Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Clin Invest ; 133(12)2023 06 15.
Article in English | MEDLINE | ID: mdl-37104036

ABSTRACT

Patients with autosomal recessive microcephaly 15 caused by deficiency in the sodium-dependent lysophosphatidylcholine (LPC) transporter major facilitator superfamily domain-containing 2a (Mfsd2a) present with both microcephaly and hypomyelination, suggesting an important role for LPC uptake by oligodendrocytes in the process of myelination. Here we demonstrate that Mfsd2a is specifically expressed in oligodendrocyte precursor cells (OPCs) and is critical for oligodendrocyte development. Single-cell sequencing of the oligodendrocyte lineage revealed that OPCs from OPC-specific Mfsd2a-KO mice (2aOKO mice) underwent precocious differentiation into immature oligodendrocytes and impaired maturation into myelinating oligodendrocytes, correlating with postnatal brain hypomyelination. 2aOKO mice did not exhibit microcephaly, a finding consistent with the notion that microcephaly is the consequence of an absence of LPC uptake at the blood-brain barrier rather than a deficiency in OPCs. Lipidomic analysis showed that OPCs and iOLs from 2aOKO mice had significantly decreased levels of phospholipids containing omega-3 fatty acids, with a corresponding increase in unsaturated fatty acids, the latter being products of de novo synthesis governed by Srebp-1. RNA-Seq indicated activation of the Srebp-1 pathway and defective expression of regulators of oligodendrocyte development. Taken together, these findings indicate that the transport of LPCs by Mfsd2a in OPCs is important for maintaining OPC state to regulate postnatal brain myelination.


Subject(s)
Fatty Acids, Omega-3 , Microcephaly , Symporters , Animals , Mice , Microcephaly/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Cell Lineage , Symporters/metabolism , Mice, Knockout , Membrane Transport Proteins/metabolism , Fatty Acids, Omega-3/metabolism , Oligodendroglia/metabolism , Cell Differentiation
2.
J Neurosci ; 41(42): 8801-8814, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34475199

ABSTRACT

Angelman syndrome (AS) is a rare genetic neurodevelopmental disorder characterized by intellectual disabilities, motor and balance deficits, impaired communication, and a happy, excitable demeanor with frequent laughter. We sought to elucidate a preclinical outcome measure in male and female rats that addressed communication abnormalities of AS and other neurodevelopmental disorders in which communication is atypical and/or lack of speech is a core feature. We discovered, and herein report for the first time, excessive laughter-like 50 kHz ultrasonic emissions in the Ube3amat-/pat+ rat model of AS, which suggests an excitable, playful demeanor and elevated positive affect, similar to the demeanor of individuals with AS. Also in line with the AS phenotype, Ube3amat-/pat+ rats demonstrated aberrant social interactions with a novel partner, distinctive gait abnormalities, impaired cognition, an underlying LTP deficit, and profound reductions in brain volume. These unique, robust phenotypes provide advantages compared with currently available mouse models and will be highly valuable as outcome measures in the evaluation of therapies for AS.SIGNIFICANCE STATEMENT Angelman syndrome (AS) is a severe neurogenetic disorder for which there is no cure, despite decades of research using mouse models. This study used a recently developed rat model of AS to delineate disease-relevant outcome measures to facilitate therapeutic development. We found the rat to be a strong model of AS, offering several advantages over mouse models by exhibiting numerous AS-relevant phenotypes, including overabundant laughter-like vocalizations, reduced hippocampal LTP, and volumetric anomalies across the brain. These findings are unconfounded by detrimental motor abilities and background strain, issues plaguing mouse models. This rat model represents an important advancement in the field of AS, and the outcome metrics reported herein will be central to the therapeutic pipeline.


Subject(s)
Angelman Syndrome/genetics , Disease Models, Animal , Laughter/physiology , Microcephaly/genetics , Ubiquitin-Protein Ligases/genetics , Vocalization, Animal/physiology , Angelman Syndrome/metabolism , Angelman Syndrome/psychology , Animals , Brain/metabolism , Female , Gene Deletion , Laughter/psychology , Male , Microcephaly/metabolism , Microcephaly/psychology , Organ Culture Techniques , Protein Biosynthesis/physiology , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Reflex, Startle/physiology , Social Behavior , Ubiquitin-Protein Ligases/deficiency
3.
Nat Commun ; 12(1): 833, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33547280

ABSTRACT

The structure of proline prevents it from adopting an optimal position for rapid protein synthesis. Poly-proline-tract (PPT) associated ribosomal stalling is resolved by highly conserved eIF5A, the only protein to contain the amino acid hypusine. We show that de novo heterozygous EIF5A variants cause a disorder characterized by variable combinations of developmental delay, microcephaly, micrognathia and dysmorphism. Yeast growth assays, polysome profiling, total/hypusinated eIF5A levels and PPT-reporters studies reveal that the variants impair eIF5A function, reduce eIF5A-ribosome interactions and impair the synthesis of PPT-containing proteins. Supplementation with 1 mM spermidine partially corrects the yeast growth defects, improves the polysome profiles and restores expression of PPT reporters. In zebrafish, knockdown eif5a partly recapitulates the human phenotype that can be rescued with 1 µM spermidine supplementation. In summary, we uncover the role of eIF5A in human development and disease, demonstrate the mechanistic complexity of EIF5A-related disorder and raise possibilities for its treatment.


Subject(s)
Developmental Disabilities/genetics , Gene Expression Regulation, Developmental , Microcephaly/genetics , Micrognathism/genetics , Peptide Initiation Factors/genetics , RNA-Binding Proteins/genetics , Adolescent , Amino Acid Sequence , Animals , Child , Developmental Disabilities/metabolism , Developmental Disabilities/pathology , Embryo, Nonmammalian , Female , Humans , Lysine/analogs & derivatives , Lysine/genetics , Lysine/metabolism , Male , Microcephaly/metabolism , Microcephaly/pathology , Micrognathism/metabolism , Micrognathism/pathology , Peptide Initiation Factors/deficiency , Peptides/genetics , Peptides/metabolism , Protein Biosynthesis , Protein Conformation , Protein Isoforms/deficiency , Protein Isoforms/genetics , Ribosomes/genetics , Ribosomes/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Spermidine/pharmacology , Zebrafish , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Eukaryotic Translation Initiation Factor 5A
4.
PLoS Pathog ; 16(5): e1008521, 2020 05.
Article in English | MEDLINE | ID: mdl-32392268

ABSTRACT

Zika virus (ZIKV) infection may lead to congenital microcephaly and pregnancy loss in pregnant women. In the context of pregnancy, folic acid (FA) supplementation may reduce the risk of abnormal pregnancy outcomes. Intriguingly, FA may have a beneficial effect on the adverse pregnancy outcomes associated with ZIKV infection. Here, we show that FA inhibits ZIKV replication in human umbilical vein endothelial cells (HUVECs) and a cell culture model of blood-placental barrier (BPB). The inhibitory effect of FA against ZIKV infection is associated with FRα-AMPK signaling. Furthermore, treatment with FA reduces pathological features in the placenta, number of fetal resorptions, and stillbirths in two mouse models of in utero ZIKV transmission. Mice with FA treatment showed lower viral burden and better prognostic profiles in the placenta including reduced inflammatory response, and enhanced integrity of BPB. Overall, our findings suggest the preventive role of FA supplementation in ZIKV-associated abnormal pregnancy and warrant nutritional surveillance to evaluate maternal FA status in areas with active ZIKV transmission.


Subject(s)
Folic Acid/pharmacology , Placenta , Pregnancy Complications, Infectious , Zika Virus Infection/prevention & control , Zika Virus/metabolism , Animals , Disease Models, Animal , Female , Human Umbilical Vein Endothelial Cells , Humans , Mice , Microcephaly/metabolism , Microcephaly/pathology , Microcephaly/prevention & control , Microcephaly/virology , Placenta/metabolism , Placenta/pathology , Placenta/virology , Pregnancy , Pregnancy Complications, Infectious/metabolism , Pregnancy Complications, Infectious/pathology , Pregnancy Complications, Infectious/prevention & control , Zika Virus Infection/metabolism , Zika Virus Infection/pathology
5.
Cell Metab ; 28(4): 573-587.e13, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30017355

ABSTRACT

The role of phosphoglycerate dehydrogenase (PHGDH), a key enzyme of the serine synthesis pathway (SSP), in endothelial cells (ECs) remains poorly characterized. We report that mouse neonates with EC-specific PHGDH deficiency suffer lethal vascular defects within days of gene inactivation, due to reduced EC proliferation and survival. In addition to nucleotide synthesis impairment, PHGDH knockdown (PHGDHKD) caused oxidative stress, due not only to decreased glutathione and NADPH synthesis but also to mitochondrial dysfunction. Electron transport chain (ETC) enzyme activities were compromised upon PHGDHKD because of insufficient heme production due to cellular serine depletion, not observed in other cell types. As a result of heme depletion, elevated reactive oxygen species levels caused EC demise. Supplementation of hemin in PHGDHKD ECs restored ETC function and rescued the apoptosis and angiogenesis defects. These data argue that ECs die upon PHGDH inhibition, even without external serine deprivation, illustrating an unusual importance of serine synthesis for ECs.


Subject(s)
Endothelial Cells/metabolism , Heme/metabolism , Phosphoglycerate Dehydrogenase/genetics , Phosphoglycerate Dehydrogenase/metabolism , Serine/metabolism , Apoptosis , Carbohydrate Metabolism, Inborn Errors/metabolism , Cell Line, Tumor , Cell Proliferation , Cell Survival , Dietary Supplements , Gene Knockdown Techniques , Hemin/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Microcephaly/metabolism , Mitochondria/metabolism , Mitophagy , Neovascularization, Physiologic , Oxidative Stress , Phosphoglycerate Dehydrogenase/deficiency , Protein Biosynthesis , Psychomotor Disorders/metabolism , Purines/metabolism , Reactive Oxygen Species/metabolism , Seizures/metabolism
6.
Neurogenetics ; 19(4): 227-235, 2018 12.
Article in English | MEDLINE | ID: mdl-30043326

ABSTRACT

The major facilitator superfamily domain-containing protein 2A (MFSD2A) is a constituent of the blood-brain barrier and functions to transport lysophosphatidylcholines (LPCs) into the central nervous system. LPCs such as that derived from docosahexanoic acid (DHA) are indispensable to neurogenesis and maintenance of neurons, yet cannot be synthesized within the brain and are dependent on MFSD2A for brain uptake. Recent studies have implicated MFSD2A mutations in lethal and non-lethal microcephaly syndromes, with the severity correlating to the residual activity of the transporter. We describe two siblings with shared parental ancestry, in whom we identified a homozygous missense mutation (c.1205C > A; p.Pro402His) in MFSD2A. Both affected individuals had microcephaly, hypotonia, appendicular spasticity, dystonia, strabismus, and global developmental delay. Neuroimaging revealed paucity of white matter with enlarged lateral ventricles. Plasma lysophosphatidylcholine (LPC) levels were elevated, reflecting reduced brain transport. Cell-based studies of the p.Pro402His mutant protein indicated complete loss of activity of the transporter despite the non-lethal, attenuated phenotype. The aggregate data of MFSD2A-associated genotypes and phenotypes suggest that additional factors, such as nutritional supplementation or modifying genetic factors, may modulate the severity of disease and call for consideration of treatment options for affected individuals.


Subject(s)
Demyelinating Diseases/genetics , Docosahexaenoic Acids/metabolism , Microcephaly/genetics , Mutation, Missense , Tumor Suppressor Proteins/genetics , Amino Acid Substitution , Animals , Biological Transport/genetics , Blood-Brain Barrier/metabolism , Child , Child, Preschool , Demyelinating Diseases/metabolism , Developmental Disabilities/genetics , Female , HEK293 Cells , Homozygote , Humans , Lipid Metabolism/genetics , Lysophosphatidylcholines/metabolism , Male , Mice , Mice, Knockout , Microcephaly/metabolism , Models, Molecular , Myelin Sheath/metabolism , Pedigree , Siblings , Symporters , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/metabolism
7.
Mol Genet Metab ; 123(3): 309-316, 2018 03.
Article in English | MEDLINE | ID: mdl-29269105

ABSTRACT

Serine biosynthesis defects are autosomal recessive metabolic disorders resulting from the deficiency of any of the three enzymes involved in de novo serine biosynthesis, specifically phosphoglycerate dehydrogenase (PGDH), phosphoserine aminotransferase (PSAT), and phosphoserine phosphatase (PSP). In this study, we performed metabolomic profiling on 4 children with serine biosynthesis defects; 3 with PGDH deficiency and 1 with PSAT deficiency. The evaluations were performed at baseline and with serine and glycine supplementation. Metabolomic profiling performed at baseline showed low phospholipid species, including glycerophosphocholine, glycerophosphoethanolamine, and sphingomyelin. All children had low serine and glycine as expected. Low glycerophosphocholine compounds were found in 4 children, low glycerophosphoethanolamine compounds in 3 children, and low sphingomyelin species in 2 children. Metabolic profiling with serine and glycine supplementation showed normalization of most of the low phospholipid compounds in the 4 children. Phospholipids are the major component of plasma and intracellular membranes, and phosphatidylcholine is the most abundant phospholipid of all mammalian cell types and subcellular organelles. Phosphatidylcholine is of particular importance for the nervous system, where it is essential for neuronal differentiation. The observed low phosphatidylcholine species in children with serine biosynthesis defects that improved after serine supplementation, supports the role of serine as a significant precursor for phosphatidylcholine. The vital role that phosphatidylcholine has during neuronal differentiation and the pronounced neurological manifestations in serine biosynthesis defects suggest that phosphatidylcholine deficiency occurring secondary to serine deficiency may have a significant contribution to the development of the neurological manifestations in individuals with serine biosynthesis defects.


Subject(s)
Carbohydrate Metabolism, Inborn Errors/metabolism , Dietary Supplements , Glycine/administration & dosage , Microcephaly/metabolism , Phosphatidylcholines/metabolism , Phosphoglycerate Dehydrogenase/deficiency , Psychomotor Disorders/metabolism , Seizures/metabolism , Serine/biosynthesis , Transaminases/deficiency , Carbohydrate Metabolism, Inborn Errors/blood , Carbohydrate Metabolism, Inborn Errors/diet therapy , Cell Differentiation , Child , Child, Preschool , Female , Glycine/blood , Humans , Infant , Male , Metabolomics/methods , Microcephaly/blood , Microcephaly/diet therapy , Neurons/metabolism , Phosphoglycerate Dehydrogenase/blood , Phosphoglycerate Dehydrogenase/metabolism , Psychomotor Disorders/blood , Psychomotor Disorders/diet therapy , Seizures/blood , Seizures/diet therapy , Serine/administration & dosage , Serine/blood , Transaminases/blood , Transaminases/metabolism
8.
Br J Nutr ; 99(3): 455-61, 2008 Mar.
Article in English | MEDLINE | ID: mdl-17697403

ABSTRACT

Maternal alcohol consumption during pregnancy can induce central nervous system abnormalities in the fetus, and folic acid supplementation can reverse some of the effects. The objective of the present study was to investigate prenatal alcohol exposure-induced fetal brain proteome alteration and the protective effect of folic acid using proteomic techniques. Alcohol (5.0 g/kg) was given intragastrically from gestational day (GD) 6 to 15, with or without 60.0 mg folic acid/kg given intragastrically during GD 1-16 to pregnant Balb/c mice. The control group received distilled water only. Results of litter evaluation on GD 18 showed that supplementation of folic acid reversed the prevalence of microcephaly induced by alcohol. Proteomic analysis indicated that, under the dosage of the present investigation, folic acid mainly reversed the alcohol-altered proteins involved in energy production, signal pathways and protein translation, which are all important for central nervous system development.


Subject(s)
Brain/metabolism , Fetal Alcohol Spectrum Disorders/prevention & control , Folic Acid/therapeutic use , Nerve Tissue Proteins/metabolism , Prenatal Nutritional Physiological Phenomena , Proteome/drug effects , Animals , Eating , Female , Fetal Alcohol Spectrum Disorders/metabolism , Fetal Growth Retardation/metabolism , Fetal Growth Retardation/prevention & control , Gene Expression Profiling/methods , Mice , Mice, Inbred BALB C , Microcephaly/chemically induced , Microcephaly/metabolism , Microcephaly/prevention & control , Pregnancy , Prenatal Care/methods , Prenatal Exposure Delayed Effects
9.
Ann Neurol ; 52(4): 458-64, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12325075

ABSTRACT

Cerebral 18F-fluorodeoxyglucose positron emission tomography in 14 patients with microcephaly, developmental delay, seizures, and mutations of the glucose transporter Glut1 (Glut1 deficiency syndrome) showed distinct abnormalities. Within a global context of diminished cortical uptake, more severe hypometabolism was found in the mesial temporal regions and thalami, accentuating a relative signal increase in the basal ganglia. In contrast, the structure of the brain appeared preserved in patients additionally investigated by magnetic resonance imaging. This metabolic footprint was relatively constant in all patients regardless of age, seizure history, or therapies and therefore constitutes a radiological signature of the disease. The full expression of the signature in the youngest patient (aged 19 months) indicates that the state of haploinsufficiency caused by Glut1 mutation leaves a permanent footprint on the nervous system from its earlier postnatal stages of development. The potential benefit of prompt diagnosis, aided by 18F-fluorodeoxyglucose positron emission tomography, and early initiation of available therapies is underscored by our results.


Subject(s)
Brain Diseases/diagnostic imaging , Brain Diseases/metabolism , Monosaccharide Transport Proteins/deficiency , Adolescent , Adult , Age Factors , Brain Diseases/pathology , Cerebral Cortex/metabolism , Child , Developmental Disabilities/diagnostic imaging , Developmental Disabilities/metabolism , Developmental Disabilities/pathology , Epilepsy/diagnostic imaging , Epilepsy/metabolism , Epilepsy/pathology , Female , Fluorodeoxyglucose F18 , Glucose/pharmacokinetics , Glucose Transporter Type 1 , Humans , Infant , Male , Microcephaly/diagnostic imaging , Microcephaly/metabolism , Microcephaly/pathology , Radiopharmaceuticals , Thalamus/metabolism , Tomography, Emission-Computed
10.
Neurochem Res ; 25(4): 497-501, 2000 Apr.
Article in English | MEDLINE | ID: mdl-10823582

ABSTRACT

Prenatal exposure of pregnant rats to methylazoxymethanol acetate (MAM) induces microencephaly in the offspring. In the present study of these microencephalic rats (MAM rats) we used quantitative autoradiography to investigate [3H] paroxetine binding sites, which are a selective marker of serotonin (5-HT) transporters (5-HTT). The binding in the accumbens, cortex, hippocampus, and dorsolateral thalamus was significantly increased in MAM rats, compared to the control rats, while there was a significant decrease in the dorsal raphe nucleus of the MAM rats. The levels of 5-HTT mRNA in the dorsal raphe nuclei were analyzed by in situ hybridization, which revealed a significant decrease in 5-HTT mRNA-positive neurons in the MAM rats compared to the control rats. The results imply serotonergic hyperinnervation in the cerebral hemispheres of MAM rats, while a target-dependent secondary degeneration of 5-HT neurons might be induced in the dorsal raphe nuclei of MAM rats.


Subject(s)
Brain/metabolism , Membrane Transport Proteins , Microcephaly/metabolism , Nerve Tissue Proteins , Neurons/metabolism , Serotonin/metabolism , Animals , Autoradiography , Binding Sites , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cerebellum/metabolism , Cerebral Cortex/metabolism , Female , Hippocampus/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Methylazoxymethanol Acetate/analogs & derivatives , Microcephaly/chemically induced , Microcephaly/pathology , Neurons/cytology , Nucleus Accumbens/metabolism , Paroxetine/metabolism , Pregnancy , Prenatal Exposure Delayed Effects , RNA, Messenger/analysis , Raphe Nuclei/cytology , Raphe Nuclei/metabolism , Rats , Rats, Wistar , Serotonin Plasma Membrane Transport Proteins , Thalamus/metabolism
11.
Brain Res ; 392(1-2): 11-7, 1986 Jun.
Article in English | MEDLINE | ID: mdl-3708371

ABSTRACT

Fetuses from rats given either water or 0.03% D,L-alpha-tocopherol acetate (vitamin E) as a drinking fluid and X-irradiated with 100 rad on gestational day 13 were examined on gestational day 21. Mean cerebral weight which was significantly reduced by the X-irradiation was increased by vitamin E supplementation but the level did not reach that in sham-irradiated controls. Administration of vitamin E caused an increase in DNA concentration which was significantly reduced by X-irradiation with water treatment. An increase in the mean level of lipid peroxide formation was observed in the water-treated, X-irradiated group in the sample at zero time but not in the vitamin E-treated, X-irradiated group. In the cytoplasm of fetal cerebral neurons from X-irradiated dams with vitamin E supplementation, confronting cisternae were frequently observed between two nuclear envelopes. Confronting cisternae may be considered as a repair mechanism of vitamin E against X-irradiated neuronal damage in the fetal cerebrum. This study provides evidence of the protection by vitamin E of neuronal development in X-irradiated fetuses, through its antioxidant properties, against attacks by free radicals and/or lipid peroxide.


Subject(s)
Abnormalities, Radiation-Induced/prevention & control , Brain Chemistry , DNA/analysis , Lipid Peroxides/analysis , Microcephaly/prevention & control , Vitamin E/therapeutic use , Abnormalities, Radiation-Induced/metabolism , Animals , Female , Microcephaly/metabolism , Organ Size , Pregnancy , Rats , Rats, Inbred Strains
SELECTION OF CITATIONS
SEARCH DETAIL