Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Pharm Biol ; 60(1): 1436-1448, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35938494

ABSTRACT

CONTEXT: Fibraurea recisa Pierre. (Menispermaceae) (FR) is a traditional Chinese medicine known as "Huangteng." The total alkaloids of FR (AFR) are the main active ingredients. However, the pharmacological effects of AFR in the treatment of depression have not been reported. OBJECTIVES: This study investigates the antidepressant effects of AFR by network pharmacology and verification experiments. MATERIALS AND METHODS: Compound-Target-Pathway (C-P-T) network of FR and depression was constructed through network pharmacology. In vitro, HT-22 cells were treated with corticosterone (CORT) solution (0.35 mg/mL), then AFR (0.05 mg/mL) solution and inhibitor AZD6244 (14 µM/mL) or BAY11-7082 (10 µM/mL) were added, respectively. The cell viability was detected by CCK-8. In vivo, C57BL/6 mice were divided into 5 groups, namely the normal group, the CUMS group, the AFR (400 mg/kg) group, and the 2 groups that were simultaneously administered the inhibitory group AZD6244 (8 mg/kg) and BAY11-7082 (5 mg/kg). Western blotting was used to assess the expression level of the proteins. RESULTS: AFR could protect HT-22 cells from CORT-induced damage and increase the cell viability from 49.12 ± 3.4% to 87.26 ± 1.5%. Moreover, AFR significantly increased the levels of BDNF (1.3, 1.4-fold), p-ERK (1.4, 1.2-fold) and p-CERB (1.6, 1.3-fold), and decreased the levels of NLRP3 (11.3%, 31.6%), ASC (19.2%, 34.2%) and caspase-1 (18.0%, 27.6%) in HT-22 cells and the hippocampus, respectively. DISCUSSION AND CONCLUSIONS: AFR can improve depressive-like behaviours and can develop drugs for depression treatment. Further studies are needed to validate its potential in clinical medicine.


Subject(s)
Alkaloids , Menispermaceae , Alkaloids/metabolism , Alkaloids/pharmacology , Animals , Antidepressive Agents/pharmacology , Apoptosis , Brain-Derived Neurotrophic Factor/metabolism , Corticosterone , Depression/metabolism , Disease Models, Animal , Hippocampus , Menispermaceae/metabolism , Mice , Mice, Inbred C57BL , Stress, Psychological/drug therapy
2.
BMC Plant Biol ; 15: 220, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26369413

ABSTRACT

BACKGROUND: Recent progress toward the elucidation of benzylisoquinoline alkaloid (BIA) metabolism has focused on a small number of model plant species. Current understanding of BIA metabolism in plants such as opium poppy, which accumulates important pharmacological agents such as codeine and morphine, has relied on a combination of genomics and metabolomics to facilitate gene discovery. Metabolomics studies provide important insight into the primary biochemical networks underpinning specialized metabolism, and serve as a key resource for metabolic engineering, gene discovery, and elucidation of governing regulatory mechanisms. Beyond model plants, few broad-scope metabolomics reports are available for the vast number of plant species known to produce an estimated 2500 structurally diverse BIAs, many of which exhibit promising medicinal properties. RESULTS: We applied a multi-platform approach incorporating four different analytical methods to examine 20 non-model, BIA-accumulating plant species. Plants representing four families in the Ranunculales were chosen based on reported BIA content, taxonomic distribution and importance in modern/traditional medicine. One-dimensional (1)H NMR-based profiling quantified 91 metabolites and revealed significant species- and tissue-specific variation in sugar, amino acid and organic acid content. Mono- and disaccharide sugars were generally lower in roots and rhizomes compared with stems, and a variety of metabolites distinguished callus tissue from intact plant organs. Direct flow infusion tandem mass spectrometry provided a broad survey of 110 lipid derivatives including phosphatidylcholines and acylcarnitines, and high-performance liquid chromatography coupled with UV detection quantified 15 phenolic compounds including flavonoids, benzoic acid derivatives and hydroxycinnamic acids. Ultra-performance liquid chromatography coupled with high-resolution Fourier transform mass spectrometry generated extensive mass lists for all species, which were mined for metabolites putatively corresponding to BIAs. Different alkaloids profiles, including both ubiquitous and potentially rare compounds, were observed. CONCLUSIONS: Extensive metabolite profiling combining multiple analytical platforms enabled a more complete picture of overall metabolism occurring in selected plant species. This study represents the first time a metabolomics approach has been applied to most of these species, despite their importance in modern and traditional medicine. Coupled with genomics data, these metabolomics resources serve as a key resource for the investigation of BIA biosynthesis in non-model plant species.


Subject(s)
Alkaloids/metabolism , Benzylisoquinolines/metabolism , Magnoliopsida/genetics , Metabolome , Plant Proteins/genetics , Berberidaceae/genetics , Berberidaceae/metabolism , Magnoliopsida/metabolism , Menispermaceae/genetics , Menispermaceae/metabolism , Papaveraceae/genetics , Papaveraceae/metabolism , Plant Proteins/metabolism , Ranunculaceae/genetics , Ranunculaceae/metabolism
3.
BMC Plant Biol ; 15: 227, 2015 Sep 18.
Article in English | MEDLINE | ID: mdl-26384972

ABSTRACT

BACKGROUND: Benzylisoquinoline alkaloids (BIAs) represent a diverse class of plant specialized metabolites sharing a common biosynthetic origin beginning with tyrosine. Many BIAs have potent pharmacological activities, and plants accumulating them boast long histories of use in traditional medicine and cultural practices. The decades-long focus on a select number of plant species as model systems has allowed near or full elucidation of major BIA pathways, including those of morphine, sanguinarine and berberine. However, this focus has created a dearth of knowledge surrounding non-model species, which also are known to accumulate a wide-range of BIAs but whose biosynthesis is thus far entirely unexplored. Further, these non-model species represent a rich source of catalyst diversity valuable to plant biochemists and emerging synthetic biology efforts. RESULTS: In order to access the genetic diversity of non-model plants accumulating BIAs, we selected 20 species representing 4 families within the Ranunculales. RNA extracted from each species was processed for analysis by both 1) Roche GS-FLX Titanium and 2) Illumina GA/HiSeq platforms, generating a total of 40 deep-sequencing transcriptome libraries. De novo assembly, annotation and subsequent full-length coding sequence (CDS) predictions indicated greater success for most species using the Illumina-based platform. Assembled data for each transcriptome were deposited into an established web-based BLAST portal ( www.phytometasyn.ca) to allow public access. Homology-based mining of libraries using BIA-biosynthetic enzymes as queries yielded ~850 gene candidates potentially involved in alkaloid biosynthesis. Expression analysis of these candidates was performed using inter-library FPKM normalization methods. These expression data provide a basis for the rational selection of gene candidates, and suggest possible metabolic bottlenecks within BIA metabolism. Phylogenetic analysis was performed for each of 15 different enzyme/protein groupings, highlighting many novel genes with potential involvement in the formation of one or more alkaloid types, including morphinan, aporphine, and phthalideisoquinoline alkaloids. Transcriptome resources were used to design and execute a case study of candidate N-methyltransferases (NMTs) from Glaucium flavum, which revealed predicted and novel enzyme activities. CONCLUSIONS: This study establishes an essential resource for the isolation and discovery of 1) functional homologues and 2) entirely novel catalysts within BIA metabolism. Functional analysis of G. flavum NMTs demonstrated the utility of this resource and underscored the importance of empirical determination of proposed enzymatic function. Publically accessible, fully annotated, BLAST-accessible transcriptomes were not previously available for most species included in this report, despite the rich repertoire of bioactive alkaloids found in these plants and their importance to traditional medicine. The results presented herein provide essential sequence information and inform experimental design for the continued elucidation of BIA metabolism.


Subject(s)
Alkaloids/metabolism , Benzylisoquinolines/metabolism , Magnoliopsida/genetics , Plant Proteins/genetics , Transcriptome , Berberidaceae/genetics , Berberidaceae/metabolism , High-Throughput Nucleotide Sequencing , Magnoliopsida/metabolism , Menispermaceae/genetics , Menispermaceae/metabolism , Molecular Sequence Data , Papaveraceae/genetics , Papaveraceae/metabolism , Plant Proteins/metabolism , Ranunculaceae/genetics , Ranunculaceae/metabolism , Sequence Analysis, DNA
4.
Oxid Med Cell Longev ; 2015: 918426, 2015.
Article in English | MEDLINE | ID: mdl-26180599

ABSTRACT

Oxidative stress plays an important role in brain dysfunctions induced by alcohol. Since less therapeutic agent against cognitive deficit and brain damage induced by chronic alcohol consumption is less available, we aimed to assess the effect of Tiliacora triandra extract, a plant possessing antioxidant activity, on memory impairment, neuron density, cholinergic function, and oxidative stress in hippocampus of alcoholic rats. Male Wistar rats were induced ethanol dependence condition by semivoluntary intake of alcohol for 15 weeks. Alcoholic rats were orally given T. triandra at doses of 100, 200, and 400 mg·kg(-1)BW for 14 days. Memory assessment was performed every 7 days while neuron density, activities of AChE, SOD, CAT, and GSH-Px and, MDA level in hippocampus were assessed at the end of study. Interestingly, the extract mitigated the increased escape latency, AChE and MDA level. The extract also mitigated the decreased retention time, SOD, CAT, and GSH-Px activities, and neurons density in hippocampus induced by alcohol. These data suggested that the extract improved memory deficit in alcoholic rats partly via the decreased oxidative stress and the suppression of AChE. Therefore, T. triandra is the potential reagent for treating brain dysfunction induced by alcohol. However, further researches are necessary to understand the detail mechanism and possible active ingredient.


Subject(s)
Cholinergic Neurons/drug effects , Hippocampus/drug effects , Menispermaceae/chemistry , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Acetylcholinesterase/metabolism , Alcoholism/metabolism , Alcoholism/pathology , Animals , Catalase/metabolism , Cholinergic Neurons/metabolism , Disease Models, Animal , Glutathione Peroxidase/metabolism , Hippocampus/enzymology , Hippocampus/metabolism , Male , Malondialdehyde/metabolism , Maze Learning/drug effects , Memory Disorders/drug therapy , Memory Disorders/pathology , Menispermaceae/metabolism , Plant Components, Aerial/chemistry , Plant Components, Aerial/metabolism , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Rats , Rats, Wistar , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL