of acoustical low-frequency ultrasound, radial pressure waves, and shockwaves on the viability and proliferation of in vitro Rhizopus oryzae biofilm under Amphotericin B induced apoptosis. In addition, the impact of a fibrin substrate in comparison with a traditional polystyrene well-plate one is explored. We found consistent, mechanically promoted increased Amphotericin B efficacy when treating the biofilm in conjunction with low frequency ultrasound and radial pressure waves. In contrast, shockwave induced effects of mechanotransduction results in a stronger resilience of the biofilm, which was evident by a marked increase in cellular viability, and was not observed in the other types of acoustical pressure waves. Our findings suggest that fungal biofilms not only provide another model for mechanistical investigations of the regenerative properties of shockwave therapies, but warrant future investigations into the clinical viability of the therapy.


Subject(s)
Amphotericin B , Extracorporeal Shockwave Therapy , Amphotericin B/pharmacology , Antifungal Agents/pharmacology , Biofilms , Extracorporeal Shockwave Therapy/methods , Mechanotransduction, Cellular , Microbial Sensitivity Tests , Rhizopus oryzae
6.
Am J Physiol Cell Physiol ; 323(2): C432-C438, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35759436

ABSTRACT

The growing recognition of abundance of oscillating functions in biological systems has motivated this brief overview, which narrows down on the microvasculature. Specifically, it encompasses self-sustained oscillations of blood flow, hematocrit, and viscosity at bifurcations; blood flow effects on the oscillations of endothelial glycocalyx, mechanotransduction, and its termination to prime endothelial cells for the subsequent mechanical signaling event; oscillating affinity of hyaluronan-CD44 binding domain; spontaneous contractility of actomyosin complexes in the cortical actin web and its effects on the tension of the plasma membrane; reversible effects of sirtuin-1 on endothelial glycocalyx; and effects of plasma membrane tension on endo- and exocytosis. Some potential interactions between those oscillators, and their coupling, are discussed together with their transition into chaotic movements. Future in-depth understanding of the oscillatory activities in the microvasculature could serve as a guide to its chronotherapy under pathological conditions.


Subject(s)
Endothelial Cells , Glycocalyx , Actin Cytoskeleton , Glycocalyx/metabolism , Mechanotransduction, Cellular , Microvessels
7.
Methods Mol Biol ; 2502: 329-349, 2022.
Article in English | MEDLINE | ID: mdl-35412249

ABSTRACT

Cancer metastasis, that is, the spreading of tumor cells from the primary tumor to distant sites, requires cancer cells to travel through pores substantially smaller than their cross section . This "confined migration" requires substantial deformation by the relatively large and rigid nucleus, which can impact nuclear compartmentalization, trigger cellular mechanotransduction pathways, and increase genomic instability. To improve our understanding of how cells perform and respond to confined migration, we developed polydimethylsiloxane (PDMS) microfluidic devices in which cells migrate through a precisely controlled "field of pillars" that closely mimic the intermittent confinement of tumor microenvironments and interstitial spaces. The devices can be designed with various densities of pillars, ranging from a very low density that does not require nuclear deformation to high densities that present microenvironment conditions with severe confinement. The devices enable assessment of cellular fitness for confined migration based on the distance traveled through the constriction area over several days. In this protocol, we present two complementary techniques to generate silicon master molds for the device fabrication: (1) SU-8 soft lithography for rapid prototyping and for devices with relatively large features; and (2) reactive ion etching (RIE) to achieve finer features and more durable molds. In addition, we describe the production, use, and validation of the devices, along with the analysis pipeline for experiments using the devices with fluorescently labeled cells. Collectively, this protocol enables the study of confined migration and is readily amendable to investigate other aspects of confined migration mechanobiology, such as nuclear pore complex function in response to nuclear deformation.


Subject(s)
Lab-On-A-Chip Devices , Microfluidic Analytical Techniques , Biophysics , Cell Movement/physiology , Cell Nucleus , Mechanotransduction, Cellular
8.
Sovrem Tekhnologii Med ; 12(4): 77-89, 2021.
Article in English | MEDLINE | ID: mdl-34795996

ABSTRACT

Regulatory signals in the body are not limited to chemical and electrical ones. There is another type of important signals for cells: those are mechanical signals (coming from the environment or arising from within the body), which have been less known in the literature. The review summarizes new information on the mechanosensitivity of various cells of connective tissue and nervous system. Participation of mechanical stimuli in the regulation of growth, development, differentiation, and functioning of tissues is described. The data focus on bone remodeling, wound healing, neurite growth, and the formation of neural networks. Mechanotransduction, cellular organelles, and mechanosensitive molecules involved in these processes are discussed as well as the role of the extracellular matrix. The importance of mechanical characteristics of cells in the pathogenesis of diseases is highlighted. Finally, the possible role of mechanosensitivity in mediating the physiotherapeutic effects is addressed.


Subject(s)
Extracellular Matrix , Mechanotransduction, Cellular , Bone Remodeling , Cell Differentiation , Connective Tissue , Mechanotransduction, Cellular/physiology
9.
Cells ; 10(9)2021 09 10.
Article in English | MEDLINE | ID: mdl-34572032

ABSTRACT

The complex multidimensional skeletal organization can adapt its structure in accordance with external contexts, demonstrating excellent self-renewal capacity. Thus, optimal extracellular environmental properties are critical for bone regeneration and inextricably linked to the mechanical and biological states of bone. It is interesting to note that the microstructure of bone depends not only on genetic determinants (which control the bone remodeling loop through autocrine and paracrine signals) but also, more importantly, on the continuous response of cells to external mechanical cues. In particular, bone cells sense mechanical signals such as shear, tensile, loading and vibration, and once activated, they react by regulating bone anabolism. Although several specific surrounding conditions needed for osteoblast cells to specifically augment bone formation have been empirically discovered, most of the underlying biomechanical cellular processes underneath remain largely unknown. Nevertheless, exogenous stimuli of endogenous osteogenesis can be applied to promote the mineral apposition rate, bone formation, bone mass and bone strength, as well as expediting fracture repair and bone regeneration. The following review summarizes the latest studies related to the proliferation and differentiation of osteoblastic cells, enhanced by mechanical forces or supplemental signaling factors (such as trace metals, nutraceuticals, vitamins and exosomes), providing a thorough overview of the exogenous osteogenic agents which can be exploited to modulate and influence the mechanically induced anabolism of bone. Furthermore, this review aims to discuss the emerging role of extracellular stimuli in skeletal metabolism as well as their potential roles and provide new perspectives for the treatment of bone disorders.


Subject(s)
Anabolic Agents/pharmacology , Bone Regeneration , Cell Differentiation , Mechanotransduction, Cellular , Osteoblasts/cytology , Animals , Humans , Osteoblasts/drug effects , Signal Transduction
10.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Article in English | MEDLINE | ID: mdl-34117124

ABSTRACT

Environmental fluctuations are a common challenge for single-celled organisms; enteric bacteria such as Escherichia coli experience dramatic changes in nutrient availability, pH, and temperature during their journey into and out of the host. While the effects of altered nutrient availability on gene expression and protein synthesis are well known, their impacts on cytoplasmic dynamics and cell morphology have been largely overlooked. Here, we discover that depletion of utilizable nutrients results in shrinkage of E. coli's inner membrane from the cell wall. Shrinkage was accompanied by an ∼17% reduction in cytoplasmic volume and a concurrent increase in periplasmic volume. Inner membrane retraction after sudden starvation occurred almost exclusively at the new cell pole. This phenomenon was distinct from turgor-mediated plasmolysis and independent of new transcription, translation, or canonical starvation-sensing pathways. Cytoplasmic dry-mass density increased during shrinkage, suggesting that it is driven primarily by loss of water. Shrinkage was reversible: upon a shift to nutrient-rich medium, expansion started almost immediately at a rate dependent on carbon source quality. A robust entry into and recovery from shrinkage required the Tol-Pal system, highlighting the importance of envelope coupling during shrinkage and recovery. Klebsiella pneumoniae also exhibited shrinkage when shifted to carbon-free conditions, suggesting a conserved phenomenon. These findings demonstrate that even when Gram-negative bacterial growth is arrested, cell morphology and physiology are still dynamic.


Subject(s)
Cytoplasm/physiology , Escherichia coli/physiology , Carbon/deficiency , Carbon/pharmacology , Cytoplasm/drug effects , DNA Replication/drug effects , Down-Regulation/drug effects , Escherichia coli/drug effects , Escherichia coli/growth & development , Escherichia coli Proteins/metabolism , Ion Channels/metabolism , Mechanotransduction, Cellular/drug effects , Nitrogen/analysis , Phosphorus/analysis
11.
JCI Insight ; 6(7)2021 04 08.
Article in English | MEDLINE | ID: mdl-33735112

ABSTRACT

To identify small molecules that shield mammalian sensory hair cells from the ototoxic side effects of aminoglycoside antibiotics, 10,240 compounds were initially screened in zebrafish larvae, selecting for those that protected lateral-line hair cells against neomycin and gentamicin. When the 64 hits from this screen were retested in mouse cochlear cultures, 8 protected outer hair cells (OHCs) from gentamicin in vitro without causing hair-bundle damage. These 8 hits shared structural features and blocked, to varying degrees, the OHC's mechano-electrical transducer (MET) channel, a route of aminoglycoside entry into hair cells. Further characterization of one of the strongest MET channel blockers, UoS-7692, revealed it additionally protected against kanamycin and tobramycin and did not abrogate the bactericidal activity of gentamicin. UoS-7692 behaved, like the aminoglycosides, as a permeant blocker of the MET channel; significantly reduced gentamicin-Texas red loading into OHCs; and preserved lateral-line function in neomycin-treated zebrafish. Transtympanic injection of UoS-7692 protected mouse OHCs from furosemide/kanamycin exposure in vivo and partially preserved hearing. The results confirmed the hair-cell MET channel as a viable target for the identification of compounds that protect the cochlea from aminoglycosides and provide a series of hit compounds that will inform the design of future otoprotectants.


Subject(s)
Aminoglycosides/adverse effects , Cochlea/drug effects , Ototoxicity/prevention & control , Animals , Cochlea/cytology , Drug Evaluation, Preclinical/methods , Embryo, Nonmammalian/drug effects , Female , Gentamicins/adverse effects , Gentamicins/pharmacology , Hair Cells, Auditory/drug effects , Male , Mechanotransduction, Cellular/drug effects , Mice, Inbred Strains , Microbial Sensitivity Tests , Microphthalmia-Associated Transcription Factor/genetics , Neomycin/adverse effects , Organ Culture Techniques , Ototoxicity/etiology , Protective Agents/administration & dosage , Protective Agents/pharmacology , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/genetics
12.
Am J Physiol Gastrointest Liver Physiol ; 320(4): G675-G687, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33624530

ABSTRACT

Electrical stimulation of the enteric nervous system (ENS) is an attractive approach to modify gastrointestinal transit. Colonic motor complexes (CMCs) occur with a periodic rhythm, but the ability to elicit a premature CMC depends, at least in part, upon the intrinsic refractory properties of the ENS, which are presently unknown. The objectives of this study were to record myoelectric complexes (MCs, the electrical correlates of CMCs) in the smooth muscle and 1) determine the refractory periods of MCs, 2) inform and evaluate closed-loop stimulation to repetitively evoke MCs, and 3) identify stimulation methods to suppress MC propagation. We dissected the colon from male and female C57BL/6 mice, preserving the integrity of intrinsic circuitry while removing the extrinsic nerves, and measured properties of spontaneous and evoked MCs in vitro. Hexamethonium abolished spontaneous and evoked MCs, confirming the necessary involvement of the ENS for electrically evoked MCs. Electrical stimulation reduced the mean interval between evoked and spontaneous CMCs (24.6 ± 3.5 vs. 70.6 ± 15.7 s, P = 0.0002, n = 7). The absolute refractory period was 4.3 s (95% confidence interval (CI) = 2.8-5.7 s, R2 = 0.7315, n = 8). Electrical stimulation applied during fluid distention-evoked MCs led to an arrest of MC propagation, and following stimulation, MC propagation resumed at an increased velocity (n = 9). The timing parameters of electrical stimulation increased the rate of evoked MCs and the duration of entrainment of MCs, and the refractory period provides insight into timing considerations for designing neuromodulation strategies to treat colonic dysmotility.NEW & NOTEWORTHY Maintained physiological distension of the isolated mouse colon induces rhythmic cyclic myoelectric complexes (MCs). MCs evoked repeatedly by closed-loop electrical stimulation entrain MCs more frequently than spontaneously occurring MCs. Electrical stimulation delivered at the onset of a contraction temporarily suppresses the propagation of MC contractions. Controlled electrical stimulation can either evoke MCs or temporarily delay MCs in the isolated mouse colon, depending on timing relative to ongoing activity.


Subject(s)
Colon/innervation , Electric Stimulation Therapy , Enteric Nervous System/physiology , Gastrointestinal Transit , Muscle, Smooth/innervation , Myoelectric Complex, Migrating , Animals , Female , Male , Mechanotransduction, Cellular , Mice, Inbred C57BL , Pressure , Refractory Period, Electrophysiological , Time Factors
13.
Circulation ; 143(9): 935-948, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33307764

ABSTRACT

BACKGROUND: In vascular endothelial cells, cysteine metabolism by the cystathionine γ lyase (CSE), generates hydrogen sulfide-related sulfane sulfur compounds (H2Sn), that exert their biological actions via cysteine S-sulfhydration of target proteins. This study set out to map the "S-sulfhydrome" (ie, the spectrum of proteins targeted by H2Sn) in human endothelial cells. METHODS: Liquid chromatography with tandem mass spectrometry was used to identify S-sulfhydrated cysteines in endothelial cell proteins and ß3 integrin intraprotein disulfide bond rearrangement. Functional studies included endothelial cell adhesion, shear stress-induced cell alignment, blood pressure measurements, and flow-induced vasodilatation in endothelial cell-specific CSE knockout mice and in a small collective of patients with endothelial dysfunction. RESULTS: Three paired sample sets were compared: (1) native human endothelial cells isolated from plaque-free mesenteric arteries (CSE activity high) and plaque-containing carotid arteries (CSE activity low); (2) cultured human endothelial cells kept under static conditions or exposed to fluid shear stress to decrease CSE expression; and (3) cultured endothelial cells exposed to shear stress to decrease CSE expression and treated with solvent or the slow-releasing H2Sn donor, SG1002. The endothelial cell "S-sulfhydrome" consisted of 3446 individual cysteine residues in 1591 proteins. The most altered family of proteins were the integrins and focusing on ß3 integrin in detail we found that S-sulfhydration affected intraprotein disulfide bond formation and was required for the maintenance of an extended-open conformation of the ß leg. ß3 integrin S-sulfhydration was required for endothelial cell mechanotransduction in vitro as well as flow-induced dilatation in murine mesenteric arteries. In cultured cells, the loss of S-sulfhydration impaired interactions between ß3 integrin and Gα13 (guanine nucleotide-binding protein subunit α 13), resulting in the constitutive activation of RhoA (ras homolog family member A) and impaired flow-induced endothelial cell realignment. In humans with atherosclerosis, endothelial function correlated with low H2Sn generation, impaired flow-induced dilatation, and failure to detect ß3 integrin S-sulfhydration, all of which were rescued after the administration of an H2Sn supplement. CONCLUSIONS: Vascular disease is associated with marked changes in the S-sulfhydration of endothelial cell proteins involved in mediating responses to flow. Short-term H2Sn supplementation improved vascular reactivity in humans highlighting the potential of interfering with this pathway to treat vascular disease.


Subject(s)
Integrin beta Chains/chemistry , Sulfhydryl Compounds/chemistry , Animals , Chromatography, High Pressure Liquid , Cystathionine gamma-Lyase/genetics , Cystathionine gamma-Lyase/metabolism , Cysteine/chemistry , Disulfides/analysis , Disulfides/chemistry , Endothelial Cells/cytology , Endothelial Cells/metabolism , Humans , Hydrogen Sulfide/pharmacology , Integrin beta Chains/metabolism , Mechanotransduction, Cellular , Mice , Shear Strength , Tandem Mass Spectrometry , Vasodilation/drug effects , rhoA GTP-Binding Protein/metabolism
14.
Int J Mol Sci ; 22(1)2020 Dec 25.
Article in English | MEDLINE | ID: mdl-33375749

ABSTRACT

Mechanical vibrations seem to affect the behaviour of different cell types and the functions of different organs. Pressure waves, including acoustic waves (sounds), could affect cytoskeletal molecules via coherent changes in their spatial organization and mechano-transduction signalling. We analyzed the sounds spectra and their fractal features. Cardiac muscle HL1 cells were exposed to different sounds, were stained for cytoskeletal markers (phalloidin, beta-actin, alpha-tubulin, alpha-actinin-1), and studied with multifractal analysis (using FracLac for ImageJ). A single cell was live-imaged and its dynamic contractility changes in response to each different sound were analysed (using Musclemotion for ImageJ). Different sound stimuli seem to influence the contractility and the spatial organization of HL1 cells, resulting in a different localization and fluorescence emission of cytoskeletal proteins. Since the cellular behaviour seems to correlate with the fractal structure of the sound used, we speculate that it can influence the cells by virtue of the different sound waves' geometric properties that we have photographed and filmed. A theoretical physical model is proposed to explain our results, based on the coherent molecular dynamics. We stress the role of the systemic view in the understanding of the biological activity.


Subject(s)
Acoustic Stimulation , Models, Theoretical , Sound , Biomarkers , Cells, Cultured , Fluorescent Antibody Technique , Mechanotransduction, Cellular , Microscopy, Confocal , Pilot Projects , Tubulin/metabolism
15.
Commun Biol ; 3(1): 792, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33361775

ABSTRACT

The stereocilia of the inner ear sensory cells contain the actin-binding protein radixin, encoded by RDX. Radixin is important for hearing but remains functionally obscure. To determine how radixin influences hearing sensitivity, we used a custom rapid imaging technique to visualize stereocilia motion while measuring electrical potential amplitudes during acoustic stimulation. Radixin inhibition decreased sound-evoked electrical potentials. Other functional measures, including electrically induced sensory cell motility and sound-evoked stereocilia deflections, showed a minor amplitude increase. These unique functional alterations demonstrate radixin as necessary for conversion of sound into electrical signals at acoustic rates. We identified patients with RDX variants with normal hearing at birth who showed rapidly deteriorating hearing during the first months of life. This may be overlooked by newborn hearing screening and explained by multiple disturbances in postnatal sensory cells. We conclude radixin is necessary for ensuring normal conversion of sound to electrical signals in the inner ear.


Subject(s)
Cytoskeletal Proteins/metabolism , Hair Cells, Auditory, Outer/metabolism , Membrane Proteins/metabolism , Stereocilia/metabolism , Acoustic Stimulation , Alleles , Animals , Arsenicals/pharmacology , Child, Preschool , Cytoskeletal Proteins/genetics , Disease Models, Animal , Female , Fluorescent Antibody Technique , Gene Expression , Genetic Variation , Genotype , Guinea Pigs , Hair Cells, Auditory, Outer/drug effects , Hearing Loss/diagnosis , Hearing Loss/genetics , Humans , Mechanotransduction, Cellular/genetics , Membrane Proteins/genetics , Models, Biological , Pedigree , Stereocilia/drug effects
16.
Nutrients ; 12(10)2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33076263

ABSTRACT

Research has suggested that nutrient, exercise, and metabolism-related proteins interact to regulate mammalian target of rapamycin complex one (mTOR) post-exercise and their interactions needs clarification. In a double-blind, cross-over, repeated measures design, ten participants completed four sets to failure at 70% of 1-repitition maximum (1-RM) with 45 s rest on angled leg press with or without pre-exercise maltodextrin (2 g/kg) after a 3 h fast. Vastus lateralis biopsies were collected at baseline before supplementation and 1 h post-exercise to analyze Focal Adhesion Kinase (FAK), ribosomal protein S6 kinase beta-1 (p70S6K), insulin receptor substrate 1 (IRS-1), phosphatidylinositol 3-kinase (PI3K), and 5' AMP-activated protein kinase (AMPK) activation. FAK and IRS-1 activity were only elevated 1 h post-exercise with carbohydrate ingestion (p < 0.05). PI3K and p70S6K activation were both elevated after exercise in both conditions (p < 0.05). However, AMPK activity did not change from baseline in both conditions (p > 0.05). We conclude that FAK does not induce mTOR activation through PI3K crosstalk in response to exercise alone. In addition, FAK may not be regulated by AMPK catalytic activity, but this needs further research. Interestingly, carbohydrate-induced insulin signaling appears to activate FAK at the level of IRS-1 but did not enhance mTOR activity 1 h post-exercise greater than the placebo condition. Future research should investigate these interactions under different conditions and within different time frames to clearly understand the interactions between these signaling molecules.


Subject(s)
Dietary Carbohydrates/pharmacology , Eating/physiology , Exercise/physiology , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Insulin/metabolism , Mechanotransduction, Cellular/physiology , Nutrients/pharmacology , Signal Transduction/physiology , Sports Nutritional Physiological Phenomena/physiology , Adult , Dietary Carbohydrates/administration & dosage , Humans , Insulin Receptor Substrate Proteins/metabolism , Male , Phosphatidylinositol 3-Kinase/metabolism , Polysaccharides/administration & dosage , Polysaccharides/pharmacology , TOR Serine-Threonine Kinases , Young Adult
17.
Cell ; 181(4): 800-817.e22, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32302590

ABSTRACT

Tissue homeostasis requires maintenance of functional integrity under stress. A central source of stress is mechanical force that acts on cells, their nuclei, and chromatin, but how the genome is protected against mechanical stress is unclear. We show that mechanical stretch deforms the nucleus, which cells initially counteract via a calcium-dependent nuclear softening driven by loss of H3K9me3-marked heterochromatin. The resulting changes in chromatin rheology and architecture are required to insulate genetic material from mechanical force. Failure to mount this nuclear mechanoresponse results in DNA damage. Persistent, high-amplitude stretch induces supracellular alignment of tissue to redistribute mechanical energy before it reaches the nucleus. This tissue-scale mechanoadaptation functions through a separate pathway mediated by cell-cell contacts and allows cells/tissues to switch off nuclear mechanotransduction to restore initial chromatin state. Our work identifies an unconventional role of chromatin in altering its own mechanical state to maintain genome integrity in response to deformation.


Subject(s)
Cell Nucleus/physiology , Heterochromatin/physiology , Mechanotransduction, Cellular/physiology , Animals , Cell Line , Cell Nucleus/metabolism , Chromatin/metabolism , Chromatin/physiology , Heterochromatin/metabolism , Humans , Male , Mechanoreceptors/physiology , Mesenchymal Stem Cells , Mice , Stress, Mechanical
18.
Tissue Eng Part B Rev ; 26(6): 540-554, 2020 12.
Article in English | MEDLINE | ID: mdl-32242476

ABSTRACT

One of the most crucial components of regenerative medicine is the controlled differentiation of embryonic or adult stem cells into the desired cell lineage. Although most of the reported protocols of stem cell differentiation involve the use of soluble growth factors, it is increasingly evident that stem cells also undergo differentiation when cultured in the appropriate microenvironment. When cultured in decellularized tissues, for instance, stem cells can recapitulate the morphogenesis and functional specialization of differentiated cell types with speed and efficiency that often surpass the traditional growth factor-driven protocols. This suggests that the tissue microenvironment (TME) provides stem cells with a holistic "instructive niche" that harbors signals for cellular reprogramming. The translation of this into medical applications requires the decoding of these signals, but this has been hampered by the complexity of TME. This problem is often addressed by a reductionist approach, in which cells are exposed to substrates decorated with simple, empirically designed geometries, textures, and chemical compositions ("bottom-up" approach). Although these studies are invaluable in revealing the basic principles of mechanotransduction mechanisms, their physiological relevance is often uncertain. This review examines the recent progress of an alternative, "top-down" approach, in which the TME is treated as a holistic biological entity. This approach is made possible by recent advances in systems biology and fabrication technologies that enable the isolation, characterization, and reconstitution of TME. It is hoped that these new techniques will elucidate the nature of niche signals so that they can be extracted, replicated, and controlled. This review summarizes these emerging techniques and how the data they generated are changing our view on TME. Impact statement This review summarizes the current state of art of the understanding of instructive niche in the field of tissue microenvironment. Not only did we survey the use of different biochemical preparations as stimuli of stem cell differentiation and summarize the recent effort in dissecting the biochemical composition of these preparations, through the application of extracellular matrix (ECM) arrays and proteomics, but we also introduce the use of open-source, high-content immunohistochemistry projects in contributing to the understanding of tissue-specific composition of ECM. We believe this review would be highly useful for our peer researching in the same field. "Mr. Tulkinghorn is always the same… so oddly out of place and yet so perfectly at home." -Charles Dickens, Bleak House.


Subject(s)
Mechanotransduction, Cellular , Tissue Engineering , Cell Differentiation , Cell Lineage , Extracellular Matrix , Stem Cells
19.
Int J Mol Sci ; 21(6)2020 Mar 17.
Article in English | MEDLINE | ID: mdl-32192136

ABSTRACT

Deep dermal defects can result from burns, necrotizing fasciitis and severe soft tissue trauma. Physiological scar restriction during wound healing becomes increasingly relevant in proportion to the affected area. This massively restricts the general mobility of patients. External mechanical influences (activity or immobilization in everyday life) can lead to the formation of marked scar strands and adhesions. Overloading results in a renewed inflammatory reaction and thus in further restriction. Appropriate mechanical stimuli can have a positive influence on the scar tissue. "Use determines function," and even minimal external forces are sufficient to cause functional alignment (mechanotransduction). The first and second remarkable increases in connective tissue resistance (R1 and R2) seem to be relevant clinical indications of adequate dosage in the proliferation and remodulation phase, making it possible to counteract potential overdosage in deep dermal defects. The current state of research does not allow a direct transfer to the clinical treatment of large scars. However, the continuous clinical implementation of study results with regard to the mechanosensitivity of isolated fibroblasts, and the constant adaptation of manual techniques, has nevertheless created an evidence-base for manual scar therapy. The manual dosages are adapted to tissue physiology and to respective wound healing phases. Clinical observations show improved mobility of the affected regions and fewer relapses into the inflammatory phase due to mechanical overload.


Subject(s)
Cicatrix/metabolism , Cicatrix/therapy , Dermis/metabolism , Dermis/pathology , Mechanotransduction, Cellular , Musculoskeletal Manipulations , Animals , Biomarkers , Burns/etiology , Burns/metabolism , Cicatrix/etiology , Cicatrix/pathology , Cicatrix, Hypertrophic/etiology , Cicatrix, Hypertrophic/metabolism , Cicatrix, Hypertrophic/pathology , Cicatrix, Hypertrophic/therapy , Connective Tissue/metabolism , Connective Tissue/pathology , Disease Management , Fibroblasts/metabolism , Humans , Musculoskeletal Manipulations/methods , Wound Healing/physiology
20.
Eur J Trauma Emerg Surg ; 46(2): 231-244, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32078704

ABSTRACT

Electrical stimulation (EStim) has been shown to promote bone healing and regeneration both in animal experiments and clinical treatments. Therefore, incorporating EStim into promising new bone tissue engineering (BTE) therapies is a logical next step. The goal of current BTE research is to develop combinations of cells, scaffolds, and chemical and physical stimuli that optimize treatment outcomes. Recent studies demonstrating EStim's positive osteogenic effects at the cellular and molecular level provide intriguing clues to the underlying mechanisms by which it promotes bone healing. In this review, we discuss results of recent in vitro and in vivo research focused on using EStim to promote bone healing and regeneration and consider possible strategies for its application to improve outcomes in BTE treatments. Technical aspects of exposing cells and tissues to EStim in in vitro and in vivo model systems are also discussed.


Subject(s)
Bone Regeneration , Bone and Bones , Electric Stimulation Therapy/methods , Electric Stimulation/methods , Fracture Healing , Guided Tissue Regeneration/methods , Tissue Engineering/methods , Adenosine Triphosphate/metabolism , Apoptosis , Calcium Signaling , Cell Adhesion , Cell Differentiation , Cell Movement , Cell Proliferation , Chondrogenesis , Dental Pulp/cytology , Heat-Shock Proteins/metabolism , Humans , In Vitro Techniques , Inflammation , MAP Kinase Signaling System , Mechanotransduction, Cellular , Membrane Microdomains , Mesenchymal Stem Cells , Neovascularization, Physiologic , Osteoblasts , Osteogenesis , Reactive Oxygen Species/metabolism , Receptors, Cell Surface/metabolism , Signal Transduction , Tissue Scaffolds
SELECTION OF CITATIONS
SEARCH DETAIL