Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 189
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Photobiomodul Photomed Laser Surg ; 42(3): 200-207, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38416634

ABSTRACT

Objective: Investigating the effect of different parameters of photobiomodulation (PBM) with low-power laser on multi-potent mesenchymal stem cells (MSCs) derived from adipose tissue in terms of proliferation and cell death. Methods: MSCs were submitted to PBM applications with combinations of the following physical parameters: control group (no intervention), wavelengths of 660 and 830 nm; energy of 0.5, 2, and 4 J; and power of 40 and 100 mW. MSC analysis was performed using MetaXpress® software at 24, 48, and 72 h. Results: Irradiation promoted a significant increase in cell proliferation (p < 0.05), with 830 nm laser, 100 mW, with energy of 0.5, 2, and 4 J in relation to the control group at all times. PBM with 660 nm, power of 40 mW, and energy of 0.5, 2, and 4 J produced greater cell death at 24 h compared with the control group. At the time of 72 h, there was no significant difference concerning cell death. Conclusions: According to the results found, we can conclude that both wavelengths were effective; however, the 830 nm laser was more effective in terms of cell proliferation compared with the 660 nm laser. The 660 nm wavelength showed a significant increase in cell death when compared with the 830 nm laser.


Subject(s)
Low-Level Light Therapy , Mesenchymal Stem Cells , Low-Level Light Therapy/methods , Cells, Cultured , Mesenchymal Stem Cells/physiology , Mesenchymal Stem Cells/radiation effects , Lasers , Adipose Tissue
2.
J Cosmet Dermatol ; 22 Suppl 1: 15-27, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36988469

ABSTRACT

BACKGROUND: Exosome research continues to flourish. Subsequent knowledge surrounding indications, dose-response, safety, efficacy, and the ability to combine exosome treatment as a "skin primer"-for biostimulation modalities such as calcium hydroxylapatite (CaHA), platelet-rich plasma (PRP), and platelet-rich fibrin matrix (PRFM) is growing rapidly. The objective of this study was to develop safe, reproducible methods of improving topical exosome absorption to enhance the quality of skin either by themselves, or in combination with injectable CaHA. METHODS: Under IRB Approval (International Cell Surgical Society: ICSS-2022-007), 40 patients were enrolled in this study. Twenty patients underwent facial biostimulatory dermal infusion alone, to determine if this method allowed adequate exosome absorption. Five patients underwent facial biostimulatory infusion followed immediately by Dilute CaHA injection (1:1 dilution) to the face. Five patients underwent exosome biostimulatory dermal infusion followed immediately by hyperdilute CaHA (dilution 1:4) injection to the neck. Five patients underwent Facial Dilute CaHA injection (1:1 dilution) alone, without dermal infusion. Five patients underwent neck hyperdilute CaHA injection (1:4 dilution) alone, without dermal infusion. All patients had pretreatment Quantificare 3-D photo-documentation and skin analysis (Quantificare, France). In all patients, the skin was first cleansed with a gentle glycolic acid facial wash (Gregory MD). To induce a "homing inflammatory environment" for the exosomes, sea salt exfoliation was performed (SaltFacial®, SaltMed, Cardiff, CA). A nitric oxide-generating serum (N101 Pneuma Nitric Oxide, Austin, TX) was then applied to act as an enhanced vehicle for absorption. A 3 MHz ultrasound (SaltFacial®, SaltMed, Cardiff, CA) was then utilized to further deepen the absorption of the nitric oxide serum. A topical emulsion containing equal volumes (1.0 cc containing 1 million) of exosomes (Kimera Labs, Miramar, FL), 25 units of botulinum toxin (Xeomin, Merz Aesthetics, Raleigh, NC) and hyaluronic acid (Belatero, Merz Aesthetics, Raleigh, NC) was mixed via back-and-forth propulsion in a 3-cc syringe. When adequately mixed, the emulsion was then applied to the treatment areas. The cavitating ultrasound was then used to aid in the absorption of the emulsion. The patients were then treated with high-intensity LED therapy (SaltFacial®, SaltMed, Cardiff, CA), utilizing the collagen restoration preset program of combination red (660 nm) near-infrared (930 nm) wavelength for 20 min. Post-treatment Quantificare analysis was performed at 15 and 30 days after treatment. RESULTS: Without exception, all dermal infusion alone and CaHA injection alone patients showed an improvement in the tone, quality, and texture of their skin. Quantificare results showed consistent improvement in wrinkles, pores, skin evenness, improved vascularity, and a reduction in oiliness and unwanted pigment. When employed as a skin primer prior to injections (CaHA), enhanced and more rapid results were seen. CONCLUSIONS: Biostimulatory dermal infusion can be achieved utilizing topical placental mesenchymal stem cell-derived exosomes. These exosomes can be used alone, or mixed with ancillary ingredients such as botulinum toxin, hyaluronic acid dermal filler, and CaHA to customize and personalize treatments based upon individual patient needs. Topical absorption is enhanced with sea salt exfoliation, a topical nitric oxide-generating serum, and 3 MHz cavitating ultrasound. Post-absorption activity is enhanced with high-intensity LED treatment. The addition of CaHA injections after the topical exosome "priming of the skin" yielded enhanced skin quality faster than exosomes or CaHA alone.


Subject(s)
Cosmetic Techniques , Dermatologic Agents , Durapatite , Exosomes , Skin Aging , Humans , Botulinum Toxins/administration & dosage , Durapatite/administration & dosage , Emulsions/administration & dosage , Exosomes/physiology , Hyaluronic Acid/administration & dosage , Nitric Oxide/administration & dosage , Placenta/cytology , Skin Aging/drug effects , Skin Aging/physiology , Infusions, Subcutaneous , Administration, Topical , Regeneration/drug effects , Regeneration/physiology , Skin/drug effects , Skin Physiological Phenomena/drug effects , Face , Neck , Solutions/administration & dosage , Skin Care/methods , Dermatologic Agents/administration & dosage , Photography , Cosmetics/administration & dosage , Skin Absorption/drug effects , Pharmaceutical Vehicles/administration & dosage , Ultrasonic Therapy , Low-Level Light Therapy/instrumentation , Low-Level Light Therapy/methods , Salts/administration & dosage , Mesenchymal Stem Cells/physiology , Combined Modality Therapy
3.
Biomed Mater ; 17(6)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36263707

ABSTRACT

Exosomes show great potential in treating diseases of the central nervous system including spinal cord injury (SCI), still better engineered exosomes have more advantages. In this study, we purified exosomes from K+-Cl-co-transporter (KCC2) overexpressed bone marrow mesenchymal stem cells (ExoKCC2), to investigate the effect of ExoKCC2on neural differentiationin vitroand the repairing function of ExoKCC2in SCI micein vivo. Compared to bone marrow mesenchymal stem cells (BMSC)-derived exosomes (Exo), ExoKCC2could better promote neural stem cell differentiated into neurons, ameliorate the function recovery of SCI mice, and accelerate the neural regeneration at the lesion site. Altogether, engineered ExoKCC2may prove to be an advantageous strategy for SCI treatment.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Spinal Cord Injuries , Symporters , Mice , Animals , Mesenchymal Stem Cells/physiology , Recovery of Function , Spinal Cord/pathology
4.
Biomaterials ; 283: 121474, 2022 04.
Article in English | MEDLINE | ID: mdl-35316662

ABSTRACT

Traditional medication is not satisfied in rheumatoid arthritis (RA) therapy due to its long-term side effects and failure in cartilage repair. Nanomodification of mesenchymal stem cells (MSCs) holds promise for lifting such hurdles but delivering therapeutic nanomaterials (NPs) into MSCs remains challenging in this new strategy. Here, we show that CuS@MnO2 NPs functionalized with a short phage-selected MSC-targeting peptide enabled the NPs to be uptaken by MSCs. The resultant NP-modified MSCs, further loaded with metformin, significantly improved stem cell therapy of RA. Specifically, the NP-modified MSCs survived the RA-associated oxidized stress through regulating the stress by the superoxide dismutase (SOD)- and catalase (CAT)-like activity of the NPs. They also exhibited an increased capability of cell migration, anti-inflammation, and chondrogenesis due to the nanomodification, thereby effectively inhibiting synovial inflammation and reducing cartilage erosion to relieve RA symptoms in two rat models 28 days post intravenous injection. Our peptide-promoted NP-modified MSCs may be used to enhance therapeutic effects in treating not only RA but also other degenerative and inflammatory diseases.


Subject(s)
Arthritis, Rheumatoid , Mesenchymal Stem Cells , Animals , Arthritis, Rheumatoid/therapy , Manganese Compounds , Mesenchymal Stem Cells/physiology , Oxides , Peptides , Rats
5.
Int J Mol Sci ; 22(21)2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34768792

ABSTRACT

Stem cells have received attention in various diseases, such as inflammatory, cancer, and bone diseases. Mesenchymal stem cells (MSCs) are multipotent stem cells that are critical for forming and repairing bone tissues. Herein, we isolated calycosin-7-O-ß-glucoside (Caly) from the roots of Astragalus membranaceus, which is one of the most famous medicinal herbs, and investigated the osteogenic activities of Caly in MSCs. Caly did not affect cytotoxicity against MSCs, whereas Caly enhanced cell migration during the osteogenesis of MSCs. Caly increased the expression and enzymatic activities of ALP and the formation of mineralized nodules during the osteogenesis of MSCs. The osteogenesis and bone-forming activities of Caly are mediated by bone morphogenetic protein 2 (BMP2), phospho-Smad1/5/8, Wnt3a, phospho-GSK3ß, and phospho-AKT, inducing the expression of runt-related transcription factor 2 (RUNX2). In addition, Caly-mediated osteogenesis and RUNX2 expression were attenuated by noggin and wortmannin. Moreover, the effects were validated in pre-osteoblasts committed to the osteoblast lineages from MSCs. Overall, our results provide novel evidence that Caly stimulates osteoblast lineage commitment of MSCs by triggering RUNX2 expression, suggesting Caly as a potential anabolic drug to prevent bone diseases.


Subject(s)
Calcification, Physiologic/drug effects , Glucosides/pharmacology , Isoflavones/pharmacology , Osteogenesis/drug effects , Animals , Astragalus propinquus/metabolism , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Bone Morphogenetic Protein 2/metabolism , Calcification, Physiologic/physiology , Cell Differentiation/drug effects , Core Binding Factor Alpha 1 Subunit/metabolism , Glucosides/isolation & purification , Glucosides/metabolism , Humans , Isoflavones/isolation & purification , Isoflavones/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/physiology , Mice , NIH 3T3 Cells , Osteoblasts/metabolism , Osteogenesis/physiology , Plant Extracts/isolation & purification , Plant Extracts/pharmacology
6.
J Extracell Vesicles ; 10(10): e12134, 2021 08.
Article in English | MEDLINE | ID: mdl-34429860

ABSTRACT

Mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) turn out to be a promising source of cell-free therapy. Here, we investigated the biodistribution and effect of nebulized human adipose-derived MSC-EVs (haMSC-EVs) in the preclinical lung injury model and explored the safety of nebulized haMSC-EVs in healthy volunteers. DiR-labelled haMSC-EVs were used to explore the distribution of nebulized haMSC-EVs in the murine model. Pseudomonas aeruginosa-induced murine lung injury model was established, and survival rate, as well as WBC counts, histology, IL-6, TNF-α and IL-10 levels in bronchoalveolar lavage fluid (BALF) were measured to explore the optimal therapeutic dose of haMSC-EVs through the nebulized route. Twenty-four healthy volunteers were involved and received the haMSC-EVs once, ranging from 2 × 108 particles to 16 × 108 particles (MEXVT study, NCT04313647). Nebulizing haMSC-EVs improved survival rate to 80% at 96 h in P. aeruginosa-induced murine lung injury model by decreasing lung inflammation and histological severity. All volunteers tolerated the haMSC-EVs nebulization well, and no serious adverse events were observed from starting nebulization to the 7th day after nebulization. These findings suggest that nebulized haMSC-EVs could be a promising therapeutic strategy, offering preliminary evidence to promote the future clinical applications of nebulized haMSC-EVs in lung injury diseases.


Subject(s)
Cell- and Tissue-Based Therapy/methods , Cytokines/metabolism , Drug Evaluation, Preclinical , Extracellular Vesicles/physiology , Lung Injury/therapy , Mesenchymal Stem Cells/physiology , Adolescent , Adult , Animals , Bronchoalveolar Lavage Fluid/chemistry , Disease Models, Animal , Female , Humans , Lung Injury/microbiology , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Middle Aged , Patient Safety , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa , Survival Rate , Therapeutics/methods , Young Adult
7.
Sci Rep ; 11(1): 12144, 2021 06 09.
Article in English | MEDLINE | ID: mdl-34108508

ABSTRACT

In bone regeneration induced by the combination of mesenchymal stromal cells (MSCs) and calcium-phosphate (CaP) materials, osteoclasts emerge as a pivotal cell linking inflammation and bone formation. Favorable outcomes are observed despite short-term engraftments of implanted MSCs, highlighting their major paracrine function and the possible implication of cell death in modulating their secretions. In this work, we focused on the communication from MSCs towards osteoclasts-like cells in vitro. MSCs seeded on a CaP biomaterial or undergoing induced apoptosis produced a conditioned media favoring the development of osteoclasts from human CD14+ monocytes. On the contrary, MSCs' apoptotic secretion inhibited the development of inflammatory multinucleated giant cells formed after IL-4 stimulation. Components of MSCs' secretome before and after apoptotic stress were compared using mass spectrometry-based quantitative proteomics and a complementary immunoassay for major cytokines. CXCR-1 and CXCR-2 ligands, primarily IL-8/CXCL-8 but also the growth-regulated proteins CXCL-1, -2 or -3, were suggested as the major players of MSCs' pro-osteoclastic effect. These findings support the hypothesis that osteoclasts are key players in bone regeneration and suggest that apoptosis plays an important role in MSCs' effectiveness.


Subject(s)
Apoptosis , Bone Marrow Cells/cytology , Cell Differentiation , Giant Cells/pathology , Mesenchymal Stem Cells/cytology , Osteoclasts/cytology , Osteogenesis , Bone Marrow Cells/physiology , Cell Proliferation , Cytokines , Giant Cells/metabolism , Humans , Mesenchymal Stem Cells/physiology , Osteoclasts/physiology
8.
Am J Respir Cell Mol Biol ; 65(5): 521-531, 2021 11.
Article in English | MEDLINE | ID: mdl-34126864

ABSTRACT

Stem cells, including the resident lung mesenchymal stem cells (LMSCs), are critically important for injury repair. Compelling evidence links perinatal vitamin D (VD) deficiency to reactive airway disease; however, the effects of perinatal VD deficiency on LMSC function is unknown. We tested the hypothesis that perinatal VD deficiency alters LMSC proliferation, differentiation, and function, leading to an enhanced myogenic phenotype. We also determined whether LMSCs' effects on alveolar type II (ATII) cell function are paracrine. Using an established rat model of perinatal VD deficiency, we studied the effects of four dietary regimens (0, 250, 500, or 1,000 IU/kg cholecalciferol-supplemented groups). At Postnatal Day 21, LMSCs were isolated, and cell proliferation and differentiation (under basal and adipogenic induction conditions) were determined. LMSC paracrine effects on ATII cell proliferation and differentiation were determined by culturing ATII cells in LMSC-conditioned media from different experimental groups. Using flow cytometry, >95% of cells were CD45-ve, >90% were CD90 + ve, >58% were CD105 + ve, and >64% were Stro-1 + ve, indicating their stem cell phenotype. Compared with the VD-supplemented groups, LMSCs from the VD-deficient group demonstrated suppressed PPARγ, but enhanced Wnt signaling, under basal and adipogenic induction conditions. LMSCs from 250 VD- and 500 VD-supplemented groups effectively blocked the effects of perinatal VD deficiency. LMSC-conditioned media from the VD-deficient group inhibited ATII cell proliferation and differentiation compared with those from the 250 VD- and 500 VD-supplemented groups. These data support the concept that perinatal VD deficiency alters LMSC proliferation and differentiation, potentially contributing to increased respiratory morbidity seen in children born to mothers with VD deficiency.


Subject(s)
Lung/cytology , Mesenchymal Stem Cells/cytology , Vitamin D Deficiency/complications , Adipocytes/cytology , Adipocytes/drug effects , Animals , Cell Differentiation/drug effects , Cell Proliferation , Cells, Cultured , Dose-Response Relationship, Drug , Female , Lung/physiology , Lung/physiopathology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/physiology , Muscle Development/drug effects , Muscle Development/physiology , Pregnancy , Rats , Vitamin D/administration & dosage , Vitamin D/pharmacology , Wnt Signaling Pathway
9.
Sci Rep ; 11(1): 10364, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33990655

ABSTRACT

Rosiglitazone is an effective insulin-sensitizer, however associated with bone loss mainly due to increased bone resorption and bone marrow adiposity. We investigated the effect of the co-administration of fish oil rich in omega-3 fatty acids (FAs) on rosiglitazone-induced bone loss in C57BL/6 mice and the mechanisms underlying potential preventive effect. Mice fed the iso-caloric diet supplemented with fish oil exhibited significantly higher levels of bone density in different regions compared to the other groups. In the same cohort of mice, reduced activity of COX-2, enhanced activity of alkaline phosphatase, lower levels of cathepsin k, PPAR-γ, and pro-inflammatory cytokines, and a higher level of anti-inflammatory cytokines were observed. Moreover, fish oil restored rosiglitazone-induced down-regulation of osteoblast differentiation and up-regulation of adipocyte differentiation in C3H10T1/2 cells and inhibited the up-regulation of osteoclast differentiation of RANKL-treated RAW264.7 cells. We finally tested our hypothesis on human Mesenchymal Stromal Cells differentiated to osteocytes and adipocytes confirming the beneficial effect of docosahexaenoic acid (DHA) omega-3 FA during treatment with rosiglitazone, through the down-regulation of adipogenic genes, such as adipsin and FABP4 along the PPARγ/FABP4 axis, and reducing the capability of osteocytes to switch toward adipogenesis. Fish oil may prevent rosiglitazone-induced bone loss by inhibiting inflammation, osteoclastogenesis, and adipogenesis and by enhancing osteogenesis in the bone microenvironment.


Subject(s)
Bone Diseases, Metabolic/prevention & control , Dietary Supplements , Fatty Acids, Omega-3/administration & dosage , Rosiglitazone/adverse effects , Adipogenesis/drug effects , Aging/physiology , Animals , Bone Diseases, Metabolic/chemically induced , Bone Diseases, Metabolic/physiopathology , Cell Differentiation/drug effects , Diabetes Mellitus, Type 2/drug therapy , Disease Models, Animal , Female , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/physiology , Mice , Mice, Inbred C57BL , Osteoblasts/drug effects , Osteoblasts/physiology , Osteoclasts/drug effects , Osteoclasts/physiology , Osteogenesis/drug effects , Primary Cell Culture , RAW 264.7 Cells
10.
Nutr Res ; 90: 24-35, 2021 06.
Article in English | MEDLINE | ID: mdl-34023805

ABSTRACT

Osteoarthritis (OA) is a prevalent debilitating age-related skeletal disease. The hallmark of OA is the degradation of articular cartilage that cushions the joint during movement. It is characterized by chronic pain and disability. Magnesium, a critical trace element in the human body, plays a pivotal role in metabolism homeostasis and the energy balance. Humans obtain magnesium mainly from the diet. However, inadequate magnesium intake is not uncommon. Moreover, the magnesium status deteriorates with ageing. There has been a growing body of clinical studies pointing to an intimate relationship between dietary magnesium and OA although the conclusion remains controversial. As reported, the magnesium ion concentration is essential to determine cell fate. Firstly, the low-concentration magnesium ions induced human fibroblasts senescence. Magnesium supplementation was also able to mitigate chondrocyte apoptosis, and to facilitate chondrocyte proliferation and differentiation. In this literature review, we will outline the existing evidence in animals and humans. We will also discuss the controversies on plasma or intracellular level of magnesium as the indicator of magnesium status. In addition, we put forward the interplay between dietary magnesium intake and intestinal microbiome to modulate the inflammatory milieu in the conjecture of OA pathogenesis. This leads to an emerging hypothesis that the synergistic effect of magnesium and probiotics may open a new avenue for the prevention and treatment of OA.


Subject(s)
Diet , Magnesium/administration & dosage , Magnesium/physiology , Osteoarthritis/physiopathology , Animals , Cell Differentiation , Cell Proliferation , Cellular Senescence , Chondrocytes/cytology , Chondrocytes/physiology , Dietary Supplements , Fibroblasts/physiology , Gastrointestinal Microbiome/physiology , Humans , Joints , Magnesium Deficiency/physiopathology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/physiology , Nutritional Status , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoblasts/cytology , Osteoblasts/physiology
11.
Plast Reconstr Surg ; 147(3): 613-624, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33620930

ABSTRACT

BACKGROUND: Autologous fat grafting is a commonly used strategy to repair soft-tissue defects that has shown an approximately 40 percent increase in use in the past 5 years. However, the high reabsorption rates (average, 50 percent) often result in an unsatisfactory outcome. Current approaches aimed at increasing the blood supply of grafted fat have little clinical support. Here, we found that Salvia miltiorrhiza could improve fat graft survival by promoting adipogenic differentiation of adipose-derived stem cells by means of peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT-enhancer binding protein alpha (C/EBPα) signaling. METHODS: Adipose tissue was harvested from the thighs of two women. Adipose-derived stem cells were characterized by flow cytometry (CD29, CD90, and CD105). The samples (2 × 104 cells/liter) were incubated with or without S. miltiorrhiza injection (0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, and 5 g/liter) during adipogenic differentiation. Oil Red O staining, triglyceride content, and adipogenic gene expression (PPARγ and C/EBPα) were performed to detect adipogenic differentiation. RESULTS: The triglyceride content in the 0.5-g/liter group was increased significantly compared with that in control groups (0.231 ± 0.010, 76.90 percent versus control, p < 0.001, day 9; 0.303 ± 0.010, 91.28 percent versus control, p < 0.001, day 10; 0.361 ± 0.008, 86.65 percent versus control, p < 0.001, day 11). The expression levels of PPARγ and C/EBPα in the 0.5-g/liter group were both increased significantly compared with those in control groups (0.0097 ± 0.0015, 48.1 percent versus control, p < 0.05 for PPARγ; 0.0423 ± 0.003, 112 percent versus control, p < 0.001 for C/EBPα). CONCLUSIONS: S. miltiorrhiza injection has a positive effect on adipogenesis of adipose-derived stem cells in vitro. The effect of this treatment on improving fat graft survival needs more in vivo research.


Subject(s)
Adipogenesis/drug effects , Adipose Tissue/transplantation , Graft Survival/drug effects , Plant Extracts/administration & dosage , Salvia miltiorrhiza/chemistry , Adult , Animals , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Differentiation/drug effects , Cells, Cultured , Cosmetic Techniques , Female , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/physiology , PPAR gamma/metabolism , Plant Extracts/toxicity , Primary Cell Culture , Signal Transduction/drug effects , Toxicity Tests, Acute , Transplantation, Autologous/adverse effects
12.
Gene ; 769: 145172, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33065239

ABSTRACT

Circular RNA (circRNA) participates in regulation of gene transcription, while estrogen receptor alpha (ERα) and quercetin (QUE) positively regulate bone formation, but little is known about the correlation among circRNA, ERα and QUE. In this experiment, we created an ERα-deficient rBMSC model treated with QUE and evaluated the effects of ERα or QUE on rBMSCs, then analyzed differentially-expressed circRNAs by RNA-Seq and bioinformatics. The results showed that ERα deficiency constrained osteogenic differentiation and stimulated adipocytic differentiation of rBMSCs, while QUE abrogated those effects. We identified 136 differentially-expressed circRNAs in the Lv-shERα group and 120 differentially-expressed circRNAs in the Lv-shERα + QUE group. Thirty-two circRNAs retroregulated by ERα and QUE were involved in Rap1 and Wnt signaling, and four of them together sponged miR-326-5p, the target genes of which are osteogenic and adipogenic differentiation factors. Further study showed that over-expressed miR-326-5p could stimulate osteogenic differentiation, while attenuating adipogenic differentiation of rBMSCs. Therefore, we concluded that ERα and QUE might regulate the differentiation of rBMSCs through the circRNA-miR-326-5p-mRNA axis.


Subject(s)
Estrogen Receptor alpha/physiology , Mesenchymal Stem Cells/drug effects , Osteogenesis/drug effects , Phytoestrogens/pharmacology , Quercetin/pharmacology , RNA, Circular/physiology , Adipogenesis/physiology , Antioxidants/pharmacology , Cell Survival , Cells, Cultured , Computational Biology , Estrogen Receptor alpha/genetics , Gene Expression Regulation , Humans , Mesenchymal Stem Cells/physiology , Osteogenesis/physiology , Quercetin/physiology , RNA, Circular/genetics
13.
J Cell Physiol ; 236(2): 921-930, 2021 02.
Article in English | MEDLINE | ID: mdl-32583437

ABSTRACT

Stem cell transplantation has shown promising regenerative effects against neural injury, and photobiomodulation (PBM) can aid tissue recovery. This study aims to evaluate the therapeutic effect of human umbilical cord mesenchymal stem cells (hUCMSCs) and laser alone or combined on spinal cord injury (SCI). The animals were divided into SCI, hUCMSCs, laser treatment (LASER) and combination treatment (hUCMSCs + LASER) groups. Cell-enriched grafts of hUCMSCs (1 × 106 cells/ml) were injected at the site of antecedent trauma in SCI model rats. A 2 cm2 damaged area was irradiated with 630 nm laser at 100 mW/cm2 power for 20 min. Locomotion was evaluated using Basso-Beattie-Bresnahan (BBB) scores, and neurofilament repair were monitored by histological staining and diffusion tensor imaging (DTI). First, after SCI, the motor function of each group was restored with different degrees, the combination treatment significantly increased the BBB scores compared to either monotherapy. In addition, Nissl bodies were more numerous, and the nerve fibers were longer and thicker in the combination treatment group. Consistent with this, the in situ expression of NF-200 and glial fibrillary acidic protein in the damaged area was the highest in the combination treatment group. Finally, DTI showed that the combination therapy optimally improved neurofilament structure and arrangement. These results may show that the combination of PBM and hUCMSCs transplantation is a feasible strategy for reducing secondary damage and promoting functional recovery following SCI.


Subject(s)
Mesenchymal Stem Cells/physiology , Spinal Cord Injuries/radiotherapy , Spinal Cord Injuries/therapy , Animals , Cell Differentiation/radiation effects , Cells, Cultured , Diffusion Tensor Imaging/methods , Humans , Intermediate Filaments/radiation effects , Low-Level Light Therapy/methods , Male , Mesenchymal Stem Cell Transplantation/methods , Motor Activity/radiation effects , Rats , Rats, Sprague-Dawley , Recovery of Function/radiation effects , Spinal Cord/radiation effects , Umbilical Cord/radiation effects
14.
Plast Reconstr Surg ; 146(2): 309-320, 2020 08.
Article in English | MEDLINE | ID: mdl-32740581

ABSTRACT

BACKGROUND: Adipose-derived stem cells are considered as candidate cells for regenerative plastic surgery. Measures to influence cellular properties and thereby direct their regenerative potential remain elusive. Hyperbaric oxygen therapy-the exposure to 100% oxygen at an increased atmospheric pressure-has been propagated as a noninvasive treatment for a multitude of indications and presents a potential option to condition cells for tissue-engineering purposes. The present study evaluates the effect of hyperbaric oxygen therapy on human adipose-derived stem cells. METHODS: Human adipose-derived stem cells from healthy donors were treated with hyperbaric oxygen therapy at 2 and 3 atm. Viability before and after each hyperbaric oxygen therapy, proliferation, expression of surface markers and protein contents of transforming growth factor (TGF)-ß, tumor necrosis factor-α, hepatocyte growth factor, and epithelial growth factor in the supernatants of treated adipose-derived stem cells were measured. Lastly, adipogenic, osteogenic, and chondrogenic differentiation with and without use of differentiation-inducing media (i.e., autodifferentiation) was examined. RESULTS: Hyperbaric oxygen therapy with 3 atm increased viability, proliferation, and CD34 expression and reduced the CD31/CD34/CD45 adipose-derived stem cell subset and endothelial progenitor cell population. TGF-ß levels were significantly decreased after two hyperbaric oxygen therapy sessions in the 2-atm group and decreased after three hyperbaric oxygen therapy sessions in the 3-atm group. Hepatocyte growth factor secretion remained unaltered in all groups. Although the osteogenic and chondrogenic differentiation were not influenced, adipogenic differentiation and autodifferentiation were significantly enhanced, with osteogenic autodifferentiation significantly alleviated by hyperbaric oxygen therapy with 3 atm. CONCLUSION: Hyperbaric oxygen therapy with 3 atm increases viability and proliferation of adipose-derived stem cells, alters marker expression and subpopulations, decreases TGF-ß secretion, and skews adipose-derived stem cells toward adipogenic differentiation. CLINICAL QUESTION/LEVEL OF EVIDENCE: Therapeutic, V.


Subject(s)
Adipogenesis/drug effects , Cell Differentiation/drug effects , Cell Engineering/methods , Mesenchymal Stem Cells/drug effects , Oxygen/administration & dosage , Adipose Tissue/cytology , Adult , Biomarkers/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Cytokines/metabolism , Female , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Male , Mesenchymal Stem Cells/physiology , Middle Aged , Pressure , Primary Cell Culture/methods
15.
BMC Vet Res ; 16(1): 282, 2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32778115

ABSTRACT

BACKGROUND: The ability of adipose tissue-derived multipotent mesenchymal stromal cells/mesenchymal stem cells (ASCs) to differentiate in neural lineages promises progress in the field of regenerative medicine, especially for replacing neuronal tissue damaged by different neurological disorders. Reprogramming of ASCs can be induced by the growth medium with neurogenic inductors and specific growth factors. We investigated the neural differentiation potential of canine ASCs using several growth media (KEM, NIMa, NIMb, NIMc) containing various combinations of neurogenic inductors: B27 supplement, valproic acid, forskolin, N2-supplement, and retinoic acid. Cells were first preconditioned in the pre-differentiation neural induction medium (mitogenically stimulated; STIM1), followed by the induction of neuronal differentiation. RESULTS: After 3, 6, and 9 days of neural induction, elongated neural-like cells with bipolar elongations were observed, and some oval cells with light nuclei appeared. The expression of neuronal markers tubulin beta III (TUBB3), neurofilament H (NF-H), microtubule-associated protein-2 (MAP2), and glial fibrillary acidic protein (GFAP) was observed using immunocytochemistry, which confirmed the differentiation into neurons and glial cells. Flow cytometry analysis showed high GFAP expression (between 70 and 90% of all cells) after cells had been growing three days in the neural induction medium a (NIMa). Around 25% of all cells also expressed adult neuronal markers NF-H and MAP2. After nine days of ASCs differentiation, the expression of all neural markers was reduced. There were no differences between the neural differentiation of ASCs isolated from female or male dogs. CONCLUSIONS: The differentiation repertoire of canine ASCs extends beyond mesodermal lineages. Using a defined neural induction medium, the canine ASCs differentiated into neural lineages and expressed markers of neuronal and glial cells, and also displayed the typical neuronal morphology. Differentiated ASCs can thus be a source of neural cellular lineages for the regenerative therapy of nerve damage and could be useful in the future for therapy or the modelling of neurodegenerative diseases.


Subject(s)
Mesenchymal Stem Cells/physiology , Neuroglia/cytology , Neurons/cytology , Adipose Tissue/cytology , Animals , Cell Differentiation/physiology , Cells, Cultured , Culture Media , Dogs , Female , Male
16.
Hum Cell ; 33(3): 652-662, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32350750

ABSTRACT

The tumor microenvironment (TM) is an essential factor of tumor progression. Mesenchymal stem cells (MSCs) are important components of the TM and play critical roles in cancer metastasis. Resveratrol (RES) is a potential antitumor drug that has attracted extensive attention. However, it remains unclear whether RES can exert its antitumor activity by targeting MSCs located in the TM. In this study, we demonstrated that the conditioned medium of gastric-cancer-derived MSCs (GC-MSCs) promoted gastric cancer (GC) metastasis and facilitated the progression of epithelialmesenchymal transition (EMT) of GC cells. However, after pretreatment with RES, the prometastatic effect of GC-MSCs on GC cells was reversed. Furthermore, RES reduced GC-MSC (IL-6, IL-8, MCP-1, VEGF) gene expression and protein secretion, and counteracted the activation of the GC-MSC-induced Wnt/ß-catenin signaling of GC cells, with less ß-catenin nuclear transport and declined expression of ß-catenin, CD44, and CyclinD3 in GC cells. Re-expression of ß-catenin impaired the inhibitory effect of RES on GC cells. In conclusion, RES restricted the mobility increase of GC cells and reversed the progress of EMT induced by GC-MSCs by inactivating the Wnt/ß-catenin signaling. GC-MSCs are promising target for RES in the inhibition of GC metastasis.


Subject(s)
Mesenchymal Stem Cells/physiology , Neoplasm Metastasis/drug therapy , Resveratrol/therapeutic use , Stomach Neoplasms/drug therapy , Antineoplastic Agents, Phytogenic , Cell Line, Tumor , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Gene Expression/drug effects , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism , Mesenchymal Stem Cells/pathology , Molecular Targeted Therapy , Phytotherapy , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Tumor Microenvironment , Wnt Proteins/metabolism , beta Catenin/genetics , beta Catenin/metabolism
17.
J Anim Physiol Anim Nutr (Berl) ; 104(5): 1256-1266, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32281708

ABSTRACT

The Solanum glaucophyllum Desf. has been used to treat and prevent diseases in human and veterinary medicine. On the other hand, plant poisoning causes several bone diseases, among them osteoporosis, which is characterized by osteoblastic hypoplasia. Because the osteoblast is a cell derived from the differentiation of mesenchymal stem cells (MSCs) from bone marrow, the hypothesis is that the plant reduces the osteogenic differentiation of MSCs. The objective of this study was to evaluate the effects of S. glaucophyllum Desf. extract on MSCs cultured in osteogenic differentiation medium. We determined by liquid chromatography that 1 ml of plant extract contained 3.8 µl of 1,25(OH)2 D3 (calcitriol). Four groups of MSCs cultivated in osteogenic medium were evaluated as follows: (a) treated with 100 µl of extract/L containing 0.4 µg/L of calcitriol; (b) treated with 1 ml of extract/L containing 4 µg/L of calcitriol; (c) treated with 5 ml of extract/L containing 20 µg/L of calcitriol; and (d) a control group without extract. We performed alkaline phosphatase activity assay, analysis of MTT conversion to formazan, and evaluated the percentage of cells, and number and diameter of mineralization nodules. The expression of gene transcripts for osteopontin, bone sialoprotein and BMP-2 was analysed by RT-qPCR. After 21 days, there was a significant reduction in MTT conversion to formazan in treated groups, of the cellularity in the group with 5 ml of extract/L, and in the number and size of mineralization nodules in the groups treated with 1 and 5 ml of extract/L. The 5 ml extract/L concentration also reduced transcript expression of osteopontin. It is concluded that S. glaucophyllum Desf. at concentrations of 1 and 5 ml extract/L reduced mineralized matrix synthesis in MSCs cultivated in osteogenic differentiation medium, which suggests that this is one of the mechanisms by which osteoporosis occurs in intoxicated animals.


Subject(s)
Cell Differentiation/drug effects , Mesenchymal Stem Cells/drug effects , Osteogenesis/drug effects , Plant Extracts/pharmacology , Solanum glaucophyllum/chemistry , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Animals , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 2/metabolism , Cell Differentiation/physiology , Dose-Response Relationship, Drug , Gene Expression Regulation, Enzymologic/drug effects , Integrin-Binding Sialoprotein/genetics , Integrin-Binding Sialoprotein/metabolism , Mesenchymal Stem Cells/physiology , Osteopontin/genetics , Osteopontin/metabolism , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Rats
18.
J Cell Physiol ; 235(10): 7496-7515, 2020 10.
Article in English | MEDLINE | ID: mdl-32162324

ABSTRACT

Noncollagenous proteins in the bone extracellular matrix, such as osteocalcin (OC) and osteopontin (OPN), inherent to evolution of bone as a skeletal tissue, are known to regulate bone formation and mineralization. However, the fundamental basis of this regulatory role remains unknown. Here, for the first time, we use mouse mesenchymal stem/stromal cells (MSC) lacking both OC and OPN to investigate the mechanistic roles of OC and OPN on the proliferation capacity and differentiation ability of MSC. We found that the loss of OC and OPN reduces stem cells self-renewal potential and multipotency, affects their differentiation into an osteogenic lineage, and impairs their angiogenic potential while maintaining chondrogenic and adipogenic lineages. Moreover, loss of OC and OPN compromises the extracellular matrix integrity and maturation, observed by an unexpected enhancement of glycosaminoglycans content that are associated with a more primitive skeletal connective tissue, and by a delay on the maturation of mineral species produced. Interestingly, exogenously supplemented OC and OPN were able to rescue MSC proliferative and osteogenic potential along with matrix integrity and mineral quality. Taken together, these results highlight the key contributions of OC and OPN in enhancing osteogenesis and angiogenesis over primitive connective tissue, and support a potential therapeutic approach based on their exogenous supplementation.


Subject(s)
Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/physiology , Neovascularization, Physiologic/physiology , Osteocalcin/metabolism , Osteogenesis/physiology , Osteopontin/metabolism , Adipogenesis/physiology , Animals , Bone and Bones/metabolism , Bone and Bones/physiology , Cell Differentiation/physiology , Cell Proliferation/physiology , Cells, Cultured , Connective Tissue/metabolism , Connective Tissue/physiology , Extracellular Matrix/metabolism , Mice , Mice, Inbred C57BL , Morphogenesis/physiology
19.
FEBS Open Bio ; 10(5): 835-846, 2020 05.
Article in English | MEDLINE | ID: mdl-32160414

ABSTRACT

Thioredoxin (Trx) is a hydrogen acceptor of ribonucleotide reductase and a regulator of some enzymes and receptors. It has been previously shown that significantly elevated levels of Trx expression are associated with the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), but it is not clear how Trx regulates the effects of hydrogen peroxide (H2 O2 ) on myogenic differentiation of BMSCs. Here, we report that rat BMSCs treated with a high dose (150 µm) of H2 O2 exhibited a significant reduction in viability, cell cycling, and superoxide dismutase and glutathione peroxidase levels, and an increase in reactive oxygen species and malondialdehyde levels, which was accompanied by reductions in protein kinase B activation and forkhead Box O1, myogenic differentiation 1 and myogenin expression during myogenic differentiation. Furthermore, treatment with recombinant human Trx significantly mitigated the effects of H2 O2 on the myogenic differentiation of BMSCs, and this was abrogated by cotreatment with wortmannin [a specific phosphatidylinositol 3-kinase inhibitor]. In summary, our results suggest that treatment with recombinant human Trx mitigates H2 O2 -induced oxidative stress and may promote myogenic differentiation of rat BMSCs by enhancing phosphatidylinositol 3-kinase/protein kinase B/forkhead Box O1 signaling.


Subject(s)
Mesenchymal Stem Cells/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Thioredoxins/metabolism , Animals , Antioxidants/metabolism , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Cell Differentiation/drug effects , Cell Survival/drug effects , China , Glutathione Peroxidase/metabolism , Hydrogen Peroxide/adverse effects , Hydrogen Peroxide/metabolism , Male , Mesenchymal Stem Cells/physiology , Muscle Development/drug effects , Muscle Development/physiology , Oxidative Stress/drug effects , Proto-Oncogene Proteins c-akt/physiology , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Superoxide Dismutase/metabolism , Thioredoxins/pharmacology
20.
Stem Cells Dev ; 29(11): 728-736, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32122257

ABSTRACT

This study was conducted to compare the in vitro proliferation and osteogenic differentiation potential of mesenchymal stem cells (MSCs) derived from mandibular (M-MSCs) or femur (F-MSCs) tissues of rats. M-MSC and F-MSC cultures were isolated and established from the same rat. Cultures were observed for morphological changes by microscope and growth characteristics by CCK-8 and cloning assays. Cell adhesion ability on a culture plate and titanium sheet was detected by staining with toluidine blue and Hoechst 33258, respectively. The levels of Ca, P, and ALP (serially) during osteogenic differentiation were evaluated. Cultures were analyzed for mineralization potential with alizarin red and ALP staining methods and for differentiation markers with RT-PCR (ALP, Runx2, and OCN). M-MSCs and F-MSCs were successfully isolated from the same rat with uncontaminated culture, which showed significant differences in morphology. The proliferation rate of M-MSCs was higher than F-MSCs in primary culture, but significantly lower after passage. More colonies are formed from F-MSCs than from M-MSCs. M-MSCs showed a significantly higher mineralization and osteogenic differentiation potential, which might be of significance for use in bone/dental tissue engineering. In vitro, cell passage will decrease the proliferation ability of M-MSCs. The higher mineralization and osteogenic differentiation potential of M-MSCs could make them an approachable stem cell source for further application in stem cell-based clinical therapies.


Subject(s)
Bone Marrow Cells/cytology , Cell Differentiation , Femur/cytology , Mandible/cytology , Mesenchymal Stem Cells/cytology , Osteoblasts/cytology , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Animals , Bone Marrow Cells/metabolism , Bone Marrow Cells/physiology , Calcium/metabolism , Cell Proliferation , Cells, Cultured , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/physiology , Organ Specificity , Osteoblasts/metabolism , Osteoblasts/physiology , Osteocalcin/genetics , Osteocalcin/metabolism , Phosphorus/metabolism , Primary Cell Culture/methods , Rats , Rats, Sprague-Dawley , Tissue Engineering/methods
SELECTION OF CITATIONS
SEARCH DETAIL