Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Environ Pollut ; 342: 123022, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38008252

ABSTRACT

Harmful cyanobacterial blooms have been a global environmental problem. Discharge of anthropogenic pollutants and excess nutrient import into the freshwater bodies may be the biggest drivers of bloom. Bisphenol A (BPA), a typical endocrine-disrupting compound, is frequently detected in different natural waters, which was a threat to the balance of aquatic ecosystem. Yet mechanistic understanding of the bloom and microcystin generation under combined pollution conditions is still a mystery. Herein, the cellular and metabolomic responses to BPA exposure and phosphorus (P) levels in Microcystis aeruginosa were investigated throughout its growth period. The results showed that the stress response of M. aeruginosa to BPA was characterized by a decrease in growth density, an increase in P utilization, an increase in ATPase activity, a disruption of the photosynthetic system, and an increase in the production and release of microcystins (MCs). However, these effects are highly dependent on the growth stage of the cyanobacterial cell and the magnitude of the added P concentration. In addition, exposure to a high concentration (10 µM) of BPA significantly stimulated the production of 20.7% more and the release of 29.2% more MCs from M. aeruginosa cells at a low P level. The responses of reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA) suggested that exposure to BPA exposure at a low P level can lead to oxidative stress in M. aeruginosa. In addition, the differentially expressed 63 metabolites showed that cell growth, energy generation and photosynthesis were mainly regulated by the metabolic network of 3-phosphoglyceric acid (3-PGA), D-glucose 6-phosphate, UDP-α-D-galactose and UDP-N-acetyl-D-galactosamine (UDP-GalNAc) metabolism. Amino acids and lipid metabolism collectively mediated MCs production and release. These findings will provide important references for the control of harmful cyanobacterial blooms under combined pollution.


Subject(s)
Benzhydryl Compounds , Cyanobacteria , Microcystis , Phenols , Microcystis/metabolism , Phosphorus/metabolism , Ecosystem , Cyanobacteria/metabolism , Microcystins/toxicity , Microcystins/metabolism , Uridine Diphosphate/metabolism
2.
Sci Total Environ ; 912: 169508, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38154634

ABSTRACT

Fragrances rac- and l-menthol extracted from peppermint are widely used and considered as emerging contaminants recently, which are persistent in the environment. Menthol has always been considered as a safe chemical for humans, but its potential adverse ecological effects on aquatic organisms and the toxic mechanisms have not yet been fully understood. The present study aims to investigate the physiological response of Microcystis aeruginosa after exposure to the two menthol isomers, and to explore the toxic mechanisms and ecological risks of these two chemicals. Results showed that rac-menthol exhibited a hormesis effect on the cell growth, chlorophyll a and protein contents; while l-menthol showed an inhibition effect. Adenosine triphosphate (ATP) content increased significantly at day 3 and then decreased markedly at day 6 after exposure to the two chemicals. Compared with rac-menthol, l-menthol can cause damage to the antioxidant system and plasmalemma more severely, promote the production and release of microcystins-LR (MC-LR) more dramatically, upregulate the expression of MC-transportation-related gene mcyH, and induce higher apoptosis rates. Overall results revealed that the toxic effects of l-menthol on cyanobacteria were significantly greater than those of rac-menthol. The significant increase in the malondialdehyde (MDA) content and the ultrastructural characteristics of the cells indicated that the plasma membranes were damaged. Thus, further attention should be paid to the scientific use, ecological and environmental risk assessment of chiral menthol. This study will also provide a scientific basis for future water quality criteria establishment on emerging contaminants such as fragrances.


Subject(s)
Cyanobacteria , Microcystis , Humans , Chlorophyll A/metabolism , Menthol/metabolism , Menthol/pharmacology , Cyanobacteria/metabolism , Antioxidants/metabolism , Microcystins/metabolism , Plant Extracts/pharmacology , Terpenes
3.
Sci Total Environ ; 893: 164848, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37329914

ABSTRACT

Phosphorus (P) is an important nutrient for the growth and metabolism of algae. Although P typically limits the growth of algae, little is known regarding the molecular response of Microcystis aeruginosa under P starvation. The transcriptomic and physiological responses of Microcystis aeruginosa to P starvation were investigated in this study. P starvation affected the growth, photosynthesis, and Microcystin (MC) production of Microcystis aeruginosa and triggered cellular P-stress responses for 7 days. In terms of physiology, P starvation inhibited the growth and MC production, while the slight promotion of photosynthesis in Microcystis aeruginosa compared to P-replete. For transcriptome, the down-regulation of genes related to MC production controlled by mcy genes and ribosome metabolism (17 genes encoding ribosomal proteins) was observed while transport genes (sphX and pstSAC) were significantly upregulated. In addition, some other genes are related to photosynthesis and the use of other forms of P displayed increases or decreases in transcripts abundance. These results suggested that the limitation of P had a diverse performance on aspects of growth and metabolism in M. aeruginosa and obviously enhanced the ability to adapt to the P stress environment. They provide a comprehensive understanding of the P physiology of Microcystis aeruginosa and theoretical support for eutrophication.


Subject(s)
Microcystis , Transcriptome , Microcystins/metabolism , Pseudomonas aeruginosa/metabolism , Phosphorus/metabolism , Gene Expression Profiling
4.
Environ Pollut ; 330: 121801, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37169240

ABSTRACT

Little information is available on how nano-Fe2O3 substituted iron ions as a possible iron source impacting on algal growth and arsenate (As(V)) metabolism under dissolved organic phosphorus (DOP) (D-glucose-6-phosphate (GP)) conditions. We investigated the growth of Microcystis aeruginosa and As(V) metabolism together with their metabolites in As(V) aquatic environments with nano-Fe2O3 and GP as the sole iron and P sources, respectively. Results showed that nano-Fe2O3 showed inhibitory effects on M. aeruginosa growth and microcystin (MCs) release under GP conditions in As(V) polluted water. There was little influence on As species changes in GP media under different nano-Fe2O3 concentrations except for obvious total As (TAs) removal in 100.0 mg L-1 nano-Fe2O3 levels. As(V) metabolism dominated with As(V) biotransformation in algal cells was facilitated and arsenite (As(III)) releasing risk was relieved clearly by nano-Fe2O3 under GP conditions. The dissolved organic matter (DOM) in media exhibited more fatty acid analogs containing -CO, -CH2 =CH2, and -CH functional groups with increasing nano-Fe2O3 concentrations, but the fluorescent analogs were relatively reduced especially for the fluorescent DOM dominated by aromatic protein-like tryptophan which was significantly inhibited by nano-Fe2O3. Thus, As methylation that was facilitated in M. aeruginosa by nano-Fe2O3 in GP environments also caused more organic substances to release that absorb infrared spectra while reducing the release risks of As(III) and MCs as well as protein-containing tryptophan fractions. From 1H-NMR analysis, this might be caused by the increased metabolites of aromatic compounds, organic acid/amino acid, and carbohydrates/glucose in algal cells. The findings are vital for a better understanding of nano-Fe2O3 role-playing in As bioremediation by microalgae and the subsequent potential aquatic ecological risks.


Subject(s)
Arsenites , Microcystis , Arsenates/toxicity , Arsenates/metabolism , Microcystis/metabolism , Dissolved Organic Matter , Microcystins/metabolism , Arsenites/metabolism , Tryptophan/metabolism , Phosphorus/metabolism
5.
Ecotoxicol Environ Saf ; 255: 114794, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36948014

ABSTRACT

Luteolin as a phytogenic algicide can inhibit the growth and microcystins (MCs) release of Microcystis, a dominant genus during cyanobacterial blooms, but how phosphorus (P) level impacts luteolin effect on its growth and MC-pollution risk is unclear. By employing Microcystis aeruginosa as test alga, this study addressed this concern and explored response mechanisms from novel insights of relationship between extracellular polysaccharide (ex-poly) and protein (ex-pro) contents and MC-production/release. At each P level (0.05-5 mg/L), rising luteolin dose more greatly inhibited Microcystis growth and MC-pollution risk, with growth inhibition ratio of around 10%-30%, 20%-50% and 40%-90% for 3, 6 and 12 mg/L luteolin, respectively, but almost increasingly enhanced cellular ability of MC-production/conservation and total and bound ex-poly/ex-pro production. Rising P level promoted Microcystis growth and intracellular/extracellular MCs content (IMC, EMC) in test system at each luteolin dose, thus higher P level weakened algicidal and MC-removal effects of luteolin, indicating that P-decrease was required for stronger application outcome of luteolin. Total and bound ex-poly/ex-pro amount were positively correlated with cellular MC-production/conservation ability, IMC and EMC, which constituted cooperative stress-defense of Microcystis at each P level. Besides, rising luteolin dose posed stronger algicidal effect by inactivating gene expression involving peroxidase synthesis (especially at P-limitation), photosynthesis and P acquisition, while rising P level alleviated algicidal and MC-pollution inhibition effects of luteolin by enhancing gene expression involving N acquisition and peroxidase synthesis. This study shed novel insights for P-dependent effect and mechanisms of luteolin on toxigenic Microcystis growth and MC-pollution control, which guided to mitigating toxigenic Microcystis-dominated cyanobacterial blooms in different P-level water areas.


Subject(s)
Cyanobacteria , Microcystis , Microcystins/metabolism , Phosphorus/metabolism , Luteolin/pharmacology , Extracellular Polymeric Substance Matrix/metabolism , Cyanobacteria/metabolism , Peroxidases/metabolism
6.
Aquat Toxicol ; 256: 106417, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36805195

ABSTRACT

Cyanobacteria are ubiquitously globally present in both freshwater and marine environments. Ample reports have been documented by researchers worldwide for pros and cons of cyanobacterial toxins. The implications of cyanobacterial toxin on health have received much attention in recent decades. Microcystins (MCs) represent the unique class of toxic metabolites produced by cyanobacteria. Although the beneficial aspects of cyanobacterial are numerous, the deleterious effect of MCs overlooked. Several studies on MCs evidently reported that MCs exhibit a plethora of harmful effect on animals, plants, and cell lines. Accordingly, numerous histopathological studies have also found that MCs cause detrimental effects to cells by damaging cellular organelles, including nuclear envelope, Golgi apparatus, endoplasmic reticulum, mitochondria, plastids, flagellum, pilus membrane structures and integrity, vesicle structures, and autolysosomes and autophagosomes. Such ultrastructural cellular damages holistically influence the morphological, biochemical, physiological, and genetic status of the host. Indeed, MCs have also been found to cause the deleterious effect to different animals and plants. Such deleterious effects of MCs have greater impact on agriculture, public health which in turn influences ecotoxicology and economic consequences. The impairments correspond to oxidative stress, organ failure, carcinogenesis, aquaculture loss, with an emphasis for blooms and respective bioaccumulation prospects. The preservation of mortality among life forms is addressed in a critical cellular perspective for multitude benefits. The comprehensive cellular assessment could provide opportunity to develop strategy for therapeutic implications.


Subject(s)
Cyanobacteria , Water Pollutants, Chemical , Animals , Microcystins/metabolism , Ecotoxicology , Water Pollutants, Chemical/toxicity , Cyanobacteria Toxins , Cyanobacteria/metabolism
7.
Planta Med ; 89(6): 616-623, 2023 May.
Article in English | MEDLINE | ID: mdl-36626925

ABSTRACT

The hepatotoxin microcystin-LR is a strong inhibitor of serine/threonine protein phosphatase (PP) 1 and PP2A. The onset of its cytotoxicity depends on its selective uptake via the hepatocyte uptake transporters, organic anion transporting polypeptide (OATP) 1B1 and OATP1B3. Understanding and preventing the cytotoxicity of microcystin-LR is crucial to maintain human health. This chemoprevention study demonstrates that the herbal plant extract of iwajisha (20 µg/mL) reduced microcystin-LR cytotoxicity in OATP1B3-expressing cells by approximately six times. In addition, 20 µM acteoside, which is one of the major compounds in iwajisha, reduced microcystin-LR cytotoxicity by approximately 7.4 times. Acteoside could also reduce the cytotoxicity of other compounds, such as okadaic acid and nodularin, which are both substrates of OATP1B3 and inhibitors of PP1/PP2A. To investigate the mechanism by which the cytotoxicity of microcystin-LR is attenuated by acteosides, microcystin-LR and microcystin-LR-binding proteins in cells were examined after microcystin-LR and acteosides were co-exposed. Thus, acteoside noncompetitively inhibited microcystin-LR uptake by OATP1B3-expressing cells. Furthermore, acteoside inhibited the intracellular interaction of microcystin-LR with its binding protein(s), including the 22 kDa protein. Furthermore, using immunoblot analysis, acteoside induced the phosphorylation of extracellular signal-regulated kinase (ERK), which is one of the survival signaling molecules. These results suggest that acteoside reduces microcystin-LR cytotoxicity through several mechanisms, including the inhibition of microcystin-LR uptake via OATP1B3, and decreased interaction between microcystin-LR and its binding protein(s), and that ERK signaling activation contributes to the attenuation effect of acteoside against microcystin-LR cytotoxicity.


Subject(s)
Organic Anion Transporters, Sodium-Independent , Organic Anion Transporters , Humans , Solute Carrier Organic Anion Transporter Family Member 1B3 , Microcystins/metabolism , Microcystins/toxicity , Organic Anion Transporters/metabolism , Phenols/pharmacology
8.
J Environ Sci (China) ; 125: 205-214, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36375906

ABSTRACT

Little information is available on influences of the conversion of dissolved organic phosphorus (DOP) to inorganic phosphorus (IP) on algal growth and subsequent behaviors of arsenate (As(V)) in Microcystis aeruginosa (M. aeruginosa). In this study, the influences factors on the conversion of three typical DOP types including adenosine-5-triphosphate disodium salt (ATP), ß-glycerophosphate sodium (ßP) and D-glucose-6-phosphate disodium salt (GP) were investigated under different extracellular polymeric secretions (EPS) ratios from M. aeruginosa, and As(V) levels. Thus, algal growth, As(V) biotransformation and microcystins (MCs) release of M. aeruginosa were explored in the different converted DOP conditions compared with IP. Results showed that the three DOP to IP without EPS addition became in favor of algal growth during their conversion. Compared with IP, M. aeruginosa growth was thus facilitated in the three converted DOP conditions, subsequently resulting in potential algal bloom particularly at arsenic (As) contaminated water environment. Additionally, DOP after conversion could inhibit As accumulation in M. aeruginosa, thus intracellular As accumulation was lower in the converted DOP conditions than that in IP condition. As(V) biotransformation and MCs release in M. aeruginosa was impacted by different converted DOP with their different types. Specifically, DMA concentrations in media and As(III) ratios in algal cells were promoted in converted ßP condition, indicating that the observed dissolved organic compositions from ßP conversion could enhance As(V) reduction in M. aeruginosa and then accelerate DMA release. The obtained findings can provide better understanding of cyanobacteria blooms and As biotransformation in different DOP as the main phosphorus source.


Subject(s)
Arsenic , Microcystis , Microcystis/metabolism , Microcystins/metabolism , Arsenates/metabolism , Dissolved Organic Matter , Eutrophication , Phosphorus/metabolism , Biotransformation , Arsenic/metabolism
9.
Science ; 376(6596): 1001-1005, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35617400

ABSTRACT

Harmful cyanobacteria are a global environmental problem, yet we lack actionable understanding of toxigenic versus nontoxigenic strain ecology and toxin production. We performed a large-scale meta-analysis including 103 papers and used it to develop a mechanistic, agent-based model of Microcystis growth and microcystin production. Simulations for Lake Erie suggest that the observed toxigenic-to-nontoxigenic strain succession during the 2014 Toledo drinking water crisis was controlled by different cellular oxidative stress mitigation strategies (protection by microcystin versus degradation by enzymes) and the different susceptibility of those mechanisms to nitrogen limitation. This model, as well as a simpler empirical one, predicts that the planned phosphorus load reduction will lower biomass but make nitrogen and light more available, which will increase toxin production, favor toxigenic cells, and increase toxin concentrations.


Subject(s)
Lakes , Microcystins , Microcystis , Phosphorus , Canada , Drinking Water , Lakes/chemistry , Lakes/microbiology , Microcystins/analysis , Microcystins/metabolism , Microcystins/toxicity , Microcystis/genetics , Microcystis/growth & development , Microcystis/metabolism , Nitrogen/metabolism , Phosphorus/analysis , Phosphorus/metabolism , United States , Water Supply
10.
Bull Environ Contam Toxicol ; 109(2): 409-416, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35536319

ABSTRACT

In this study, a composite algaecide containing flocculants and Cinnamomum. camphora leaves extracts (CCCLE) were synthesized. The inhibition and flocculation effects on Microcystis aeruginosa (M. aeruginosa) were investigated, and the release of microcystin-LR (MC-LR) was determined. Results showed that the CCLEC composite algaecide was effective for the inhibition and flocculation of M. aeruginosa, and the optimal dose of CCLEC composite algaecide was 1.8%, which resulted in an algae inhibition ratio of 98.00% and a flocculation efficiency of 99.44% within 5 days of M. aeruginosa culturing. Besides, the total amount of MC-LR decreased by 80.04% on day 20 compared with the control group, while the concentration of intracellular MC-LR on day 5 was 36.69 µg L-1, which was related to a portion of cells underwent apoptosis-like cell death under CCLEC composite algaecide stress. The results of this study may improve our understanding of the M. aeruginosa control by CCCLE composite algaecide.


Subject(s)
Cinnamomum camphora , Herbicides , Microcystis , Cinnamomum camphora/metabolism , Herbicides/metabolism , Microcystins/metabolism , Plant Extracts/pharmacology , Plant Leaves/metabolism
11.
Toxicon ; 200: 30-37, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34217748

ABSTRACT

Microcystins (MCs) are hepatotoxic cyanotoxins implicated in several incidents of human and animal toxicity. Microcystin-(Lysine, Arginine) or MC-LR is the most toxic and encountered variant of MCs where oxidative stress plays a key role in its toxicity. This study investigated the oxidative damages induced in the liver and heart of Balb/C mice by an intraperitoneal injected acute dose of MC-LR. Thereafter, the potential protective effect of garlic (Allium sativum) extract supplementation against such damages was assessed through the evaluation of oxidative stress and cytotoxicity markers. Lipid peroxidation (LPO), carbonyl content (CC), glutathione content (GSH), alkaline phosphatase activity (ALP), lactate dehydrogenase (LDH) and sorbitol dehydrogenase (SDH) activities were measured. Results showed important oxidative damages in hepatic and cardiac cells of mice injected with the toxin. However, these damages have been significantly reduced in mice supplemented with garlic extract. Thus, this study demonstrated for the first time the effective use of garlic as an antioxidant agent against oxidative damages induced by MC-LR. As well, this study supports the use of garlic as a potential remedy against pathologies related to toxic agents.


Subject(s)
Garlic , Microcystins , Animals , Antioxidants/metabolism , Liver/metabolism , Marine Toxins , Mice , Microcystins/metabolism , Microcystins/toxicity , Oxidative Stress
12.
Sci Total Environ ; 764: 142319, 2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33069479

ABSTRACT

Microcystis spp., are Gram-negative, oxygenic, photosynthetic prokaryotes which use solar energy to convert carbon dioxide (CO2) and minerals into organic compounds and biomass. Eutrophication, rising CO2 concentrations and global warming are increasing Microcystis blooms globally. Due to its high availability and protein content, Microcystis biomass has been suggested as a protein source for animal feeds. This would reduce dependency on soybean and other agricultural crops and could make use of "waste" biomass when Microcystis scums and blooms are harvested. Besides proteins, Microcystis contain further nutrients including lipids, carbohydrates, vitamins and minerals. However, Microcystis produce cyanobacterial toxins, including microcystins (MCs) and other bioactive metabolites, which present health hazards. In this review, challenges of using Microcystis blooms in feeds are identified. First, nutritional and toxicological (nutri-toxicogical) data, including toxicity of Microcystis to mollusks, crustaceans, fish, amphibians, mammals and birds, is reviewed. Inclusion of Microcystis in diets caused greater mortality, lesser growth, cachexia, histopathological changes and oxidative stress in liver, kidney, gill, intestine and spleen of several fish species. Estimated daily intake (EDI) of MCs in muscle of fish fed Microcystis might exceed the provisional tolerable daily intake (TDI) for humans, 0.04 µg/kg body mass (bm)/day, as established by the World Health Organization (WHO), and is thus not safe. Muscle of fish fed M. aeruginosa is of low nutritional value and exhibits poor palatability/taste. Microcystis also causes hepatotoxicity, reproductive toxicity, cardiotoxicity, neurotoxicity and immunotoxicity to mollusks, crustaceans, amphibians, mammals and birds. Microbial pathogens can also occur in blooms of Microcystis. Thus, cyanotoxins/xenobiotics/pathogens in Microcystis biomass should be removed/degraded/inactivated sufficiently to assure safety for use of the biomass as a primary/main/supplemental ingredient in animal feed. As an ameliorative measure, antidotes/detoxicants can be used to avoid/reduce the toxic effects. Before using Microcystis in feed ingredients/supplements, further screening for health protection and cost control is required.


Subject(s)
Microcystis , Animal Feed , Animals , Biomass , Eutrophication , Humans , Microcystins/metabolism , Microcystis/metabolism , Oxidative Stress
13.
J Agric Food Chem ; 68(30): 8016-8025, 2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32597644

ABSTRACT

Microcystins (MCs) are hepatotoxic heptapeptides produced by cyanobacteria and are potent inhibitors of protein phosphatases in eukaryotic cells. Algae for dietary supplements are harvested from outdoor environments and can be contaminated with MCs. Monitoring of MCs in these products is necessary but is complicated by their structural diversity (>250 congeners). We used a combination of protein phosphatase inhibition assay (PPIA), ELISA, LC-MS/MS, and nontargeted LC-high-resolution MS (LC-HRMS) with thiol derivatization to characterize the total MCs in 18 algal dietary supplements. LC-MS/MS revealed that some products contained >40 times the maximum acceptable concentration (MAC) of 1 µg/g MCs, but ELISA and PPIA showed up to 50-60 times the MAC. LC-HRMS identified all congeners targeted by LC-MS/MS plus MC-(H4)YR contributing up to 18% of total MCs, along with numerous minor MCs. Recommended dosages of the products greater than the MAC would result in 2.6-75 times the tolerable daily intake, presenting a risk to consumers. This study confirms the need for monitoring these products and presents strategies to fully describe the total MC pool in environmental samples and algal products.


Subject(s)
Cyanobacteria/chemistry , Microcystins/analysis , Biological Assay/methods , Cyanobacteria/metabolism , Dietary Supplements/analysis , Food Contamination/analysis , Immunoassay , Microcystins/metabolism , Microcystins/toxicity , Tandem Mass Spectrometry/methods
14.
Toxins (Basel) ; 12(4)2020 03 26.
Article in English | MEDLINE | ID: mdl-32225013

ABSTRACT

Global warming, paired with eutrophication processes, is shifting phytoplankton communities towards the dominance of bloom-forming and potentially toxic cyanobacteria. The ecosystems of shallow lakes are especially vulnerable to these changes. Traditional monitoring via microscopy is not able to quantify the dynamics of toxin-producing cyanobacteria on a proper spatio-temporal scale. Molecular tools are highly sensitive and can be useful as an early warning tool for lake managers. We quantified the potential microcystin (MC) producers in Lake Peipsi using microscopy and quantitative polymerase chain reaction (qPCR) and analysed the relationship between the abundance of the mcyE genes, MC concentration, MC variants and toxin quota per mcyE gene. We also linked environmental factors to the cyanobacteria community composition. In Lake Peipsi, we found rather moderate MC concentrations, but microcystins and microcystin-producing cyanobacteria were widespread across the lake. Nitrate (NO3-) was a main driver behind the cyanobacterial community at the beginning of the growing season, while in late summer it was primarily associated with the soluble reactive phosphorus (SRP) concentration. A positive relationship was found between the MC quota per mcyE gene and water temperature. The most abundant variant-MC-RR-was associated with MC quota per mcyE gene, while other MC variants did not show any significant impact.


Subject(s)
Bacterial Proteins/metabolism , Cyanobacteria/genetics , Environmental Monitoring , Gene Dosage , Harmful Algal Bloom , Lakes/microbiology , Microcystins/genetics , Peptide Synthases/metabolism , Water Microbiology , Bacterial Proteins/genetics , Chromatography, High Pressure Liquid , Cyanobacteria/growth & development , Cyanobacteria/metabolism , Gene Expression Regulation, Bacterial , Genetic Markers , Microcystins/metabolism , Nitrates/metabolism , Peptide Synthases/genetics , Phosphorus/metabolism , Polymerase Chain Reaction , Ribotyping , Spectrometry, Mass, Electrospray Ionization , Temperature
15.
Toxins (Basel) ; 11(10)2019 10 16.
Article in English | MEDLINE | ID: mdl-31623095

ABSTRACT

Harmful algal blooms (HABs) are increasing in magnitude, frequency, and duration globally. Even though a limited number of phytoplankton species can be toxic, they are becoming one of the greatest water quality threats to public health and ecosystems due to their intrinsic toxicity to humans and the numerous interacting factors that undermine HAB forecasting. Here, we show that the carbon:nitrogen:phosphorus (C:N:P) stoichiometry of a common toxic phytoplankton species, Microcystis, regulates toxin quotas during blooms through a tradeoff between primary and secondary metabolism. Populations with optimal C:N (< 8) and C:P (< 200) cellular stoichiometry consistently produced more toxins than populations exhibiting stoichiometric plasticity. Phosphorus availability in water exerted a strong control on population biomass and C:P stoichiometry, but N availability exerted a stronger control on toxin quotas by regulating population biomass and C:N:P stoichiometry. Microcystin-LR, like many phytoplankton toxins, is an N-rich secondary metabolite with a C:N stoichiometry that is similar to the optimal growth stoichiometry of Microcystis. Thus, N availability relative to P and light provides a dual regulatory mechanism that controls both biomass production and cellular toxin synthesis. Overall, our results provide a quantitative framework for improving forecasting of toxin production during HABs and compelling support for water quality management that limit both N and P inputs from anthropogenic sources.


Subject(s)
Carbon/metabolism , Microcystins/metabolism , Microcystis/metabolism , Nitrogen/metabolism , Phosphorus/metabolism , Harmful Algal Bloom , Marine Toxins , Microcystis/growth & development , Secondary Metabolism
16.
Toxicon ; 170: 51-59, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31526809

ABSTRACT

Cu2+ and Zn2+, two ubiquitous metals in water environments, can widely trigger algae blooms at favourable environmental conditions. This paper elucidates the roles of Cu2+ and Zn2+ in the proliferation of Microcystis aeruginosa (M. aeruginosa) and synthesis of Microcystins (MCs). Findings indicate significant influences of increasing Cu2+ and Zn2+ concentrations on cell proliferation at limited available phosphorus concentrations of less than 0.1 mg/L. By contrast, Cu2+ and Zn2+ notably affected MCs production at all the inoculated phosphorus concentrations. The critical concentrations of 1 µg/L and 5 µg/L for Cu2+ and Zn2+, respectively, are determined to trigger rapid cell proliferation and MCs production. Furthermore, the impacts of Cu2+ and Zn2+ on nitrogen absorption and, subsequently, on amino acids (AAs) formation in cells, is likely key in MCs synthesis. The two AAs Alanine (Ala) and glutamic acid (Glu) demonstrate the most notable variations with the concentrations of Cu2+ & Zn2+.


Subject(s)
Copper , Microcystins/metabolism , Microcystis/drug effects , Zinc , Amino Acids/biosynthesis , Microcystis/metabolism , Nitrogen/chemistry , Phosphorus/chemistry
17.
Chemosphere ; 234: 34-42, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31203039

ABSTRACT

Due to excessive loadings of nitrogen (N) and phosphorus (P), frequent blooms of harmful cyanobacteria and their associated cyanotoxins pose serious threats to recreational usage and human health. However, whether cyanobacteria growth and toxin production are limited by N, P, or both N + P is still not clear. Thus, we conducted a nutrient enrichment bioassay in situ in Spring Lake, a eutrophic lake in west Michigan, USA, to examine the influence of nutrient limitation on the proliferation of algal blooms and the production of microcystins (MC). N or P addition alone resulted in a slight increase in the concentration of chlorophyll-a (Chl-a), suggesting a positive effect on phytoplankton growth, but alone, neither were sufficient to induce algal blooms. In contrast, the combination of N and P had a significant and positive influence on phytoplankton growth and MC production. Compared to controls, the N + P treatment resulted in high concentrations of Chl-a and MC, as well as high pH and dissolved oxygen. In addition, significant increases were observed in different MC analogues for each treatment; the highest concentrations of intracellular MC-LR, -RR, -YR, and TMC (total MC) were found in the N + P treatment with values of 9.16, 6.10, 2.57, and 17.82 µg/L, respectively. This study suggests that at least in this temperate coastal lake, cyanobacterial blooms and associated MC are influenced more by combined N and P enrichment than by N or P alone, indicating that managing both nutrients is important for effectively reducing algal blooms and MC production.


Subject(s)
Lakes/microbiology , Microcystins/metabolism , Nitrogen/pharmacology , Nutrients/pharmacology , Phosphorus/pharmacology , Phytoplankton/growth & development , Carcinogens/metabolism , Eutrophication , Lakes/analysis , Phytoplankton/drug effects
18.
Bull Environ Contam Toxicol ; 102(3): 391-398, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30535824

ABSTRACT

Microcystis growth and physiological responses to chloramphenicol (CAP)-stress were explored at different phosphorus (P) concentrations during 20-day exposure. Under CAP-stress, Microcystis exhibited (i) stronger total protein synthesis and antioxidant defenses at 5 mg/L P than 0.05-0.5 mg/L P in early test period (before day 8), and (ii) greater CAP-removal via biodegradation at 5 mg/L P in mid-late period. Due to above mechanisms, 5 mg/L P largely alleviated the inhibitory effect of CAP on Microcystis growth until test end, thus minimizing CAP toxicity to Microcystis, compared with 0.05-0.5 mg/L P. Moreover, microcystin-production and -release by Microcystis under CAP-stress were also P-dependent. These results suggested that under CAP-stress, although Microcystis growth was more inhibited at 0.05-0.5 mg/L P, higher microcystin-release and CAP residual at 0.05-0.5 mg/L P than at 5 mg/L P still caused eco-risks, which had important implication for risk assessment during Microcystis-dominated blooms and CAP pollution co-occurrence in different waters.


Subject(s)
Chloramphenicol/toxicity , Microcystis/drug effects , Phosphorus/toxicity , Water Pollutants, Chemical/toxicity , Bacterial Proteins/biosynthesis , Eutrophication/drug effects , Microcystins/metabolism , Microcystis/enzymology
19.
Sci Total Environ ; 658: 439-448, 2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30579201

ABSTRACT

Microcystis aeruginosa is known as the main contributor to cyanobacterial bloom, which is prevalent globally and degrades freshwater systems worldwide. The argument that the introduction of anthropogenic contaminants in fresh water stimulates cyanobacterial growth and microcystin production has attracted widespread attention. Bisphenol A (BPA), one of the most abundant endocrine-disrupting compounds, is often detected in various water bodies due to its notably high annual levels of production and use. Research on the combined effects of endocrine-disrupting compounds and environmental factors on cyanobacteria remains limited. To investigate the mechanism of interactions between contaminants and cyanobacteria at the cellular and proteomic levels, the growth rate, chlorophyll-a content, photosynthetic activities, microcystin-LR (MC-LR) production and release, reactive oxygen species (ROS) content, superoxide dismutase (SOD) activities, malondialdehyde (MDA) content, and proteome expression of M. aeruginosa under 1 µM BPA stress at a standard phosphorus level were investigated. The results showed that stress responses to BPA included increases in the growth rate, chlorophyll-a content, and Fv/Fm and rETRmax values under the low phosphorus condition. Responses involving ROS, SOD, and MDA indicated that phosphorus sufficiency and BPA caused oxidative stress in M. aeruginosa. Moreover, phosphorus sufficiency and BPA stimulated the production and release of MCs. Compared to levels in the non-BPA-treated group, exposure of M. aeruginosa to BPA caused 72 up-regulated proteins, which were primarily associated with photosynthesis, ribosome, fatty acid biosynthesis, glycolysis/glyconeogenesis, and carbon fixation in photosynthetic organisms. The 105 down-regulated proteins were related to quorum sensing, base excision repair, ABC transporters, longevity regulating and cell cycle-caulobacter, suggesting that the cytotoxicity of cyanobacterial cells induced by BPA was significantly increased. These findings provide insights into the molecular mechanism of the effects of BPA and phosphorus on M. aeruginosa, suggesting that coexisting pollutants may cause greater harm to and health risks in the environment.


Subject(s)
Benzhydryl Compounds/adverse effects , Microcystins/metabolism , Oxidative Stress/drug effects , Phenols/adverse effects , Phosphorus/metabolism , Proteome/drug effects , Water Pollutants, Chemical/adverse effects , Bacterial Proteins/metabolism , Marine Toxins , Microcystins/drug effects , Microcystis/drug effects , Microcystis/growth & development , Microcystis/physiology , Photosynthesis/drug effects
20.
Environ Sci Pollut Res Int ; 25(23): 23276-23285, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29869212

ABSTRACT

In this study, statistically designed experiments using response surface methodology were conducted on Microcystis aeruginosa. A central composite design response surface model was established to investigate the multiple effects of various physical and chemical factors (total nitrogen, total phosphorus, temperature, and light intensity) on algal density and extracellular organic matter. The results of the experiments reveal that nitrate and phosphate had significant interactive effects on algal density, both iron and light intensity had synergic effects on the production of microcystins (MC-LR) and extracellular polysaccharides (EPS), and light intensity and nitrite had clear interactive effects on EPS release. Results did not show significant interactive effects on extracellular dissolved organic carbon (DOC) production. The contribution of extracellular dissolved organic matter of Microcystis aeruginosa during the logarithmic phase was further identified using a three-dimensional excitation emission matrix (3-DEEM). This study contributes to our theoretical knowledge of the prediction and analysis of M. aeruginosa growth and extracellular organic matter production.


Subject(s)
Microcystins/metabolism , Microcystis/growth & development , Models, Statistical , Iron , Light , Marine Toxins , Microcystis/metabolism , Nitrogen , Phosphorus , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL