Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Country/Region as subject
Publication year range
1.
ScientificWorldJournal ; 2021: 5381993, 2021.
Article in English | MEDLINE | ID: mdl-34720766

ABSTRACT

Microbial infections remain a public health problem due to the upsurge of bacterial resistance. In this study, the antibacterial, antibiofilm, and efflux pump inhibitory activities of the stem bark of Acacia macrostachya, an indigenous African medicinal plant, were investigated. In traditional medicine, the plant is used in the treatment of microbial infections and inflammatory conditions. A crude methanol extract obtained by Soxhlet extraction was partitioned by column chromatography to obtain the petroleum ether, ethyl acetate, and methanol fractions. Antibacterial, efflux pump inhibition and antibiofilm formation activities were assessed by the high-throughput spot culture growth inhibition (HT-SPOTi), ethidium bromide accumulation, and the crystal violet retention assay, respectively. The minimum inhibitory concentrations (MICs) of the crude extract and major fractions ranged from 250 to ≥500 µg/mL. At a concentration of 3.9-250 µg/mL, all extracts demonstrated >80% inhibition of biofilm formation in S. aureus. In P. aeruginosa, the EtOAc fraction showed the highest antibiofilm activity (59-69%) while the pet-ether fraction was most active against E. coli biofilms (45-67%). Among the test samples, the crude extract, methanol, and ethyl acetate fractions showed remarkable efflux pump inhibition in S. aureus, E. coli, and P. aeruginosa. At ½ MIC, the methanol fraction demonstrated significant accumulation of EtBr in E. coli having superior efflux inhibition over the standard EPIs: chlorpromazine and verapamil. Tannins, flavonoids, triterpenoids, phytosterols, coumarins, and saponins were identified in preliminary phytochemical studies. Stigmasterol was identified in the EtOAc fraction. This study justifies the use of A. macrostachya in the treatment of infections in traditional medicine and highlights its potential as a source of bioactive compounds that could possibly interact with some resistance mechanisms in bacteria to combat antimicrobial resistance.


Subject(s)
Acacia , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Plant Bark , Plant Extracts/pharmacology , Plant Stems , Anti-Bacterial Agents/isolation & purification , Biofilms/growth & development , Escherichia coli/drug effects , Escherichia coli/physiology , Humans , Membrane Transport Modulators/isolation & purification , Membrane Transport Modulators/pharmacology , Microbial Sensitivity Tests/methods , Plant Extracts/isolation & purification , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology
2.
J Pharmacol Exp Ther ; 377(1): 20-28, 2021 04.
Article in English | MEDLINE | ID: mdl-33431609

ABSTRACT

Treatment of chronic pain remains an unmet medical need. The neuronal voltage-gated potassium Kv7/KCNQ/M channel has been implicated as a therapeutic target for chronic pain. However, whether pharmacological activation of the Kv7 channel can alleviate pain remains elusive. In this study, we show that selective activation of native M-currents by a novel channel opener SCR2682 reduces repetitive firings of dorsal root ganglia (DRG) sensory neurons. Intraperitoneal administration of SCR2682 relieves mechanical allodynia and thermal hyperalgesia in rat models of pain induced by complete Freund's adjuvant (CFA) or spared nerve injury (SNI) in a dose-dependent manner without affecting locomotor activity. The antinociceptive efficacy of SCR2682 can be reversed by the channel-specific blocker XE991. Furthermore, SCR2682 increases Kv7.2/KCNQ2 mRNA and protein expression in DRG neurons from rats in the SNI model of neuropathic pain. Taken together, pharmacological activation of neuronal Kv7 channels by opener SCR2682 can alleviate pain in rats, thus possessing therapeutic potential for chronic pain or hyperexcitability-related neurologic disorders. SIGNIFICANCE STATEMENT: A novel voltage-gated potassium Kv7 channel opener SCR2682 inhibits action potential firings in dorsal root ganglia sensory neurons and exhibits efficacy in antinociception, thus possessing a developmental potential for treatment of chronic pain or epilepsy.


Subject(s)
Analgesics/therapeutic use , Chronic Pain/drug therapy , KCNQ2 Potassium Channel/metabolism , Membrane Transport Modulators/therapeutic use , Pyridines/therapeutic use , Action Potentials , Analgesics/pharmacology , Animals , Cells, Cultured , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Ganglia, Spinal/physiology , KCNQ2 Potassium Channel/agonists , Male , Membrane Transport Modulators/pharmacology , Pyridines/pharmacology , Rats , Rats, Sprague-Dawley
3.
J Ethnopharmacol ; 267: 113533, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33137433

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Secondary metabolites play a critical role in plant defense against disease and are of great importance to ethnomedicine. Bacterial efflux pumps are active transport proteins that bacterial cells use to protect themselves against multiple toxic compounds, including many antimicrobials. Efflux pump inhibitors from plants can block these efflux pumps, increasing the potency of antimicrobial compounds. This study demonstrates that efflux pump inhibition against the Gram-positive bacterial pathogen Staphylococcus aureus is widespread in extracts prepared from individual species throughout the land plant lineage. It therefore suggests a general mechanism by which plants used by indigenous species may be effective as a topical treatment for some bacterial infections. AIM OF THE STUDY: The goal of this research was to evaluate the distribution of efflux pump inhibitors in nine plant extracts with an ethnobotanical use suggestive of an antimicrobial function for the presence of efflux pump inhibitory activity against Staphylococcus aureus. MATERIALS AND METHODS: Plants were collected, dried, extracted, and vouchers submitted to the Herbarium of the University of North Carolina Chapel Hill (NCU). The extracts were analyzed by quantitative mass spectrometry (UPLC-MS) to determine the presence and concentration of flavonoids with known efflux pump inhibitory activity. A mass spectrometry-based assay was employed to measure efflux pump inhibition for all extracts against Staphylococcus aureus. The assay relies on UPLC-MS measurement of changes in ethidium concentration in the spent culture broth when extracts are incubated with bacteria. RESULTS: Eight of these nine plant extracts inhibited toxic compound efflux at concentrations below the MIC (minimum inhibitory concentration) value for the same extract. The most active extracts were those prepared from Osmunda claytoniana L. and Pinus strobes L., which both demonstrated IC50 values for efflux inhibition of 19 ppm. CONCLUSIONS: Our findings indicate that efflux pump inhibitors active against Staphylococcus aureus are common in land plants. By extension, this activity is likely to be important in many plant-derived antimicrobial extracts, including those used in traditional medicine, and evaluation of efflux pump inhibition may often be valuable when studying natural product efficacy.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Bacterial Secretion Systems/drug effects , Membrane Transport Modulators/pharmacology , Membrane Transport Proteins/drug effects , Plants, Medicinal , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/isolation & purification , Bacterial Proteins/metabolism , Membrane Transport Modulators/isolation & purification , Membrane Transport Proteins/metabolism , Microbial Sensitivity Tests , Phytotherapy , Plants, Medicinal/chemistry , Plants, Medicinal/classification , Staphylococcus aureus/metabolism
4.
J Biol Chem ; 293(10): 3770-3779, 2018 03 09.
Article in English | MEDLINE | ID: mdl-29363573

ABSTRACT

Neutrophils migrate to sites infected by pathogenic microorganisms. This migration is regulated by neutrophil-secreted ATP, which stimulates neutrophils in an autocrine manner through purinergic receptors on the plasma membrane. Although previous studies have shown that ATP is released through channels at the plasma membrane of the neutrophil, it remains unknown whether it is also released through alternate secretory systems involving vesicular mechanisms. In this study, we investigated the possible involvement of vesicular nucleotide transporter (VNUT), a key molecule for vesicular storage and nucleotide release, in ATP secretion from neutrophils. RT-PCR and Western blotting analysis indicated that VNUT is expressed in mouse neutrophils. Immunohistochemical analysis indicated that VNUT mainly colocalized with matrix metalloproteinase-9 (MMP-9), a marker of tertiary granules, which are secretory organelles. In mouse neutrophils, ATP release was inhibited by clodronate, which is a potent VNUT inhibitor. Furthermore, neutrophils from VNUT-/- mice did not release ATP and exhibited significantly reduced migration in vitro and in vivo These findings suggest that tertiary granule-localized VNUT is responsible for vesicular ATP release and subsequent neutrophil migration. Thus, these findings suggest an additional mechanism through which ATP is released by neutrophils.


Subject(s)
Adenosine Triphosphate/metabolism , Neutrophil Infiltration , Neutrophils/metabolism , Nucleotide Transport Proteins/metabolism , Secretory Vesicles/metabolism , Adjuvants, Immunologic/pharmacology , Animals , Biological Transport/drug effects , Biomarkers/metabolism , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Bone Marrow Cells/immunology , Bone Marrow Cells/metabolism , Cell Movement/drug effects , Freund's Adjuvant/pharmacology , Gene Expression Regulation , Humans , Male , Matrix Metalloproteinase 9/metabolism , Membrane Transport Modulators/pharmacology , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Activation/drug effects , Neutrophil Infiltration/drug effects , Neutrophils/cytology , Neutrophils/drug effects , Neutrophils/immunology , Nucleotide Transport Proteins/antagonists & inhibitors , Nucleotide Transport Proteins/genetics , Protein Transport/drug effects , Secretory Vesicles/drug effects , Secretory Vesicles/immunology
5.
J Nutr Biochem ; 51: 8-15, 2018 01.
Article in English | MEDLINE | ID: mdl-29078076

ABSTRACT

Olive oil vascular benefits have been attributed to hydroxytyrosol (HT). However, HT biological actions are still debated because it is extensively metabolized into glucuronides (GCs). The aim of this study was to test HT and GC vasculoprotective effects and the underlying mechanisms using aorta rings from 8-week-old male Wistar rats. In the absence of oxidative stress, incubation with 100 µM HT or GC for 5 min did not exert any vasorelaxing effect and did not influence the vascular function. Conversely, in condition of oxidative stress [upon incubation with 500 µM tert-butylhydroperoxide (t-BHP) for 30 min], preincubation with HT or GC improved acetylcholine-induced vasorelaxation compared with untreated samples (no t-BHP). This protective effect was lost for GC, but not for HT, when a washing step (15 min) was introduced between preincubation with HT or GC and t-BHP addition, suggesting that only HT enters the cells. In agreement, bilitranslocase inhibition with 100 µM phenylmethanesulfonyl fluoride for 20 min reduced significantly HT, but not GC, effect on the vascular function upon stress induction. Moreover, GC protective effect (improvement of endothelium-dependent relaxation in response to acetylcholine) in oxidative stress conditions was reduced by preincubation of aorta rings with 300 µM D-saccharolactone to inhibit ß-glucuronidase, which can deconjugate polyphenols. Finally, only HT was detected by high-pressure liquid chromatography in aorta rings incubated with GC and t-BHP. These results suggest that, in conditions of oxidative stress, GC can be deconjugated into HT that is transported through the cell membrane by bilitranslocase to protect vascular function.


Subject(s)
Antioxidants/metabolism , Ceruloplasmin/metabolism , Endothelium, Vascular/metabolism , Glucuronidase/metabolism , Glucuronides/metabolism , Oxidative Stress , Phenylethyl Alcohol/analogs & derivatives , Animals , Antioxidants/chemistry , Aorta, Thoracic , Biological Transport, Active/drug effects , Ceruloplasmin/antagonists & inhibitors , Dietary Supplements , Endothelium, Vascular/drug effects , Endothelium, Vascular/enzymology , Enzyme Inhibitors/pharmacology , Glucaric Acid/analogs & derivatives , Glucaric Acid/pharmacology , Glucuronidase/antagonists & inhibitors , Glucuronides/chemistry , In Vitro Techniques , Male , Membrane Transport Modulators/pharmacology , Oxidants/pharmacology , Oxidative Stress/drug effects , Phenylethyl Alcohol/chemistry , Phenylethyl Alcohol/metabolism , Phenylmethylsulfonyl Fluoride/pharmacology , Rats, Wistar , Vascular Diseases/enzymology , Vascular Diseases/metabolism , Vascular Diseases/prevention & control , Vasodilation/drug effects , tert-Butylhydroperoxide/pharmacology
6.
Arch Microbiol ; 199(8): 1103-1112, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28432381

ABSTRACT

The causative agent of cholera, Vibrio cholerae, is a public health concern. Multidrug-resistant V. cholerae variants may reduce chemotherapeutic efficacies of severe cholera. We previously reported that the multidrug efflux pump EmrD-3 from V. cholerae confers resistance to multiple structurally distinct antimicrobials. Medicinal plant compounds are potential candidates for EmrD-3 efflux pump modulation. The antibacterial activities of garlic Allium sativum, although poorly understood, predicts that a main bioactive component, allyl sulfide, modulates EmrD-3 efflux. Thus, we tested whether A. sativum extract acts in synergy with antimicrobials and that a main bioactive component allyl sulfide inhibits EmrD-3 efflux. We found that A. sativum extract and allyl sulfide inhibited ethidium bromide efflux in cells harboring EmrD-3 and that A. sativum lowered the MICs of multiple antibacterials. We conclude that A. sativum and allyl sulfide inhibit EmrD-3 and that A. sativum extract synergistically enhances antibacterial agents.


Subject(s)
Allyl Compounds/pharmacology , Anti-Bacterial Agents/pharmacology , Ethidium/metabolism , Membrane Transport Modulators/pharmacology , Membrane Transport Proteins/metabolism , Sulfides/pharmacology , Vibrio cholerae/metabolism , Cholera/drug therapy , Cholera/microbiology , Drug Synergism , Garlic/chemistry , Microbial Sensitivity Tests , Plant Extracts/pharmacology
8.
Basic Clin Pharmacol Toxicol ; 120(3): 250-255, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27657920

ABSTRACT

P-glycoprotein (P-gp), an important efflux transporter in intestine, regulates the bioavailability of orally taken drugs. To develop an in vitro model that preferably mimics the physiological microenvironment of human intestine, we employed the three-dimensionally (3D) cultured organoids from human normal small intestinal epithelium. It was observed that the intestinal crypts could efficiently form cystic organoid structure with the extension of culture time. Furthermore, the physiological expression of ABCB1 was detected at both mRNA and protein levels in cultured organoids. Rhodamine 123 (Rh123), a typical substrate of P-gp, was actively transported across 3D organoids and accumulated in the luminal space. This transport process was also inhibited by verapamil and mitotane. In summary, the above-mentioned model based on human small intestinal 3D organoids is suitable to imitate the small intestinal epithelium and could be used as a novel in vitro model especially for P-gp inhibitor screening.


Subject(s)
Intestinal Mucosa/drug effects , Intestine, Small/drug effects , Membrane Transport Modulators/pharmacology , Organoids/drug effects , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , Biological Availability , Biological Transport/drug effects , Drug Evaluation, Preclinical/methods , Humans , Immunohistochemistry , Mitotane/pharmacology , Models, Biological , RNA, Messenger/metabolism , Rhodamine 123/pharmacokinetics , Tissue Culture Techniques , Verapamil/pharmacology
9.
J Clin Pharmacol ; 56 Suppl 7: S82-98, 2016 07.
Article in English | MEDLINE | ID: mdl-27385182

ABSTRACT

Drug transporters are present in various tissues and have a significant role in drug absorption, distribution, and elimination. The International Transporter Consortium has identified 7 transporters of increasing importance from evidence of clinically significant transporter-mediated drug-drug interactions. The transporters are P-glycoprotein, breast cancer resistance protein, organic anion transporting polypeptide (OATP) 1B1, OATP1B3, organic cation transporter 2, organic anion transporters (OAT) 1, and OAT3. Decision trees were created based on in vitro experiments to determine whether an in vivo transporter-mediated drug-drug interaction study is needed. Phenotyping is a methodology that evaluates real-time in vivo transporter activity, whereby changes in a probe substrate or probe inhibitor reflect alternations in the activity of the specified transporter. In vivo probe substrates and/or probe inhibitors have been proposed for each aforementioned transporter. In vitro findings and animal models provide the strongest evidence regarding probe specificity. However, such findings have not conclusively correlated with human phenotyping studies. Furthermore, the extent of contribution from multiple transporters in probe disposition complicates the ability to discern if study findings are the result of a specific transporter and thus provide a recommendation for a preferred probe for a drug transporter.


Subject(s)
Membrane Transport Modulators/metabolism , Membrane Transport Proteins/metabolism , Pharmaceutical Preparations/metabolism , Phenotype , ATP-Binding Cassette Transporters , Animals , Biological Transport/drug effects , Biological Transport/physiology , Decision Trees , Drug Evaluation, Preclinical/methods , Drug Interactions/physiology , Humans , Membrane Transport Modulators/pharmacology , Organic Anion Transporters/metabolism , Organic Cation Transport Proteins/metabolism , Pharmaceutical Preparations/administration & dosage , Substrate Specificity/physiology
10.
ACS Chem Neurosci ; 6(8): 1302-8, 2015 Aug 19.
Article in English | MEDLINE | ID: mdl-26114759

ABSTRACT

Voltage-gated sodium channels (Nav) are crucial to the initiation and propagation of action potentials (APs) in electrically excitable cells, and during the past decades they have received considerable attention due to their therapeutic potential. Here, we report for the first time the synthesis and the electrophysiological evaluation of 16 ligands based on a 2-methylbenzamide scaffold that have been identified as Nav1.1 modulators. Among these compounds, N,N'-(1,3-phenylene)bis(2-methylbenzamide) (3a) has been selected and evaluated in ex-vivo experiments in order to estimate the activation impact of such a compound profile. It appears that 3a increases the Nav1.1 channel activity although its overall impact remains moderate. Altogether, our preliminary results provide new insights into the development of small molecule activators targeting specifically Nav1.1 channels to design potential drugs for treating CNS diseases.


Subject(s)
Benzamides/chemistry , Membrane Transport Modulators/pharmacology , NAV1.1 Voltage-Gated Sodium Channel/metabolism , Animals , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/physiology , Drug Evaluation, Preclinical , HEK293 Cells , Humans , Interneurons/drug effects , Interneurons/physiology , Membrane Potentials/drug effects , Membrane Transport Modulators/chemical synthesis , Membrane Transport Modulators/chemistry , Molecular Structure , Rats , Tissue Culture Techniques
11.
Drug Metab Dispos ; 43(2): 235-47, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25414411

ABSTRACT

The risk assessment of organic anion transporting polypeptide (OATP) 1B1-mediated drug-drug interactions (DDIs) is an indispensable part of drug development. We previously reported that in vitro inhibitory potencies of several inhibitors on OATP1B1 depend on the substrates when prototypical substrates, estradiol-17ß-glucuronide (E2G), estrone-3-sulfate, and sulfobromophthalein were used as test substrates. The purpose of this study was to comprehensively investigate this substrate-dependent inhibition of OATP1B1 using clinically relevant OATP1B1 inhibitors and substrate drugs. Effects of cyclosporine A (CsA), rifampin, and gemfibrozil on OATP1B1-mediated uptake of 12 substrate drugs were examined in OATP1B1-expressing human embryonic kidney 293 cells. The Ki values (µM) for CsA varied from 0.0771 to 0.486 (6.3-fold), for rifampin from 0.358 to 1.23 (3.4-fold), and for gemfibrozil from 9.65 to 252 (26-fold). Except for the inhibition of torasemide uptake by CsA and that of nateglinide uptake by gemfibrozil, the Ki values were within 2.8-fold of those obtained using E2G as a substrate. Preincubation potentiated the inhibitory effect of CsA on OATP1B1 with similar magnitude regardless of the substrates. R values calculated based on a static model showed some variation depending on the Ki values determined with various substrates, and such variability could have an impact on the DDI predictions particularly for a weak-to-moderate inhibitor (gemfibrozil). OATP1B1 substrate drugs except for torasemide and nateglinide, or E2G as a surrogate, is recommended as an in vitro probe in the inhibition experiments, which will help mitigate the risk of false-negative DDI predictions potentially caused by substrate-dependent Ki variation.


Subject(s)
Antihypertensive Agents/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Hypoglycemic Agents/metabolism , Membrane Transport Modulators/pharmacology , Models, Biological , Organic Anion Transporters/antagonists & inhibitors , Binding, Competitive , Biological Transport/drug effects , Cyclohexanes/metabolism , Cyclosporine/pharmacology , Drug Evaluation, Preclinical , Drug Interactions , Estradiol/analogs & derivatives , Estradiol/metabolism , Gemfibrozil/pharmacology , HEK293 Cells , Humans , Kinetics , Liver-Specific Organic Anion Transporter 1 , Nateglinide , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , Phenylalanine/analogs & derivatives , Phenylalanine/metabolism , Recombinant Proteins/metabolism , Rifampin/pharmacology , Sulfonamides/metabolism , Torsemide
12.
Bioorg Med Chem ; 22(3): 945-59, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24417959

ABSTRACT

Five alditol analogs 1b-1f of a novel glycolipid acremomannolipin A (1a), the potential Ca(2+) signal modulator isolated from Acremonium strictum, were synthesized by employing a stereoselective ß-mannosylation of appropriately protected mannose with five hexitols with different stereochemistry, and their potential on modulating Ca(2+) signaling were evaluated. All these analogs were more potent compared to the original compound 1a, and proved that mannitol stereochemistry of 1a was not critical for the potent calcium signal modulating.


Subject(s)
Calcium Signaling/drug effects , Glycolipids/chemistry , Glycolipids/pharmacology , Structure-Activity Relationship , Chemistry Techniques, Synthetic , Drug Evaluation, Preclinical/methods , Glycolipids/chemical synthesis , Mannose/chemistry , Membrane Transport Modulators/chemistry , Membrane Transport Modulators/pharmacology , Schizosaccharomyces/drug effects , Schizosaccharomyces/metabolism , Stereoisomerism , Sugar Alcohols/chemistry
13.
PLoS One ; 9(1): e85165, 2014.
Article in English | MEDLINE | ID: mdl-24475039

ABSTRACT

Schisandra chinensis (Turz Baill) (S. chinensis) (SC) fruit is a hepatoprotective herb containing many lignans and a large amount of polysaccharides. A novel polysaccharide (called SC-2) was isolated from SC of MW 841 kDa, which exhibited a protein-to-polysaccharide ratio of 0.4089, and showed a characteristic FTIR spectrum of a peptidoglycan. Powder X-ray diffraction revealed microcrystalline structures within SC-2. SC-2 contained 10 monosaccharides and 15 amino acids (essential amino acids of 78.12%w/w). In a HepG2 cell model, SC-2 was shown by MTT and TUNEL assay to be completely non-cytotoxic. A kinetic analysis and fluorescence-labeling technique revealed no intracellular disposition of SC-2. Combined treatment of lignans with SC-2 enhanced the intracellular transport of schisandrin B and deoxyschisandrin but decreased that of gomisin C, resulting in alteration of cell-killing bioactivity. The Second Law of Thermodynamics allows this type of unidirectional transport. Conclusively, SC-2 alters the transport and cell killing capability by a "Catcher-Pitcher Unidirectional Transport Mechanism".


Subject(s)
Fruit/chemistry , Lignans/metabolism , Membrane Transport Modulators/pharmacology , Peptidoglycan/pharmacology , Plant Extracts/pharmacology , Schisandra/chemistry , Analysis of Variance , Biological Transport/drug effects , Biological Transport/physiology , Hep G2 Cells , Humans , In Situ Nick-End Labeling , Peptidoglycan/analysis , Plant Extracts/analysis , Spectroscopy, Fourier Transform Infrared , Tetrazolium Salts , Thiazoles , X-Ray Diffraction
14.
FEBS J ; 281(3): 766-77, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24238016

ABSTRACT

Flavonoids are group of plant-derived hydroxylated polycyclic molecules found in fruit and vegetables. They are known to bio-accumulate within humans and are considered to have beneficial health effects, including cancer chemoprotection. One mechanism proposed to explain this is that they are able to induce apoptosis in cancer cells by inhibiting a variety of kinases and also the Ca²âº ATPase. An investigation was undertaken with respect to the mechanism of inhibition for three flavonoids: quercetin, galangin and 3,6 dihydroxyflavone (3,6-DHF). Each inhibited the Ca²âº ATPase with K(i) values of 8.7, 10.3 and 5.4 µM, respectively, showing cooperative inhibition with n ~ 2. Given their similar structures, the flavonoids showed several differences in their mechanisms of inhibition. All three flavonoids stabilized the ATPase in the E1 conformation and reduced [³²P]-ATP binding. However, both galangin and 3,6-DHF increased the affinity of Ca²âº for the ATPase by decreasing the Ca²âº-dissociation rate constant, whereas quercetin had little effect. Ca²âº-induced changes in tryptophan fluorescence levels were reduced in the presence of 3,6-DHF and galangin (but not with quercetin), indicating that Ca²âº-associated changes within the transmembrane helices are altered. Both galangin and quercetin reduced the rates of ATP-dependent phosphorylation and dephosphorylation, whereas 3,6-DHF did not. Modelling studies suggest that flavonoids could potentially bind to two sites: one directly where nucleotides bind within ATP binding site and the other at a site close by. We hypothesize that interactions of these two neighbouring sites may account for both the cooperative inhibition and the multimode mechanisms of action seen with related flavonoids.


Subject(s)
Enzyme Inhibitors/pharmacology , Flavonoids/pharmacology , Membrane Transport Modulators/pharmacology , Phytoestrogens/pharmacology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/antagonists & inhibitors , Adenosine Triphosphate/metabolism , Allosteric Regulation , Animals , Anticarcinogenic Agents/chemistry , Anticarcinogenic Agents/metabolism , Anticarcinogenic Agents/pharmacology , Calcium/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Flavonoids/chemistry , Flavonoids/metabolism , Kinetics , Membrane Transport Modulators/chemistry , Membrane Transport Modulators/metabolism , Molecular Conformation , Molecular Docking Simulation , Muscle, Skeletal/enzymology , Muscle, Skeletal/metabolism , Phosphorylation/drug effects , Phytoestrogens/chemistry , Phytoestrogens/metabolism , Protein Stability/drug effects , Quercetin/chemistry , Quercetin/metabolism , Quercetin/pharmacology , Rabbits , Sarcoplasmic Reticulum Calcium-Transporting ATPases/chemistry , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
15.
Curr Pharm Des ; 20(5): 793-807, 2014.
Article in English | MEDLINE | ID: mdl-23688078

ABSTRACT

Multidrug resistance (MDR) is a serious problem that hampers the success of cancer pharmacotherapy. A common mechanism is the overexpression of ATP-binding cassette (ABC) efflux transporters in cancer cells such as P-glycoprotein (P-gp/ABCB1), multidrug resistance-associated protein 1 (MRP1/ABCC1) and breast cancer resistance protein (BCRP/ABCG2) that limit the exposure to anticancer drugs. One way to overcome MDR is to develop ABC efflux transporter inhibitors to sensitize cancer cells to chemotherapeutic drugs. The complete clinical trials thus far have showen that those tested chemosensitizers only add limited or no benefits to cancer patients. Some MDR modulators are merely toxic, and others induce unwanted drug-drug interactions. Actually, many ABC transporters are also expressed abundantly in the gastrointestinal tract, liver, kidney, brain and other normal tissues, and they largely determine drug absorption, distribution and excretion, and affect the overall pharmacokinetic properties of drugs in humans. In addition, ABC transporters such as P-gp, MRP1 and BCRP co-expressed in tumors show a broad and overlapped specificity for substrates and MDR modulators. Thus reliable preclinical assays and models are required for the assessment of transporter-mediated flux and potential effects on pharmacokinetics in drug development. In this review, we provide an overview of the role of ABC efflux transporters in MDR and pharmacokinetics. Preclinical assays for the assessment of drug transport and development of MDR modulators are also discussed.


Subject(s)
ATP-Binding Cassette Transporters/antagonists & inhibitors , Antineoplastic Agents/pharmacokinetics , Drug Design , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Membrane Transport Modulators/pharmacokinetics , Models, Biological , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biological Transport/drug effects , Drug Evaluation, Preclinical/methods , Humans , Membrane Transport Modulators/chemistry , Membrane Transport Modulators/pharmacology , Membrane Transport Modulators/therapeutic use , Molecular Conformation , Molecular Targeted Therapy , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/chemistry , Neoplasm Proteins/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism
16.
Br J Pharmacol ; 171(10): 2608-20, 2014 May.
Article in English | MEDLINE | ID: mdl-23902373

ABSTRACT

BACKGROUND AND PURPOSE: Evodiamine, a racemic quinazolinocarboline alkaloid isolated from the traditional Chinese medicine Evodiae fructus, has been reported to act as an agonist of the transient receptor potential vanilloid type-1 (TRPV1) cation channel both in vitro and in vivo. Evodiamine is structurally different from all known TRPV1 activators, and has significant clinical potential as a thermogenic agent. Nevertheless, the molecular bases for its actions are still poorly understood. EXPERIMENTAL APPROACH: To investigate the structure-activity relationships of evodiamine, the natural racemate was resolved, and a series of 23 synthetic analogues was prepared, using as the end point the intracellular Ca(2+) elevation in HEK-293 cells stably overexpressing either the human or the rat recombinant TRPV1. KEY RESULTS: S-(+) evodiamine was more efficacious and potent than R-(-) evodiamine, and a new potent lead (Evo30) was identified, more potent than the reference TRPV1 agonist, capsaicin. In general, potency and efficacy correlated with the lipophilicity of the analogues. Like other TRPV1 agonists, several synthetic analogues could efficiently desensitize TRPV1 to activation by capsaicin. CONCLUSIONS AND IMPLICATIONS: Evodiamine qualifies as structurally unique lead structure to develop new potent TRPV1 agonists/desensitizers.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Membrane Transport Modulators/pharmacology , Quinazolines/pharmacology , TRPV Cation Channels/agonists , Animals , Calcium Signaling/drug effects , Dose-Response Relationship, Drug , Drug Design , Drugs, Chinese Herbal/chemistry , HEK293 Cells , Humans , Isomerism , Membrane Transport Modulators/chemistry , Molecular Structure , Quinazolines/chemistry , Rats , Structure-Activity Relationship , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Transfection
17.
J Physiol ; 592(4): 669-93, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24366266

ABSTRACT

The dentate granule cells (DGCs) form the most numerous neuron population of the hippocampal memory system, and its gateway for cortical input. Yet, we have only limited knowledge of the intrinsic membrane properties that shape their responses. Since SK and Kv7/M potassium channels are key mechanisms of neuronal spiking and excitability control, afterhyperpolarizations (AHPs) and synaptic integration, we studied their functions in DGCs. The specific SK channel blockers apamin or scyllatoxin increased spike frequency (excitability), reduced early spike frequency adaptation, fully blocked the medium-duration AHP (mAHP) after a single spike or spike train, and increased postsynaptic EPSP summation after spiking, but had no effect on input resistance (Rinput) or spike threshold. In contrast, blockade of Kv7/M channels by XE991 increased Rinput, lowered the spike threshold, and increased excitability, postsynaptic EPSP summation, and EPSP-spike coupling, but only slightly reduced mAHP after spike trains (and not after single spikes). The SK and Kv7/M channel openers 1-EBIO and retigabine, respectively, had effects opposite to the blockers. Computational modelling reproduced many of these effects. We conclude that SK and Kv7/M channels have complementary roles in DGCs. These mechanisms may be important for the dentate network function, as CA3 neurons can be activated or inhibition recruited depending on DGC firing rate.


Subject(s)
Excitatory Postsynaptic Potentials , Hippocampus/physiology , KCNQ Potassium Channels/metabolism , Small-Conductance Calcium-Activated Potassium Channels/metabolism , Synapses/physiology , Action Potentials , Animals , Benzimidazoles/pharmacology , Carbamates/pharmacology , Hippocampus/cytology , Hippocampus/metabolism , Male , Membrane Potentials , Membrane Transport Modulators/pharmacology , Neurons/metabolism , Neurons/physiology , Phenylenediamines/pharmacology , Rats , Rats, Wistar , Small-Conductance Calcium-Activated Potassium Channels/agonists , Small-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , Synapses/metabolism
18.
Biochemistry ; 52(51): 9375-84, 2013 Dec 23.
Article in English | MEDLINE | ID: mdl-24251446

ABSTRACT

Tuberculosis remains a global health emergency that calls for treatment regimens directed at new targets. Here we explored lipoamide dehydrogenase (Lpd), a metabolic and detoxifying enzyme in Mycobacterium tuberculosis (Mtb) whose deletion drastically impairs Mtb's ability to establish infection in the mouse. Upon screening more than 1.6 million compounds, we identified N-methylpyridine 3-sulfonamides as potent and species-selective inhibitors of Mtb Lpd affording >1000-fold selectivity versus the human homologue. The sulfonamides demonstrated low nanomolar affinity and bound at the lipoamide channel in an Lpd-inhibitor cocrystal. Their selectivity could be attributed, at least partially, to hydrogen bonding of the sulfonamide amide oxygen with the species variant Arg93 in the lipoamide channel. Although potent and selective, the sulfonamides did not enter mycobacteria, as determined by their inability to accumulate in Mtb to effective levels or to produce changes in intracellular metabolites. This work demonstrates that high potency and selectivity can be achieved at the lipoamide-binding site of Mtb Lpd, a site different from the NAD⁺/NADH pocket targeted by previously reported species-selective triazaspirodimethoxybenzoyl inhibitors.


Subject(s)
Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Dihydrolipoamide Dehydrogenase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Mycobacterium tuberculosis/enzymology , Sulfonamides/pharmacology , Thioctic Acid/analogs & derivatives , Antitubercular Agents/adverse effects , Antitubercular Agents/chemistry , Arginine/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Benzeneacetamides/adverse effects , Benzeneacetamides/chemistry , Benzeneacetamides/pharmacology , Binding Sites , Biological Transport/drug effects , Cell Membrane/metabolism , Cell Membrane Permeability , Dihydrolipoamide Dehydrogenase/chemistry , Dihydrolipoamide Dehydrogenase/genetics , Dihydrolipoamide Dehydrogenase/metabolism , Drug Evaluation, Preclinical , Enzyme Inhibitors/adverse effects , Enzyme Inhibitors/chemistry , High-Throughput Screening Assays , Humans , Membrane Transport Modulators/adverse effects , Membrane Transport Modulators/chemistry , Membrane Transport Modulators/pharmacology , Microbial Sensitivity Tests , Molecular Conformation , Mutant Proteins/antagonists & inhibitors , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Small Molecule Libraries , Structure-Activity Relationship , Sulfonamides/adverse effects , Sulfonamides/chemistry , Thioctic Acid/metabolism
19.
Neuropharmacology ; 71: 237-46, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23597507

ABSTRACT

Phα1ß toxin is a peptide purified from the venom of the armed spider Phoneutria nigriventer, with markedly antinociceptive action in models of acute and persistent pain in rats. Similarly to ziconotide, its analgesic action is related to inhibition of high voltage activated calcium channels with more selectivity for N-type. In this study we evaluated the effect of Phα1ß when injected peripherally or intrathecally in a rat model of spontaneous pain induced by capsaicin. We also investigated the effect of Phα1ß on Ca²âº transients in cultured dorsal root ganglia (DRG) neurons and HEK293 cells expressing the TRPV1 receptor. Intraplantar or intrathecal administered Phα1ß reduced both nocifensive behavior and mechanical hypersensitivity induced by capsaicin similarly to that observed with SB366791, a specific TRPV1 antagonist. Peripheral nifedipine and mibefradil did also decrease nociceptive behavior induced by intraplantar capsaicin. In contrast, ω-conotoxin MVIIA (a selective N-type Ca²âº channel blocker) was effective only when administered intrathecally. Phα1ß, MVIIA and SB366791 inhibited, with similar potency, the capsaicin-induced Ca²âº transients in DRG neurons. The simultaneous administration of Phα1ß and SB366791 inhibited the capsaicin-induced Ca²âº transients that were additive suggesting that they act through different targets. Moreover, Phα1ß did not inhibit capsaicin-activated currents in patch-clamp recordings of HEK293 cells that expressed TRPV1 receptors. Our results show that Phα1ß may be effective as a therapeutic strategy for pain and this effect is not related to the inhibition of TRPV1 receptors.


Subject(s)
Analgesics, Non-Narcotic/therapeutic use , Disease Models, Animal , Ganglia, Spinal/drug effects , Membrane Transport Modulators/therapeutic use , Neuralgia/drug therapy , Neurons/drug effects , Spider Venoms/therapeutic use , Analgesics, Non-Narcotic/pharmacology , Animals , Behavior, Animal/drug effects , Calcium Signaling/drug effects , Capsaicin , Cells, Cultured , Ganglia, Spinal/cytology , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , HEK293 Cells , Humans , Insect Proteins/pharmacology , Insect Proteins/therapeutic use , Male , Membrane Transport Modulators/pharmacology , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neuralgia/metabolism , Neuralgia/pathology , Neurons/cytology , Neurons/metabolism , Neurons/pathology , Peptides/pharmacology , Peptides/therapeutic use , Rats , Rats, Wistar , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Spider Venoms/pharmacology , TRPV Cation Channels/antagonists & inhibitors , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism
20.
World J Gastroenterol ; 19(14): 2249-55, 2013.
Article in English | MEDLINE | ID: mdl-23599652

ABSTRACT

AIM: To investigate the effects of Lizhong Tang, an herbal product used in traditional Chinese medicine, on mouse small intestine interstitial cells of Cajal (ICCs). METHODS: Enzymatic digestions were used to dissociate ICCs from mouse small intestine tissues. The ICCs were morphologically distinct from other cell types in culture and were identified using phase contrast microscopy after verification with anti c-kit antibody. A whole-cell patch-clamp configuration was used to record potentials (current clamp) from cultured ICCs. All of the experiments were performed at 30-32 °C. RESULTS: ICCs generated pacemaker potentials, and Lizhong Tang produced membrane depolarization in current-clamp mode. The application of flufenamic acid (a nonselective cation channel blocker) abolished the generation of pacemaker potentials by Lizhong Tang. Pretreatment with thapsigargin (a Ca²âº-ATPase inhibitor in the endoplasmic reticulum) also abolished the generation of pacemaker potentials by Lizhong Tang. However, pacemaker potentials were completely abolished in the presence of an external Ca²âº-free solution, and under this condition, Lizhong Tang induced membrane depolarizations. Furthermore, When GDP-ß-S (1 mmol/L) was in the pipette solution, Lizhong Tang still induced membrane depolarizations. In addition, membrane depolarizations were not inhibited by chelerythrine or calphostin C, which are protein kinase C inhibitors, but were inhibited by U-73122, an active phospholipase C inhibitors. CONCLUSION: These results suggest that Lizhong Tang might affect gastrointestinal motility by modulating pacemaker activity in interstitial cells of Cajal.


Subject(s)
Biological Clocks/drug effects , Drugs, Chinese Herbal/pharmacology , Interstitial Cells of Cajal/drug effects , Intestine, Small/drug effects , Animals , Biomarkers/metabolism , Cells, Cultured , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Female , Gastrointestinal Motility/drug effects , Interstitial Cells of Cajal/metabolism , Intestine, Small/metabolism , Ion Channels/antagonists & inhibitors , Ion Channels/metabolism , Male , Membrane Potentials/drug effects , Membrane Transport Modulators/pharmacology , Mice , Mice, Inbred BALB C , Proto-Oncogene Proteins c-kit/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/antagonists & inhibitors , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL