Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 708
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Phytother Res ; 38(4): 1783-1798, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38323338

ABSTRACT

Macrophage inflammation plays a central role during the development and progression of sepsis, while the regulation of macrophages by parthanatos has been recently identified as a novel strategy for anti-inflammatory therapies. This study was designed to investigate the therapeutic potential and mechanism of pimpinellin against LPS-induced sepsis. PARP1 and PAR activation were detected by western blot or immunohistochemistry. Cell death was assessed by flow cytometry and western blot. Cell metabolism was measured with a Seahorse XFe24 extracellular flux analyzer. C57, PARP1 knockout, and PARP1 conditional knock-in mice were used in a model of sepsis caused by LPS to assess the effect of pimpinellin. Here, we found that pimpinellin can specifically inhibit LPS-induced macrophage PARP1 and PAR activation. In vitro studies showed that pimpinellin could inhibit the expression of inflammatory cytokines and signal pathway activation in macrophages by inhibiting overexpression of PARP1. In addition, pimpinellin increased the survival rate of LPS-treated mice, thereby preventing LPS-induced sepsis. Further research confirmed that LPS-induced sepsis in PARP1 overexpressing mice was attenuated by pimpinellin, and PARP1 knockdown abolished the protective effect of pimpinellin against LPS-induced sepsis. Further study found that pimpinellin can promote ubiquitin-mediated degradation of PARP1 through RNF146. This is the first study to demonstrate that pimpinellin inhibits excessive inflammatory responses by promoting the ubiquitin-mediated degradation of PARP1.


Subject(s)
Lipopolysaccharides , Methoxsalen , Sepsis , Animals , Mice , Inflammation/metabolism , Macrophages , Methoxsalen/analogs & derivatives , Mice, Inbred C57BL , Sepsis/chemically induced , Sepsis/drug therapy , Ubiquitination , Ubiquitins/metabolism
3.
Eur J Neurosci ; 58(7): 3605-3617, 2023 10.
Article in English | MEDLINE | ID: mdl-37671643

ABSTRACT

Xanthotoxin (XAT) is a natural furanocoumarin clinically used in the treatment of skin diseases such as vitiligo and psoriasis. Recent studies have also investigated its effects on anti-inflammatory, anti-cognitive dysfunction, and anti-amnesia as a guideline for clinic application. However, little is known about its effects on pain relief. Here, we tested the analgesic effects of XAT in serious acute pain and chronic pain models. For acute pain, we used hot-, capsaicin- and formalin-induced paw licking. Nociceptive threshold was measured by mechanical stimuli with von Frey filaments. For chronic pain, we injected complete Freund's adjuvant (CFA) into the mice's plantar surface of the hind paw to induce inflammatory pain. Heat and mechanical hyperalgesia were evaluated by radiant heat and von Frey filament tests, respectively. To investigate the mechanisms underlying the analgesic effect of XAT, we used calcium imaging and western blot to assess transient receptor potential vanilloid 1 (TRPV1) activity and expression in isolated L4-L6 dorsal root ganglion (DRG) neurons. Haematoxylin and eosin (HE) staining, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) were used to examine immune cell recruitment and proinflammatory factor release from skin tissue from paw injection sites. Our results demonstrated that XAT not only reduced acute pain behaviors generated by hot, capsaicin, and formalin but also attenuated CFA-induced heat and mechanical hyperalgesia. The analgesic activity of XAT may be achieved by controlling peripheral inflammation, lowering immune cell infiltration at the site of inflammatory tissue, reducing inflammatory factor production, and therefore inhibiting TRPV1 channel sensitization and expression.


Subject(s)
Acute Pain , Chronic Pain , Mice , Animals , Hyperalgesia/metabolism , Methoxsalen/adverse effects , Capsaicin/pharmacology , Analgesics/pharmacology , Analgesics/therapeutic use , Anti-Inflammatory Agents/adverse effects , Inflammation/metabolism , Formaldehyde/adverse effects , Ganglia, Spinal/metabolism
4.
J Food Prot ; 86(6): 100084, 2023 06.
Article in English | MEDLINE | ID: mdl-37019182

ABSTRACT

In this research, we evaluated the aphicidal effect of the ethanolic extract of stems and bark of Ficus petiolaris Kunth (Moraceae), in laboratory bioassays in an artificial diet against apterous adult females of Melanaphis sacchari Zehntner (Hemiptera: Aphididae). The extract was evaluated at different concentrations (500, 1,000, 1,500, 2,000, and 2,500 ppm), and the highest percentage of mortality (82%) was found at 2,500 ppm after 72 h. The positive control imidacloprid (Confial®) at 1% eliminated 100% of the aphids, and the negative control (artificial diet) only presented mortality of 4%. The chemical fractionation of the stem and bark extract of F. petiolaris yielded five fractions of FpR1-5, which were each evaluated at 250, 500, 750, and 1,000 ppm. FpR2 had the strongest aphicidal effect, with 89% mortality at 72 h at 1,000 ppm. The pure xanthotoxin compound extracted from this fraction was even more effective, with 91% aphid mortality after 72 h at 100 ppm. The lethal concentration (LC50) of xanthotoxin was 58.7 ppm (72 h). Our results indicate that the extract of F. petiolaris showed toxic activity against this aphid, and its xanthotoxin compound showed strong aphicidal activity at low concentrations.


Subject(s)
Aphids , Ficus , Sorghum , Animals , Female , Methoxsalen , Plant Extracts/pharmacology
5.
Molecules ; 27(19)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36234812

ABSTRACT

Citrus essential oils are routinely adulterated because of the lack of regulations or reliable authentication methods. Unfortunately, the relatively simple chemical makeup and the tremendous price variations among Citrus varieties encouraged the interspecies adulteration of citrus oils. In this study, a sensitive UPLC-MS/MS method for the quantitation of 14 coumarins and furanocoumarins is developed and validated. This method was applied to screen the essential oils of 12 different Citrus species. This study, to our knowledge, represents the most comprehensive investigation of coumarin and furanocoumarin profiles across commercial-scale Citrus oils to date. Results show that the lowest amount was detected in calamansi oil. Expressed oil of Italian bergamot showed the highest furanocoumarin content and the highest level of any individual furanocoumarin (bergamottin). Notable differences were observed in the coumarin and furanocoumarin levels among oils of different crop varieties and origins within the same species. Potential correlations were observed between bergapten and xanthotoxin which matches with known biosynthetic pathways. We found patterns in furanocoumarin profiles that line up with known variations among the Citrus ancestral taxa. However, contrary to the literature, we also detected xanthotoxin in sweet orange and members of the mandarin taxon. Using multivariate analysis, we were able to divide the Citrus oils into 5 main groups and correlate them to the coumarin compositions.


Subject(s)
Citrus , Furocoumarins , Oils, Volatile , 5-Methoxypsoralen , Chromatography, Liquid , Citrus/chemistry , Coumarins/chemistry , Furocoumarins/chemistry , Methoxsalen , Oils, Volatile/chemistry , Plant Oils , Tandem Mass Spectrometry
6.
Phytother Res ; 36(10): 3805-3832, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35913174

ABSTRACT

Xanthotoxin (XAT) is a natural furanocoumarins, a bioactive psoralen isolated from the fruit of the Rutaceae plant Pepper, which has received increasing attention in recent years due to its wide source and low cost. By collecting and compiling literature on XAT, the results show that XAT exhibits significant activity in the treatment of various diseases, including neuroprotection, skin repair, osteoprotection, organ protection, anticancer, antiinflammatory, antioxidative stress and antibacterial. In this paper, we review the pharmacological activity and potential molecular mechanisms of XAT for the treatment of related diseases. The data suggest that XAT can mechanistically induce ROS production and promote apoptosis through mitochondrial or endoplasmic reticulum pathways, regulate NF-κB, MAPK, JAK/STAT, Nrf2/HO-1, MAPK, AKT/mTOR, and ERK1/2 signaling pathways to exert pharmacological effects. In addition, the pharmacokinetics properties and toxicity of XAT are discussed in this paper, further elucidating the relationship between structure and efficacy. It is worth noting that data from clinical studies of XAT are still scarce, limiting the use of XAT in the clinic, and in the future, more in-depth studies are needed to determine the clinical efficacy of XAT.


Subject(s)
Furocoumarins , Methoxsalen , Anti-Bacterial Agents , Furocoumarins/pharmacology , Methoxsalen/pharmacology , NF-E2-Related Factor 2/metabolism , NF-kappa B , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species , TOR Serine-Threonine Kinases
7.
Exp Dermatol ; 31(11): 1693-1698, 2022 11.
Article in English | MEDLINE | ID: mdl-35801380

ABSTRACT

Mycosis fungoides (MF) is a subtype of cutaneous T-cell lymphoma (CTCL). Topical or systemic treatment with psoralen, such as 8-methoxypsoralen (8-MOP), followed by ultraviolet A (UVA) irradiation (PUVA therapy) is an effective phototherapy for early-stage MF. However, the efficacy of PUVA therapy for advanced-stage MF is not satisfactory, and the ideal combination partner for PUVA therapy has not yet been found. In this study, we developed a new mouse model of CTCL in which efficacy of PUVA was detected and further evaluated the efficacy of combination treatment of PUVA and mogamulizumab, an anti-CCR4 monoclonal antibody. Cytotoxicity of PUVA therapy against HH cells, a CTCL cell line, was observed in vitro. The cytotoxicity was dependent on both 8-MOP and UVA. Using HH cells, we developed a mouse model in which HH cells were subcutaneously inoculated in the ear. In this model, PUVA therapy suppressed tumour growth with statistical significance, while 8-MOP or UVA alone did not. Combination therapy of PUVA and mogamulizumab showed greater antitumor activity than either monotherapy with statistical significance. In the histological analysis of the tumour tissue, PUVA accelerated tumour necrosis and then induced the infiltration inflammatory cells in the necrotic area, suggesting that these cells served as effector cells for mogamulizumab. This combination therapy is expected to be a beneficial option for CTCL therapy.


Subject(s)
Lymphoma, T-Cell, Cutaneous , Mycosis Fungoides , Skin Neoplasms , Ultraviolet Therapy , Animals , Mice , Ficusin , Methoxsalen , Skin Neoplasms/pathology , Mycosis Fungoides/pathology , PUVA Therapy
8.
Oxid Med Cell Longev ; 2022: 8615242, 2022.
Article in English | MEDLINE | ID: mdl-35509838

ABSTRACT

Bergapten (BP) or 5-methoxypsoralen (5-MOP) is a furocoumarin compound mainly found in bergamot essential oil but also in other citrus essential oils and grapefruit juice. This compound presents antibacterial, anti-inflammatory, hypolipemic, and anticancer effects and is successfully used as a photosensitizing agent. The present review focuses on the research evidence related to the therapeutic properties of bergapten collected in recent years. Many preclinical and in vitro studies have been evidenced the therapeutic action of BP; however, few clinical trials have been carried out to evaluate its efficacy. These clinical trials with BP are mainly focused on patients suffering from skin disorders such as psoriasis or vitiligo. In these trials, the administration of BP (oral or topical) combined with UV irradiation induces relevant lesion clearance rates. In addition, beneficial effects of bergamot extract were also observed in patients with altered serum lipid profiles and in people with nonalcoholic fatty liver. On the contrary, there are no clinical trials that investigate the possible effects on cancer. Although the bioavailability of BP is lower than that of its 8-methoxypsoralen (8-MOP) isomer, it has fewer side effects allowing higher concentrations to be administered. In conclusion, although the use of BP has therapeutic applications on skin disorders as a sensitizing agent and as components of bergamot extract as hypolipemic therapy, more trials are necessary to define the doses and treatment guidelines and its usefulness against other pathologies such as cancer or bacterial infections.


Subject(s)
Methoxsalen , Oils, Volatile , 5-Methoxypsoralen , Humans , Methoxsalen/adverse effects , Photosensitizing Agents , Plant Extracts , Ultraviolet Rays
9.
Phytochem Anal ; 33(5): 776-791, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35470493

ABSTRACT

INTRODUCTION: Angelica dahurica(BZ) and Angelica dahurica var. formosana(HBZ) are two plant sources of Angelicae dahuricae Radix. Although BZ and HBZ are commonly used herbal medicines with great medicinal and dietary values, study on their phytochemicals and bioactive compositions is limited. OBJECTIVE: To compare the chemical compositions of BZ and HBZ and find the chemical makers for discrimination and quality evaluation of the two botanical origins of Angelicae dahuricae Radix. METHODOLOGY: A high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry method was established for chemical profiling of BZ and HBZ. Then, a quantitative analysis of multiple components by a single marker method was developed for simultaneous determination of nine bioactive coumarins (xanthotoxol, oxypeucedanin hydrate, byakangelicin, xanthotoxin, bergapten, oxypeucedanin, phellopterin, imperatorin and isoimperatorin). Moreover, chemometrics were performed to compare and discriminate BZ and HBZ samples. RESULTS: A total of 30 coumarins compounds were identified, and the chemical compositions in BZ and HBZ were quite similar. The quantitative analysis showed that there were significant differences in the contents of bioactive coumarins, and the chemometric analysis indicated five coumarins (xanthotoxol, xanthotoxin, bergapten, phellopterin and isoimperatorin) were responsible for the significant differences between BZ and HBZ, which could be used as chemical markers to distinguish the two original plant sources of Angelicae dahuricae Radix. CONCLUSION: The present work provided useful information for understanding the chemical differences between BZ and HBZ and also provided feasible methods for quality evaluation and discrimination of herbal medicines originating from multiple botanical sources.


Subject(s)
Angelica , Drugs, Chinese Herbal , Plants, Medicinal , 5-Methoxypsoralen , Angelica/chemistry , Chromatography, High Pressure Liquid/methods , Coumarins/analysis , Drugs, Chinese Herbal/chemistry , Mass Spectrometry , Methoxsalen/analysis , Plant Roots/chemistry
10.
Photochem Photobiol ; 98(5): 1100-1109, 2022 09.
Article in English | MEDLINE | ID: mdl-35191044

ABSTRACT

Ruta chalepensis, a medicinal plant, produces biologically active coumarins (CRs) and furanocoumarins (FCRs). However, their yield is quite low in cultivated plants. In this work, the influence of light-emitting diodes (LEDs) was investigated on the accumulation of CRs and FCRs in the callus cultures and field-grown plants of R. chalepensis. Among the various tested wavelengths of LED lights, maximum accumulation of CR and FCRs was recorded under blue LED treatment in both the callus cultures as well as field-grown plants when compared with respective controls treated with white LED. Metabolite analyses of LED-treated field-grown plants showed that highest concentrations of CR (umbelliferone, 2.8-fold), and FCRs (psoralen, 2.3-fold; xanthotoxin, 3.8-fold and bergapten, 1.16-fold) were accumulated upon blue LED-treatment for 6 days. CR and FCRs contents were also analyzed in the blue LED- and red LED-treated in vitro callus tissue. Upon blue LED-treatment, callus accumulated significantly high levels of umbelliferone (48.6 ± 1.2 µg g-1 DW), psoralen (370.12 ± 10.6 µg g-1 DW) and xanthotoxin (10.16 ± 0.48 µg g-1 DW). These findings imply that blue LED-treatment is a viable option as a noninvasive and low-cost elicitation technology for the enhanced production of biologically active CR and FCRs in field-grown plants and callus cultures of R. chalepensis.


Subject(s)
Furocoumarins , Ruta , 5-Methoxypsoralen , Coumarins , Methoxsalen , Ruta/metabolism , Umbelliferones/metabolism
11.
Molecules ; 27(3)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35164207

ABSTRACT

Ammi majus L., an indigenous plant in Egypt, is widely used in traditional medicine due to its various pharmacological properties. We aimed to evaluate the anticancer properties of Ammi majus fruit methanol extract (AME) against liver cancer and to elucidate the active compound(s) and their mechanisms of action. Three fractions from AME (Hexane, CH2Cl2, and EtOAc) were tested for their anticancer activities against HepG2 cell line in vitro (cytotoxicity assay, cell cycle analysis, annexin V-FITC apoptosis assay, and autophagy efflux assay) and in silico (molecular docking). Among the AME fractions, CH2Cl2 fraction revealed the most potent cytotoxic activity. The structures of compounds isolated from the CH2Cl2 fraction were elucidated using 1H- and 13C-NMR and found that Compound 1 (xanthotoxin) has the strongest cytotoxic activity against HepG2 cells (IC50 6.9 ± 1.07 µg/mL). Treating HepG2 cells with 6.9 µg/mL of xanthotoxin induced significant changes in the DNA-cell cycle (increases in apoptotic pre-G1 and G2/M phases and a decrease in the S-phase). Xanthotoxin induced significant increase in Annexin-V-positive HepG2 cells both at the early and late stages of apoptosis, as well as a significant decrease in autophagic flux in cancer compared with control cells. In silico analysis of xanthotoxin against the DNA-relaxing enzyme topoisomease II (PDB code: 3QX3) revealed strong interaction with the key amino acid Asp479 in a similar fashion to that of the co-crystallized inhibitor (etoposide), implying that xanthotoxin has a potential of a broad-spectrum anticancer activity. Our results indicate that xanthotoxin exhibits anticancer effects with good biocompatibility toward normal human cells. Further studies are needed to optimize its antitumor efficacy, toxicity, solubility, and pharmacokinetics.


Subject(s)
Ammi/chemistry , Furocoumarins/pharmacology , Methoxsalen/pharmacology , Computer Simulation , In Vitro Techniques
12.
Phytother Res ; 35(11): 6131-6147, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34347307

ABSTRACT

Bergapten is a natural furocoumarin, also known as 5-methoxypsoralen, and its medicinal value has been paid more and more attention. By sorting out the pharmacological literature of bergapten, we found that bergapten has a wide range of pharmacological effects, including neuroprotection, organ protection, anticancer, antiinflammatory, antimicrobial, and antidiabetes effects. However,bergapten has complex impacts on the hepatic metabolic enzyme. Moreover, pharmacokinetic studies showed that bergapten has higher absolute bioavailability and can cross the blood-brain barrier and has a great potential for treating brain disease, but the mechanism needs further clarification to make greater use of its ability to treat brain diseases. Furthermore, the phototoxicity of bergapten combined with ultraviolet light has always been mentioned. In view of its wide range of pharmacological activities, bergapten is expected to be a potential drug candidate for the treatment of diabetes and diabetes-induced osteoporosis, epilepsy, Alzheimer's disease, depression, and cancer. However, further studies are needed to elucidate its molecular mechanisms and targets. The phototoxicity of bergapten as a side effect should be further avoided. On the other hand, the photoactivation of bergapten in the anticancer aspect can be better utilized.


Subject(s)
Methoxsalen , Osteoporosis , 5-Methoxypsoralen , Anti-Inflammatory Agents , Humans , Ultraviolet Rays
13.
Pharmacol Rep ; 73(1): 122-129, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32700246

ABSTRACT

BACKGROUND: The aim of this study is to preliminary evaluate the antiparkinsonian activity of furanocoumarin-xanthotoxin, in two behavioral animal models, zebrafish larvae treated with 6-hydroxydopamine and mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in order to compare both models. METHODS: Xanthotoxin was isolated from Pastinaca sativa L. (Apiaceae) fruits. Then, the compound was administered by immersion to zebrafish 5 days after fertilization (dpf) larvae or intraperitoneally to male Swiss mice, as a potential therapeutic agent against locomotor impairments. RESULTS: Acute xanthotoxin administration at the concentration of 7.5 µM reversed locomotor activity impairments in 5-dpf zebrafish larvae. In mice model, acute xanthotoxin administration alleviated movement impairments at the concentration of 25 mg/kg. CONCLUSIONS: The similar activity of the same substance in two different animal models indicates their compatibility and proves the potential of in vivo bioassays based on zebrafish models. Results of our study indicate that xanthotoxin may be considered as a potential lead compound in the discovery of antiparkinsonian drugs.


Subject(s)
Antiparkinson Agents/therapeutic use , Methoxsalen/therapeutic use , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/drug therapy , Zebrafish , Animals , Biological Assay , Drug Discovery , Fruit/chemistry , Larva , MPTP Poisoning/drug therapy , Male , Mice , Movement Disorders/drug therapy , Oxidopamine , Pastinaca/chemistry , Plant Extracts/therapeutic use , Species Specificity
14.
Behav Brain Res ; 399: 112985, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33144177

ABSTRACT

The present study aimed to evaluate xanthotoxin's influence on male and female Swiss mice's depression-like behaviors and investigate the potential mechanism of this effect. Naturally derived furanocoumarin (the Apiaceae family), xanthotoxin, administered acutely (12.5 mg/kg), diminished the immobility level in the forced swim test only in males. The immobility level was lower in females than males, which may be associated with a higher serotonin level in the female prefrontal cortex. A dose-dependent increase of serotonin and noradrenaline was reported in the reverse-phase ion-pair liquid chromatography in the female prefrontal cortex but not in the hippocampus. We suggest that xanthotoxin may exert antidepressant properties and affect males and females differently. The increasing level of serotonin in the male and female prefrontal cortex may underlie this effect.


Subject(s)
Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Depression/drug therapy , Hippocampus/drug effects , Methoxsalen/pharmacology , Norepinephrine/metabolism , Prefrontal Cortex/drug effects , Serotonin/metabolism , Animals , Antidepressive Agents/administration & dosage , Female , Hippocampus/metabolism , Male , Methoxsalen/administration & dosage , Mice , Plant Preparations , Prefrontal Cortex/metabolism , Sex Characteristics , Sex Factors
15.
Comb Chem High Throughput Screen ; 23(9): 898-914, 2020.
Article in English | MEDLINE | ID: mdl-32342809

ABSTRACT

BACKGROUND: Monoamine oxidases (MAOs) play a crucial role during the development of various neurodegenerative disorders. There are two MAO isozymes, MAO-A and MAO-B. MAO-A is a flavoenzyme, which binds to the outer mitochondrial membrane and catalyzes the oxidative transformations of neurotransmitters like serotonin, norepinephrine, and dopamine. MATERIALS AND METHODS: Focus on synthetic studies has culminated in the preparation of many MAOA inhibitors, and advancements in combinatorial and parallel synthesis have accelerated the developments of synthetic schemes. Here, we provided an overview of the synthetic protocols employed to prepare different classes of MAO-A inhibitors. We classified these inhibitors according to their molecular scaffolds and the synthetic methods used. RESULTS: Various synthetic and natural derivatives from a different class of MAO-A inhibitors were reported. CONCLUSION: The review provides a valuable tool for the development of a new class of various selective MAO-A inhibitors for the treatment of depression and other anxiety disorders.


Subject(s)
Antidepressive Agents/chemistry , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase/chemical synthesis , Neurodegenerative Diseases/drug therapy , Animals , Antidepressive Agents/pharmacology , Biological Products/chemistry , Biological Products/pharmacology , Coumarins/pharmacology , Dopamine/pharmacology , Drug Evaluation, Preclinical , Humans , Methoxsalen/pharmacology , Monoamine Oxidase/pharmacology , Monoamine Oxidase Inhibitors/pharmacology , Structure-Activity Relationship , Umbelliferones/pharmacology
16.
Phytother Res ; 34(9): 2351-2365, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32250498

ABSTRACT

The aim of the present study was to assess the neuroprotective effects of xanthotoxin and umbelliferone in streptozotocin (STZ)-induced cognitive dysfunction in rats. Animals were injected intracerebroventricularly (ICV) with STZ (3 mg/kg) once to induce a sporadic Alzheimer's disease (SAD)-like condition. Xanthotoxin or umbelliferone (15 mg/kg, i.p.) were administered 5 hr after ICV-STZ and daily for 20 consecutive days. Xanthotoxin or umbelliferone prevented cognitive deficits in the Morris water maze and object recognition tests. In parallel, xanthotoxin or umbelliferone reduced hippocampal acetylcholinestrase activity and malondialdehyde level. Moreover, xanthotoxin or umbelliferone increased glutathione content. These coumarins also modulated neuronal cell death by reducing the level of proinflammatory cytokines (tumour necrosis factor-alpha and interleukin-6), inhibiting the overexpression of inflammatory markers (nuclear factor κB [NF-κB] and cyclooxygenase II), and upregulating the expression of NF-κB inhibitor (IκB-α). Interestingly, xanthotoxin diminished phosphorylated JAK2 and phosphorylated STAT3 protein expression, while umbelliferone markedly replenished nuclear factor erythroid-derived 2-like 2 (Nrf2) and haem oxygenase-1 (HO-1) levels. The current study provides evidence for the protective effect of xanthotoxin and umbelliferone in STZ-induced cognitive dysfunction in rats. This effect may be attributed, at least in part, to inhibiting acetylcholinestrase and attenuating oxidative stress, neuroinflammation and neuronal loss.


Subject(s)
Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Methoxsalen/therapeutic use , NF-E2-Related Factor 2/metabolism , STAT3 Transcription Factor/metabolism , Streptozocin/adverse effects , Umbelliferones/therapeutic use , Animals , Disease Models, Animal , Male , Methoxsalen/pharmacology , Rats , Rats, Wistar , Signal Transduction , Umbelliferones/pharmacology
17.
Molecules ; 25(5)2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32151025

ABSTRACT

Osteopenia or osteoporosis occurs frequently in alcoholics and patients with alcoholic fatty liver disease. Methoxsalen (MTS), 8-methoxypsoralen, improved osteoporosis in ovariectomized and diabetic mouse models; however, its effects on alcohol-induced osteopenia and steatosis have not been reported. This study examined the effects of MTS on alcohol-induced bone loss and steatosis. Rats in the alcohol groups were fed a Liber-DeCarli liquid diet containing 36% of its calories as alcohol. MTS was at 0.005% in their diet, while alendronate (positive control; 500 µg/kg BW/day) was administered orally for eight weeks. The pair-fed group received the same volume of isocaloric liquid diet containing dextrin-maltose instead of alcohol as the alcohol control group consumed the previous day. In the alcohol-fed rats, the MTS and alendronate increased the bone volume density, bone surface density and trabecular number, while the bone specific surface, trabecular separation and structure model index were decreased in the tibia. MTS down-regulated tibial tartrate-resistant acid phosphatase 5 (TRAP) expression compared to the alcohol control group. MTS or alendronate prevented chronic alcohol-induced hepatic lipid accumulation and the triglyceride level in the alcohol-fed rats by decreasing the lipogenic enzyme activities and increasing the fatty acid oxidation enzyme activities. MTS reduced significantly the serum levels of alcohol, TRAP and tumor necrosis factor-α compared to the alcohol control group. Overall, these results suggest that MTS is likely to be an alternative agent for alcoholic osteopenia and hepatosteatosis.


Subject(s)
Alcoholism/complications , Bone Diseases, Metabolic/etiology , Dietary Supplements , Fatty Liver/etiology , Methoxsalen/pharmacology , Protective Agents/pharmacology , Animals , Biomarkers , Bone Diseases, Metabolic/drug therapy , Bone Diseases, Metabolic/pathology , Bone and Bones/drug effects , Bone and Bones/metabolism , Bone and Bones/pathology , Cytokines/blood , Cytokines/metabolism , Disease Models, Animal , Fatty Liver/drug therapy , Fatty Liver/pathology , Inflammation Mediators/blood , Inflammation Mediators/metabolism , Rats
18.
Planta Med ; 86(4): 276-283, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31968379

ABSTRACT

The treatment of vitiligo includes the combination of psoralens and ultraviolet type A exposure. Psoralens belong to a group of natural furanocoumarins that cause the skin to become sensitive temporarily to ultraviolet type A. The aim of this study was to develop a physiologically based pharmacokinetic model of 5-MOP from Brosimum gaudichaudii to support psoralen and ultraviolet type A therapy. A study of rats was used to establish and validate rat tissue distribution. The same chemical-specific parameters used in the rat model were also employed in the human model to project human pharmacokinetics. The highest exposures in the rats were in the brain and skin. Following a single dose of 1.2 mg/kg 5-MOP in humans, the model predicted a maximum concentration of 20 ng/mL and an area under the curve of 125 ng.h/mL, matching clinical results. The half-maximum melanogenesis concentrations in B16F10 cells were 29.5, 18.5, 11.5, and 6.5 ng/mL for synthetic 5-MOP, synthetic 5-MOP with ultraviolet type A, B. gaudichaudii alone, and B. gaudichaudii plus ultraviolet type A, respectively. Physiologically based pharmacokinetic model prediction in humans supported a once-every-two-day regimen for optimal melanin production. This type of framework can be applied to support strategies for dose selection and to investigate the impact of drugs on melanocyte recovery.


Subject(s)
Furocoumarins , Moraceae , 5-Methoxypsoralen , Animals , Humans , Methoxsalen , Phytotherapy , Rats
SELECTION OF CITATIONS
SEARCH DETAIL