Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Plant Cell Physiol ; 61(9): 1631-1645, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32618998

ABSTRACT

Methionine sulfoxide reductase B (MsrB) is involved in oxidative stress or defense responses in plants. However, little is known about its role in legume-rhizobium symbiosis. In this study, an MsrB gene was identified from Astragalus sinicus and its function in symbiosis was characterized. AsMsrB was induced under phosphorus starvation and displayed different expression patterns under symbiotic and nonsymbiotic conditions. Hydrogen peroxide or methyl viologen treatment enhanced the transcript level of AsMsrB in roots and nodules. Subcellular localization showed that AsMsrB was localized in the cytoplasm of onion epidermal cells and co-localized with rhizobia in nodules. Plants with AsMsrB-RNAi hairy roots exhibited significant decreases in nodule number, nodule nitrogenase activity and fresh weight of the aerial part, as well as an abnormal nodule and symbiosome development. Statistical analysis of infection events showed that plants with AsMsrB-RNAi hairy roots had significant decreases in the number of root hair curling events, infection threads and nodule primordia compared with the control. The content of hydrogen peroxide increased in AsMsrB-RNAi roots but decreased in AsMsrB overexpression roots at the early stage of infection. The transcriptome analysis showed synergistic modulations of the expression of genes involved in reactive oxygen species generation and scavenging, defense and pathogenesis and early nodulation. In addition, a candidate protein interacting with AsMsrB was identified and confirmed by bimolecular fluorescence complementation. Taken together, our results indicate that AsMsrB plays an essential role in nodule development and symbiotic nitrogen fixation by affecting the redox homeostasis in roots and nodules.


Subject(s)
Astragalus Plant/physiology , Mesorhizobium/physiology , Methionine Sulfoxide Reductases/physiology , Plant Proteins/physiology , Symbiosis , Astragalus Plant/enzymology , Astragalus Plant/genetics , Astragalus Plant/microbiology , Conserved Sequence/genetics , Gene Expression Profiling , Methionine Sulfoxide Reductases/genetics , Methionine Sulfoxide Reductases/metabolism , Nitrogen Fixation , Oxidative Stress , Phosphorus/deficiency , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Root Nodulation/physiology , Plant Roots/metabolism , Plant Roots/microbiology , Root Nodules, Plant/ultrastructure , Sequence Alignment , Symbiosis/physiology
2.
J Nutr ; 147(5): 789-797, 2017 05.
Article in English | MEDLINE | ID: mdl-28356430

ABSTRACT

Background: A new organic selenium compound, 2-hydroxy-4-methylselenobutanoic acid (SeO), displayed a greater bioavailability than sodium selenite (SeNa) or seleno-yeast (SeY) in several species.Objective: This study sought to determine the regulation of the speciation of selenium, expression of selenogenome and selenocysteine biosynthesis and degradation-related genes, and production of selenoproteins by the 3 forms of selenium in the tissues of broiler chicks.Methods: Day-old male chicks (n = 6 cages/diet, 6 chicks/cage) were fed a selenium-deficient, corn and soy-based diet [base diet (BD), 0.05 mg Se/kg] or the BD + SeNa, SeY, or SeO at 0.2 mg Se/kg for 6 wk. Plasma, livers, and pectoral and thigh muscles were collected at weeks 3 and 6 to assay for total selenium, selenomethionine, selenocysteine, redox status, and selected genes, proteins, and enzymes.Results: Although both SeY and SeO produced greater concentrations (P < 0.05) of total selenium (20-172%) and of selenomethionine (≤15-fold) in the liver, pectoral muscle, and thigh than those of SeNa, SeO further raised (P < 0.05) these concentrations by 13-37% and 43-87%, respectively, compared with SeY. Compared with the BD, only SeO enhanced (P < 0.05) the mRNA of selenoprotein (Seleno) s and methionine sulfoxide reductase B1 (Msrb1) in the liver and thigh (62-98%) and thioredoxin reductase (TXRND) activity in the pectoral and thigh muscles (20-37%) at week 3. Furthermore, SeO increased (P < 0.05) the expression of glutathione peroxidase (Gpx) 3, GPX4, SELENOP, and SELENOU relative to the SeNa group by 26-207%, and the expression of Selenop, O-phosphoseryl-transfer RNA (tRNA):selenocysteinyl-tRNA synthase, GPX4, and SELENOP relative to the SeY group by 23-55% in various tissues.Conclusions: Compared with SeNa or SeY, SeO demonstrated a unique ability to enrich selenomethionine and total selenium depositions, to induce the early expression of Selenos and Mrsb1 mRNA and TXRND activity, and to enhance the protein production of GPX4, SELENOP, and SELENOU in the tissues of chicks.


Subject(s)
Butyrates/pharmacology , Liver/drug effects , Muscles/drug effects , Selenium Compounds/pharmacology , Selenium/metabolism , Selenomethionine/metabolism , Selenoproteins/metabolism , Amino Acyl-tRNA Synthetases/metabolism , Animal Nutritional Physiological Phenomena , Animals , Butyrates/metabolism , Chickens , Glutathione Peroxidase/metabolism , Liver/metabolism , Male , Methionine Sulfoxide Reductases/genetics , Methionine Sulfoxide Reductases/metabolism , Muscles/metabolism , RNA, Messenger/metabolism , Selenium/deficiency , Selenium Compounds/metabolism , Selenoproteins/genetics , Sodium Selenite/pharmacology , Thioredoxin-Disulfide Reductase/metabolism , Yeasts
3.
Cancer Epidemiol Biomarkers Prev ; 24(6): 931-7, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25809864

ABSTRACT

BACKGROUND: Recent research suggests that maternal folic acid supplementation is associated with a reduced risk of childhood brain tumors (CBT); polymorphisms in folate pathway genes could modify this association or directly influence CBT risk. METHODS: Associations between risk of CBT and folate pathway polymorphisms were investigated in a population-based case-control study in Australia (2005-2010). Cases were recruited through all Australian pediatric oncology centers and controls by national random digit dialing. Data were available from 321 cases and 552 controls. Six polymorphisms were genotyped in children and parents (MTHFR 677C>T, MTHFR 1298A>C, MTRR 66A>G, MTR 2756A>G, MTR 5049C>A, and CBS 2199 T>C). Maternal folic acid use was ascertained via questionnaire. ORs were estimated using unconditional logistic regression. Case-parent trio analyses were also undertaken. RESULTS: There was weak evidence of a reduced risk of CBT for the MTRR 66GG genotype in the child or father: ORs 0.71 [95% confidence interval (CI), 0.48-1.07]; 0.54 (95% CI, 0.34-0.87), respectively. Maternal prepregnancy folic acid supplementation showed a stronger negative association with CBT risk where the child, mother, or father had the MTRR 66GG genotype (Pinteraction = 0.07, 0.10, and 0.18, respectively). CONCLUSIONS: Evidence for an association between folate pathway genotypes and CBT is limited in this study. There was possible protection by the MTRR 66GG genotype, particularly when combined with maternal prepregnancy folic acid supplementation; these results are novel and require replication. IMPACT: The possible interaction between folic acid supplementation and MTRR 66A>G, if confirmed, would strengthen evidence for prepregnancy folate protection against CBT.


Subject(s)
Biomarkers, Tumor/genetics , Brain Neoplasms/epidemiology , Brain Neoplasms/genetics , Dietary Supplements , Folic Acid/genetics , Polymorphism, Single Nucleotide/genetics , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/genetics , Adolescent , Adult , Australia/epidemiology , Brain Neoplasms/diet therapy , Case-Control Studies , Child , Child, Preschool , Female , Ferredoxin-NADP Reductase/genetics , Folic Acid/administration & dosage , Follow-Up Studies , Genetic Predisposition to Disease , Genotype , Humans , Incidence , Infant , Infant, Newborn , Male , Methionine Sulfoxide Reductases/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Microfilament Proteins , Prognosis , Risk Factors , Transcription Factors/genetics
4.
Free Radic Biol Med ; 75: 95-104, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25064324

ABSTRACT

Selenium (Se) is an essential nutrient required by Se-dependent proteins, termed selenoproteins. The selenoprotein family is small but diverse and includes key proteins in antioxidant, redox signaling, thyroid hormone metabolism, and protein folding pathways. Methylmercury (MeHg) is a toxic environmental contaminant that affects seafood safety. Selenium can reduce MeHg toxicity, but it is unclear how selenoproteins are affected in this interaction. In this study we explored how Se and MeHg interact to affect the mRNA expression of selenoprotein genes in whole zebrafish (Danio rerio) embryos. Embryos were obtained from adult zebrafish fed MeHg with or without elevated Se in a 2×2 factorial design. The embryo mRNA levels of 30 selenoprotein genes were then measured. These genes cover most of the selenoprotein families, including members of the glutathione peroxidase (GPX), thioredoxin reductase, iodothyronine deiodinase, and methionine sulfoxide reductase families, along with selenophosphate synthetase 2 and selenoproteins H, J-P, T, W, sep15, fep15, and fam213aa. GPX enzyme activity and larval locomotor activity were also measured. We found that around one-quarter of the selenoprotein genes were downregulated by elevated MeHg. These downregulated genes were dominated by selenoproteins from antioxidant pathways that are also susceptible to Se-deficiency-induced downregulation. MeHg also decreased GPX activity and induced larval hypoactivity. Elevated Se partially prevented MeHg-induced disruption of selenoprotein gene mRNA levels, GPX activity, and larval locomotor activity. Overall, the MeHg-induced downregulation and subsequent rescue by elevated Se levels of selenogenes regulated by Se status suggest that Se deficiency is a contributing factor to MeHg toxicity.


Subject(s)
Antioxidants/pharmacology , Methylmercury Compounds/pharmacology , RNA, Messenger/biosynthesis , Selenium/pharmacology , Selenoproteins/genetics , Animals , Down-Regulation , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Iodide Peroxidase/genetics , Methionine Sulfoxide Reductases/genetics , Phosphotransferases/genetics , Thioredoxin-Disulfide Reductase/genetics , Water Pollutants, Chemical , Zebrafish
5.
Food Chem ; 136(1): 18-25, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23017387

ABSTRACT

This study was conducted to investigate the potential of bambangan (Mangifera pajang) fruit extracts in the protection against oxidative damage caused by tert-butyl hydroperoxide in the human hepatocellular HepG2 cell line. Proteins which might be involved in the cytoprotective mechanism were investigated using western blotting technique. Quercetin was used as a positive control. The results showed that only the kernel extract of M. pajang and quercetin displayed cytoprotective activity in HepG2 cells, with EC(50) values of 1.2 and 5.3µg/ml, respectively. Expression of quinone reductase, glutathione reductase and methionine sulfoxide reductase A proteins were significantly up-regulated by quercetin, suggesting their involvement in the cytoprotective activity of quercetin. However, expressions of only glutathione reductase and methionine sulfoxide reductase A proteins were significantly up-regulated by the kernel extract, again suggesting their involvement in the cytoprotective activity of bambangan kernel extract. Future study is needed to investigate the involvement of other cytoprotective proteins in the cytoprotection mechanism.


Subject(s)
Carcinoma, Hepatocellular/enzymology , Liver Neoplasms/enzymology , Mangifera/chemistry , Plant Extracts/pharmacology , Protective Agents/pharmacology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Gene Expression Regulation/drug effects , Glutathione Reductase/genetics , Glutathione Reductase/metabolism , Hep G2 Cells , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Methionine Sulfoxide Reductases/genetics , Methionine Sulfoxide Reductases/metabolism , NAD(P)H Dehydrogenase (Quinone)/genetics , NAD(P)H Dehydrogenase (Quinone)/metabolism , Oxidative Stress/drug effects , Quercetin/pharmacology
6.
J Cell Biochem ; 113(11): 3559-66, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22740506

ABSTRACT

Taurine has been shown to have potent anti-oxidant properties under various pathophysiological conditions. We reported previously a cellular dysfunction and mitochondrial damage in cardiac myocytes of methionine sulfoxide reductase A (MsrA) gene knockout mice (MsrA(-/-)). In the present study, we have explored the protective effects of taurine against oxidative stress in the heart of MsrA(-/-) mice with or without taurine treatment. Cardiac cell contractility and Ca(2+) dynamics were measured using cell-based assays and in vivo cardiac function was monitored using high-resolution echocardiography in the tested animals. Our data have shown that MsrA(-/-) mice exhibited a progressive cardiac dysfunction with a significant decrease of ejection fraction (EF) and fraction shortening (FS) at age of 8 months compared to the wild type controls at the same age. However, the dysfunction was corrected in MsrA(-/-) mice treated with taurine supplement in the diet for 5 months. We further investigated the cellular mechanism underlying the protective effect of taurine in the heart. Our data indicated that cardiac myocytes from MsrA(-/-) mice treated with taurine exhibited an improved cell contraction and could tolerate oxidative stress better. Furthermore, taurine treatment reduced significantly the protein oxidation levels in mitochondria of MsrA(-/-) hearts, suggesting an anti-oxidant effect of taurine in cardiac mitochondria. Our study demonstrates that long-term treatment of taurine as a diet supplement is beneficial to a heart that is vulnerable to environmental oxidative stresses.


Subject(s)
Antioxidants/pharmacology , Heart/drug effects , Methionine Sulfoxide Reductases/genetics , Mitochondria/drug effects , Myocytes, Cardiac/drug effects , Taurine/pharmacology , Animals , Antioxidants/therapeutic use , Calcium/metabolism , Dietary Supplements , Echocardiography , Heart/physiopathology , Heart Function Tests , Hydrogen Peroxide/pharmacology , Methionine Sulfoxide Reductases/deficiency , Mice , Mice, Knockout , Mitochondria/genetics , Mitochondria/metabolism , Myocardial Contraction/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Oxidation-Reduction , Oxidative Stress , Taurine/therapeutic use
7.
Br J Nutr ; 106(12): 1845-54, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21736775

ABSTRACT

Besides its typical role as an amino acid in protein synthesis, methionine is an important intermediate in methylation reactions. In addition, it can also be converted to cysteine and hence plays a role in the defence against oxidative stress. The present study was conducted to investigate further the role of DL-methionine (DLM) and its hydroxy analogue, DL-2-hydroxy-4-methylthiobutanoic acid (DL-HMTBA), on zootechnical performance and oxidative status of broiler chickens. Male broiler chickens were reared on two diets differing in crude protein (CP) content (low-protein, 18·3 % v. high-protein, 23·2 % CP) and were supplemented either with 0·25 % DLM or 0·25 % DL-HMTBA. Reducing the dietary protein content resulted in an impaired body weight gain (P < 0·0001). However, supplementation of DL-HMTBA to the low-protein diet partially alleviated these negative effects (P = 0·0003). This latter phenomenon could be explained by the fact that chickens fed DL-HMTBA-supplemented diets displayed a better antioxidant status as reflected in lower lipid peroxidation probably as a consequence of their higher hepatic concentrations of total and reduced glutathione compared with their DLM counterparts. On the other hand, within the high protein levels, uric acid might be an important antioxidant to explain the lower lipid peroxidation of high-protein DL-HMTBA-supplemented chickens. Hepatic methionine sulfoxide reductase-A gene expression was not significantly affected by the dietary treatments. In conclusion, the present study indicates that there are interactions between dietary protein content and supplementation of methionine analogues with respect to broiler performance and antioxidant status, also suggesting a causal link between these traits.


Subject(s)
Chickens/metabolism , Dietary Proteins/administration & dosage , Methionine/analogs & derivatives , Methionine/administration & dosage , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Antioxidants/metabolism , Base Sequence , Chickens/genetics , Chickens/growth & development , Corticosterone/blood , DNA Primers/genetics , Dietary Supplements , Eating , Gene Expression , Lipid Peroxidation , Liver/metabolism , Male , Methionine Sulfoxide Reductases/genetics , Organ Size , Oxidation-Reduction , Oxidative Stress , Triiodothyronine/blood , Weight Gain
8.
Antioxid Redox Signal ; 12(7): 829-38, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-19769460

ABSTRACT

Methionine residues are susceptible to oxidation, but this damage may be reversed by methionine sulfoxide reductases MsrA and MsrB. Mammals contain one MsrA and three MsrBs, including a selenoprotein MsrB1. Here, we show that MsrB1 is the major methionine sulfoxide reductase in liver of mice and it is among the proteins that are most easily regulated by dietary selenium. MsrB1, but not MsrA activities, were reduced with age, and the selenium regulation of MsrB1 was preserved in the aging liver, suggesting that MsrB1 could account for the impaired methionine sulfoxide reduction in aging animals. We also examined regulation of Msr and selenoprotein expression by a combination of dietary selenium and calorie restriction and found that, under calorie restriction conditions, selenium regulation was preserved. In addition, mice overexpressing a mutant form of selenocysteine tRNA reduced MsrB1 activity to the level observed in selenium deficiency, whereas MsrA activity was elevated in these animals. Finally, we show that selenium regulation in inbred mouse strains is preserved in an outbred aging model. Taken together, these findings better define dietary regulation of methionine sulfoxide reduction and selenoprotein expression in mice with regard to age, calorie restriction, dietary Se, and a combination of these factors.


Subject(s)
Aging/metabolism , Caloric Restriction , Diet , Methionine Sulfoxide Reductases/metabolism , Selenium/administration & dosage , Selenoproteins/metabolism , Animals , Female , Humans , Male , Methionine Sulfoxide Reductases/genetics , Mice , Mice, Inbred BALB C , Mice, Transgenic , Selenium/metabolism , Selenoproteins/genetics , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL