Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
Add more filters

Publication year range
1.
Age Ageing ; 51(10)2022 10 06.
Article in English | MEDLINE | ID: mdl-36315433

ABSTRACT

INTRODUCTION: Significant losses of muscle mass and function occur after major abdominal surgery. Neuromuscular electrical stimulation (NMES) has been shown to reduce muscle atrophy in some patient groups, but evidence in post-operative patients is limited. This study assesses the efficacy of NMES for attenuating muscle atrophy and functional declines following major abdominal surgery in older adults. METHODS: Fifteen patients undergoing open colorectal resection completed a split body randomised control trial. Patients' lower limbs were randomised to control (CON) or NMES (STIM). The STIM limb underwent 15 minutes of quadriceps NMES twice daily on post-operative days (PODs) 1-4. Ultrasound measurements of Vastus Lateralis cross-sectional area (CSA) and muscle thickness (MT) were made preoperatively and on POD 5, as was dynamometry to determine knee extensor strength (KES). Change in CSA was the primary outcome. All outcomes were statistically analysed using linear mixed models. RESULTS: NMES significantly reduced the loss of CSA (-2.52 versus -9.16%, P < 0.001), MT (-2.76 versus -8.145, P = 0.001) and KES (-10.35 versus -19.69%, P = 0.03) compared to CON. No adverse events occurred, and patients reported that NMES caused minimal or no discomfort and felt that ~90-minutes of NMES daily would be tolerable. DISCUSSION: NMES reduces losses of muscle mass and function following major abdominal surgery, and as such, may be the promising tool for post-operative recovery. This is important in preventing long-term post-operative dependency, especially in the increasingly frail older patients undergoing major abdominal surgery. Further studies should establish the efficacy of bilateral NMES for improving patient-centred outcomes.


Subject(s)
Electric Stimulation Therapy , Muscle Strength , Muscular Atrophy , Postoperative Complications , Quadriceps Muscle , Aged , Humans , Electric Stimulation , Electric Stimulation Therapy/adverse effects , Electric Stimulation Therapy/methods , Knee Joint , Muscle Strength/physiology , Muscular Atrophy/etiology , Muscular Atrophy/physiopathology , Muscular Atrophy/prevention & control , Quadriceps Muscle/diagnostic imaging , Quadriceps Muscle/physiology , Postoperative Care , Postoperative Complications/prevention & control , Colectomy/adverse effects
2.
Sci Rep ; 11(1): 21861, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34750405

ABSTRACT

We examined in a rat model of Gulf War illness (GWI), the potential of (-)-epicatechin (Epi) to reverse skeletal muscle (SkM) atrophy and dysfunction, decrease mediators of inflammation and normalize metabolic perturbations. Male Wistar rats (n = 15) were provided orally with pyridostigmine bromide (PB) 1.3 mg/kg/day, permethrin (PM) 0.13 mg/kg/day (skin), DEET 40 mg/kg/day (skin) and were physically restrained for 5 min/day for 3 weeks. A one-week period ensued to fully develop the GWI-like profile followed by 2 weeks of either Epi treatment at 1 mg/kg/day by gavage (n = 8) or water (n = 7) for controls. A normal, control group (n = 15) was given vehicle and not restrained. At 6 weeks, animals were subjected to treadmill and limb strength testing followed by euthanasia. SkM and blood sampling was used for histological, biochemical and plasma pro-inflammatory cytokine and metabolomics assessments. GWI animals developed an intoxication profile characterized SkM atrophy and loss of function accompanied by increases in modulators of muscle atrophy, degradation markers and plasma pro-inflammatory cytokine levels. Treatment of GWI animals with Epi yielded either a significant partial or full normalization of the above stated indicators relative to normal controls. Plasma metabolomics revealed that metabolites linked to inflammation and SkM waste pathways were dysregulated in the GWI group whereas Epi, attenuated such changes. In conclusion, in a rat model of GWI, Epi partially reverses detrimental changes in SkM structure including modulators of atrophy, inflammation and select plasma metabolites yielding improved function.


Subject(s)
Catechin/therapeutic use , Persian Gulf Syndrome/drug therapy , Animals , Dietary Supplements , Disease Models, Animal , Fatigue/drug therapy , Fatigue/physiopathology , Humans , Male , Metabolome/drug effects , Muscle Development/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Muscular Atrophy/drug therapy , Muscular Atrophy/pathology , Muscular Atrophy/physiopathology , Persian Gulf Syndrome/pathology , Persian Gulf Syndrome/physiopathology , Rats , Rats, Wistar
3.
Cells ; 10(11)2021 10 25.
Article in English | MEDLINE | ID: mdl-34831102

ABSTRACT

Loss of myofibers during muscle atrophy affects functional capacity and quality of life. Dexamethasone, an inducer of rapid atrophy of skeletal myofibers, has been studied as a glucocorticoid receptor in muscle atrophy or motor neurodegeneration. In this study, we examined dexamethasone-induced muscle atrophy using zebrafish (Danio rerio), a vertebrate model, and assessed whether administration of Lepidium meyenii (maca) as a dietary supplement can prevent muscle atrophy. Changes in skeletal myofibers in zebrafish were evaluated after exposure to dexamethasone for different periods and at different concentrations. Under optimized conditions, zebrafish pre-fed with maca for 3 days were exposed to 0.01% dexamethasone for 1 h/day for 7 days. Thereafter, myofiber loss, damaged muscle contractile proteins, and abnormal exploratory behavior due to the structural and functional impairment of skeletal muscle associated with muscle atrophy were investigated using hematoxylin-eosin, immunofluorescence staining, and behavioral analyses. Our findings suggest that dexamethasone induces muscle atrophy in zebrafish, inhibiting exploratory behavior by inducing myofiber loss, inhibiting muscle contraction, and causing changes in endurance and velocity. Thus, the zebrafish model can be used to screen pharmaceutical agents and to study muscle atrophy. Furthermore, maca is a potential dietary supplement to prevent muscle atrophy, as it protects muscle fibers.


Subject(s)
Dexamethasone/adverse effects , Lepidium/chemistry , Muscular Atrophy/chemically induced , Muscular Atrophy/prevention & control , Plant Extracts/therapeutic use , Animals , Behavior, Animal/drug effects , Disease Models, Animal , Exploratory Behavior/drug effects , Muscle Contraction/drug effects , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/pathology , Muscle Proteins/metabolism , Muscular Atrophy/pathology , Muscular Atrophy/physiopathology , Plant Extracts/pharmacology , Swimming/physiology , Zebrafish
4.
BMC Pulm Med ; 21(1): 314, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34625059

ABSTRACT

BACKGROUND: Diaphragm atrophy and dysfunction is a major problem among critically ill patients on mechanical ventilation. Ventilator-induced diaphragmatic dysfunction is thought to play a major role, resulting in a failure of weaning. Stimulation of the phrenic nerves and resulting diaphragm contraction could potentially prevent or treat this atrophy. The subject of this study is to determine the effectiveness of diaphragm stimulation in preventing atrophy by measuring changes in its thickness. METHODS: A total of 12 patients in the intervention group and 10 patients in the control group were enrolled. Diaphragm thickness was measured by ultrasound in both groups at the beginning of study enrollment (hour 0), after 24 hours, and at study completion (hour 48). The obtained data were then statistically analyzed and both groups were compared. RESULTS: The results showed that the baseline diaphragm thickness in the interventional group was (1.98 ± 0.52) mm and after 48 hours of phrenic nerve stimulation increased to (2.20 ± 0.45) mm (p=0.001). The baseline diaphragm thickness of (2.00 ± 0.33) mm decreased in the control group after 48 hours of mechanical ventilation to (1.72 ± 0.20) mm (p<0.001). CONCLUSIONS: Our study demonstrates that induced contraction of the diaphragm by pacing the phrenic nerve not only reduces the rate of its atrophy during mechanical ventilation but also leads to an increase in its thickness - the main determinant of the muscle strength required for spontaneous ventilation and successful ventilator weaning. TRIAL REGISTRATION: The study was registered with ClinicalTrials.gov (18/06/2018, NCT03559933, https://clinicaltrials.gov/ct2/show/NCT03559933 ).


Subject(s)
Diaphragm/physiopathology , Electric Stimulation Therapy/methods , Phrenic Nerve/physiology , Respiration, Artificial/adverse effects , Respiratory Insufficiency/therapy , Aged , Critical Illness , Diaphragm/diagnostic imaging , Electric Stimulation Therapy/instrumentation , Female , Humans , Male , Middle Aged , Muscular Atrophy/etiology , Muscular Atrophy/physiopathology , Prospective Studies , Respiration, Artificial/methods , Ultrasonography
5.
Int J Mol Sci ; 22(17)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34502376

ABSTRACT

Inflammation induces a wide response of the neuroendocrine system, which leads to modifications in all the endocrine axes. The hypothalamic-growth hormone (GH)-insulin-like growth factor-1 (IGF-1) axis is deeply affected by inflammation, its response being characterized by GH resistance and a decrease in circulating levels of IGF-1. The endocrine and metabolic responses to inflammation allow the organism to survive. However, in chronic inflammatory conditions, the inhibition of the hypothalamic-GH-IGF-1 axis contributes to the catabolic process, with skeletal muscle atrophy and cachexia. Here, we review the changes in pituitary GH secretion, IGF-1, and IGF-1 binding protein-3 (IGFBP-3), as well as the mechanism that mediated those responses. The contribution of GH and IGF-1 to muscle wasting during inflammation has also been analyzed.


Subject(s)
Cachexia/metabolism , Insulin-Like Growth Factor Binding Protein 3/metabolism , Insulin-Like Growth Factor I/metabolism , Cachexia/physiopathology , Growth Hormone/metabolism , Human Growth Hormone/metabolism , Humans , Hypothalamus/metabolism , Inflammation/physiopathology , Insulin/metabolism , Insulin-Like Growth Factor Binding Protein 3/physiology , Insulin-Like Growth Factor I/physiology , Muscular Atrophy/metabolism , Muscular Atrophy/physiopathology
6.
Pharmacol Res ; 171: 105798, 2021 09.
Article in English | MEDLINE | ID: mdl-34352400

ABSTRACT

Skeletal muscle atrophy occurs in response to various pathophysiological stimuli, including disuse, aging, and neuromuscular disorders, mainly due to an imbalance of anabolic/catabolic signaling. Branched Chain Amino Acids (BCAAs: leucine, isoleucine, valine) supplements can be beneficial for counteracting muscle atrophy, in virtue of their reported anabolic properties. Here, we carried out a proof-of-concept study to assess the in vivo/ex vivo effects of a 4-week treatment with BCAAs on disuse-induced atrophy, in a murine model of hind limb unloading (HU). BCAAs were formulated in drinking water, alone, or plus two equivalents of L-Alanine (2 ALA) or the dipeptide L-Alanyl-L-Alanine (Di-ALA), to boost BCAAs bioavailability. HU mice were characterized by reduction of body mass, decrease of soleus - SOL - muscle mass and total protein, alteration of postural muscles architecture and fiber size, dysregulation of atrophy-related genes (Atrogin-1, MuRF-1, mTOR, Mstn). In parallel, we provided new robust readouts in the HU murine model, such as impaired in vivo isometric torque and ex vivo SOL muscle contractility and elasticity, as well as altered immune response. An acute pharmacokinetic study confirmed that L-ALA, also as dipeptide, enhanced plasma exposure of BCAAs. Globally, the most sensitive parameters to BCAAs action were muscle atrophy and myofiber cross-sectional area, muscle force and compliance to stress, protein synthesis via mTOR and innate immunity, with the new BCAAs + Di-ALA formulation being the most effective treatment. Our results support the working hypothesis and highlight the importance of developing innovative formulations to optimize BCAAs biodistribution.


Subject(s)
Alanine/therapeutic use , Amino Acids, Branched-Chain/therapeutic use , Dipeptides/therapeutic use , Muscular Atrophy/drug therapy , Alanine/pharmacokinetics , Amino Acids, Branched-Chain/pharmacokinetics , Animals , Dipeptides/pharmacokinetics , Disease Models, Animal , Hindlimb Suspension , Male , Mice, Inbred C57BL , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Muscle, Skeletal/physiology , Muscular Atrophy/genetics , Muscular Atrophy/pathology , Muscular Atrophy/physiopathology , Proteome/drug effects , Transcriptome/drug effects
7.
Int J Mol Sci ; 22(10)2021 May 13.
Article in English | MEDLINE | ID: mdl-34068411

ABSTRACT

Periods of muscle disuse promote marked mitochondrial alterations that contribute to the impaired metabolic health and degree of atrophy in the muscle. Thus, understanding the molecular underpinnings of muscle mitochondrial decline with prolonged inactivity is of considerable interest. There are translational applications to patients subjected to limb immobilization following injury, illness-induced bed rest, neuropathies, and even microgravity. Studies in these patients, as well as on various pre-clinical rodent models have elucidated the pathways involved in mitochondrial quality control, such as mitochondrial biogenesis, mitophagy, fission and fusion, and the corresponding mitochondrial derangements that underlie the muscle atrophy that ensues from inactivity. Defective organelles display altered respiratory function concurrent with increased accumulation of reactive oxygen species, which exacerbate myofiber atrophy via degradative pathways. The preservation of muscle quality and function is critical for maintaining mobility throughout the lifespan, and for the prevention of inactivity-related diseases. Exercise training is effective in preserving muscle mass by promoting favourable mitochondrial adaptations that offset the mitochondrial dysfunction, which contributes to the declines in muscle and whole-body metabolic health. This highlights the need for further investigation of the mechanisms in which mitochondria contribute to disuse-induced atrophy, as well as the specific molecular targets that can be exploited therapeutically.


Subject(s)
Energy Metabolism , Mitochondria, Muscle/physiology , Muscle, Skeletal/physiology , Muscular Atrophy/physiopathology , Organelle Biogenesis , Animals , Humans
8.
Pancreas ; 50(5): 657-666, 2021.
Article in English | MEDLINE | ID: mdl-34106574

ABSTRACT

ABSTRACT: Diet and exercise interventions may help reverse malnutrition and muscle wasting common in pancreatic cancer. We performed a scoping review to identify the knowledge gaps surrounding diet and exercise interventions. We searched PubMed, Scopus, Cumulative Index to Nursing and Allied Health Literature, Embase, ProQuest Theses and Dissertations, and Google Scholar using the umbrella terms of "pancreatic cancer," "diet/nutrition," and "exercise." Included were articles reporting on ambulatory adults with diagnosed pancreatic cancer. Excluded were studies examining prevention and/or risk, animal, or cell lines. Of the 15,708 articles identified, only 62 met the final inclusion criteria. Almost half of the articles were randomized controlled studies (n = 27). Most studies were from the United States (n = 20). The majority examined dietary interventions (n = 41), with 20 assessing the use of omega-3 fatty acids. Exercise interventions were reported in 13 studies, with 8 examining a diet and exercise intervention. Most studies were small and varied greatly in terms of study design, intervention, and outcomes. We identified 7 research gaps that should be addressed in future studies. This scoping review highlights the limited research examining the effect of diet and exercise interventions in ambulatory patients with pancreatic cancer.


Subject(s)
Cachexia/diet therapy , Exercise Therapy , Malnutrition/diet therapy , Muscular Atrophy/diet therapy , Nutrition Therapy , Pancreatic Neoplasms/diet therapy , Body Composition , Cachexia/epidemiology , Cachexia/physiopathology , Diet, Healthy , Dietary Supplements/adverse effects , Humans , Malnutrition/epidemiology , Malnutrition/physiopathology , Muscle Strength , Muscle, Skeletal/physiopathology , Muscular Atrophy/epidemiology , Muscular Atrophy/physiopathology , Nutritional Status , Nutritive Value , Pancreatic Neoplasms/epidemiology , Pancreatic Neoplasms/physiopathology , Treatment Outcome
9.
Am J Physiol Cell Physiol ; 320(4): C591-C601, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33471625

ABSTRACT

Disuse-induced muscle atrophy is accompanied by a blunted postprandial response of the mammalian target of rapamycin complex 1 (mTORC1) pathway. Conflicting observations exist as to whether postabsorptive mTORC1 pathway activation is also blunted by disuse and plays a role in atrophy. It is unknown whether changes in habitual protein intake alter mTORC1 regulatory proteins and how they may contribute to the development of anabolic resistance. The primary objective of this study was to characterize the downstream responsiveness of skeletal muscle mTORC1 activation and its upstream regulatory factors, following 14 days of lower limb disuse in middle-aged men (45-60 yr). The participants were further randomized to receive daily supplementation of 20 g/d of protein (n = 12; milk protein concentrate) or isocaloric carbohydrate placebo (n = 13). Immobilization reduced postabsorptive skeletal muscle phosphorylation of the mTORC1 downstream targets, 4E-BP1, P70S6K, and ribosomal protein S6 (RPS6), with phosphorylation of the latter two decreasing to a greater extent in the placebo, compared with the protein supplementation groups (37% ± 13% vs. 14% ± 11% and 38% ± 20% vs. 25% ± 8%, respectively). Sestrin2 protein was also downregulated following immobilization irrespective of supplement group, despite a corresponding increase in its mRNA content. This decrease in Sestrin2 protein was negatively correlated with the immobilization-induced change in the in silico-predicted regulator miR-23b-3p. No other measured upstream proteins were altered by immobilization or supplementation. Immobilization downregulated postabsorptive mTORC1 pathway activation, and 20 g/day of protein supplementation attenuated the decrease in phosphorylation of targets regulating muscle protein synthesis.


Subject(s)
Dietary Supplements , Mechanistic Target of Rapamycin Complex 1/metabolism , Milk Proteins/administration & dosage , Muscular Atrophy/diet therapy , Quadriceps Muscle/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Cell Cycle Proteins/metabolism , Humans , Immobilization , Male , MicroRNAs/genetics , MicroRNAs/metabolism , Middle Aged , Milk Proteins/metabolism , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Muscular Atrophy/physiopathology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphorylation , Postprandial Period , Quadriceps Muscle/pathology , Quadriceps Muscle/physiopathology , Ribosomal Protein S6/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Signal Transduction , Time Factors , Treatment Outcome
10.
Mech Ageing Dev ; 193: 111402, 2021 01.
Article in English | MEDLINE | ID: mdl-33189759

ABSTRACT

One of the most notable effects of ageing is an accelerated decline of skeletal muscle mass and function, resulting in various undesirable outcomes such as falls, frailty, and all-cause mortality. The loss of muscle mass directly leads to functional deficits and can be explained by the combined effects of individual fibre atrophy and fibre loss. The gradual degradation of fibre atrophy is attributed to impaired muscle protein homeostasis, while muscle fibre loss is a result of denervation and motor unit (MU) remodelling. Neuromuscular electrical stimulation (NMES), a substitute for voluntary contractions, has been applied to reduce muscle mass and functional declines. However, the measurement of the effectiveness of NMES in terms of its mechanism of action on the peripheral motor nervous system and neuromuscular junction, and multiple molecular adaptations at the single fibre level is not well described. NMES mediates neuroplasticity and upregulates a number of neurotropic factors, manifested by increased axonal sprouting and newly formed neuromuscular junctions. Repeated involuntary contractions increase the activity levels of oxidative enzymes, increase fibre capillarisation and can influence fibre type conversion. Additionally, following NMES muscle protein synthesis is increased as well as functional capacity. This review will detail the neural, molecular, metabolic and functional adaptations to NMES in human and animal studies.


Subject(s)
Aging , Electric Stimulation Therapy/methods , Muscle, Skeletal , Muscular Atrophy , Neuromuscular Junction/metabolism , Aging/pathology , Aging/physiology , Animals , Cellular Senescence , Humans , Muscle, Skeletal/innervation , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Muscular Atrophy/metabolism , Muscular Atrophy/physiopathology , Muscular Atrophy/therapy , Signal Transduction
11.
Cells ; 9(12)2020 11 24.
Article in English | MEDLINE | ID: mdl-33255345

ABSTRACT

Cancer cachexia (CC) is a debilitating multifactorial syndrome, involving progressive deterioration and functional impairment of skeletal muscles. It affects about 80% of patients with advanced cancer and causes premature death. No causal therapy is available against CC. In the last few decades, our understanding of the mechanisms contributing to muscle wasting during cancer has markedly increased. Both inflammation and oxidative stress (OS) alter anabolic and catabolic signaling pathways mostly culminating with muscle depletion. Several preclinical studies have emphasized the beneficial roles of several classes of nutraceuticals and modes of physical exercise, but their efficacy in CC patients remains scant. The route of nutraceutical administration is critical to increase its bioavailability and achieve the desired anti-cachexia effects. Accumulating evidence suggests that a single therapy may not be enough, and a bimodal intervention (nutraceuticals plus exercise) may be a more effective treatment for CC. This review focuses on the current state of the field on the role of inflammation and OS in the pathogenesis of muscle atrophy during CC, and how nutraceuticals and physical activity may act synergistically to limit muscle wasting and dysfunction.


Subject(s)
Cachexia/physiopathology , Exercise/physiology , Muscle, Skeletal/physiopathology , Muscular Atrophy/physiopathology , Neoplasms/physiopathology , Animals , Dietary Supplements , Humans
12.
Nutrients ; 12(8)2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32806520

ABSTRACT

Fermented rice bran (FRB), a prospective supplement, has been proven to ameliorate certain medical conditions. However, its nutraceutical effect on muscle atrophy has never been investigated. The present study aimed to evaluate the effect of FRB on muscle atrophy in a streptozotocin (STZ)-induced diabetic rat model. Three groups of Sprague-Dawley rats, namely the control, STZ, and FRB groups, were treated as follows. The diabetic groups (STZ and FRB) were injected intraperitoneally with STZ (40 mg/kg BW), whereas the control group was injected with the vehicle. The STZ and control groups were fed the AIN93M diet, and the FRB group was fed 10% of FRB based on the AIN93M diet. The diabetic groups had reduced muscle size compared to the control group; however, these changes were alleviated in the FRB group. Moreover, the FRB group had a significantly lower expression of FBXO32/Atrogin-1 and TRIM63/MuRF1 (p < 0.05) due to blocked NF-κB activation. In conclusion, the anti-inflammatory effect of FRB may be beneficial for ameliorating muscle atrophy in diabetic conditions.


Subject(s)
Diabetes Mellitus, Experimental/physiopathology , Dietary Supplements , Muscular Atrophy/diet therapy , Oryza , Animal Feed/analysis , Animals , Anti-Inflammatory Agents , Diabetes Mellitus, Experimental/complications , Fermentation , Male , Muscular Atrophy/etiology , Muscular Atrophy/physiopathology , Rats , Rats, Sprague-Dawley , Streptozocin
13.
Curr Opin Support Palliat Care ; 14(3): 157-166, 2020 09.
Article in English | MEDLINE | ID: mdl-32740275

ABSTRACT

PURPOSE OF REVIEW: Activity-related breathlessness is a key determinant of poor quality of life in patients with advanced cardiorespiratory disease. Accordingly, palliative care has assumed a prominent role in their care. The severity of breathlessness depends on a complex combination of negative cardiopulmonary interactions and increased afferent stimulation from systemic sources. We review recent data exposing the seeds and consequences of these abnormalities in combined heart failure and chronic obstructive pulmonary disease (COPD). RECENT FINDINGS: The drive to breathe increases ('excessive breathing') secondary to an enlarged dead space and hypoxemia (largely COPD-related) and heightened afferent stimuli, for example, sympathetic overexcitation, muscle ergorreceptor activation, and anaerobic metabolism (largely heart failure-related). Increased ventilatory drive might not be fully translated into the expected lung-chest wall displacement because of the mechanical derangements brought by COPD ('inappropriate breathing'). The latter abnormalities, in turn, negatively affect the central hemodynamics which are already compromised by heart failure. Physical activity then decreases, worsening muscle atrophy and dysfunction. SUMMARY: Beyond the imperative of optimal pharmacological treatment of each disease, strategies to lessen ventilation (e.g., walking aids, oxygen, opiates and anxiolytics, and cardiopulmonary rehabilitation) and improve mechanics (heliox, noninvasive ventilation, and inspiratory muscle training) might mitigate the burden of this devastating symptom in advanced heart failure-COPD.


Subject(s)
Heart Failure/epidemiology , Heart/physiopathology , Lung/physiopathology , Muscular Atrophy/epidemiology , Pulmonary Disease, Chronic Obstructive/epidemiology , Analgesics, Opioid/therapeutic use , Breathing Exercises/methods , Cardiac Rehabilitation/methods , Dyspnea/epidemiology , Dyspnea/physiopathology , Exercise Tolerance/physiology , Heart Failure/physiopathology , Heart Failure/therapy , Hemodynamics , Humans , Hypoxia/epidemiology , Hypoxia/physiopathology , Muscular Atrophy/physiopathology , Muscular Atrophy/therapy , Noninvasive Ventilation/methods , Oxygen/blood , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/therapy , Pulmonary Gas Exchange/physiology , Quality of Life , Respiratory Mechanics , Self-Management
14.
Nutrients ; 12(5)2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32354126

ABSTRACT

Muscle wasting is caused by various factors, such as aging, cancer, diabetes, and chronic kidney disease, and significantly decreases the quality of life. However, therapeutic interventions for muscle atrophy have not yet been well-developed. In this study, we investigated the effects of schisandrin A (SNA), a component extracted from the fruits of Schisandra chinensis, on dexamethasone (DEX)-induced muscle atrophy in mice and studied the underlying mechanisms. DEX+SNA-treated mice had significantly increased grip strength, muscle weight, and muscle fiber size compared with DEX+vehicle-treated mice. In addition, SNA treatment significantly reduced the expression of muscle degradation factors such as myostatin, MAFbx (atrogin1), and muscle RING-finger protein-1 (MuRF1) and enhanced the expression of myosin heavy chain (MyHC) compared to the vehicle. In vitro studies using differentiated C2C12 myotubes also showed that SNA treatment decreased the expression of muscle degradation factors induced by dexamethasone and increased protein synthesis and expression of MyHCs by regulation of Akt/FoxO and Akt/70S6K pathways, respectively. These results suggest that SNA reduces protein degradation and increases protein synthesis in the muscle, contributing to the amelioration of dexamethasone-induced muscle atrophy and may be a potential candidate for the prevention and treatment of muscle atrophy.


Subject(s)
Cyclooctanes/pharmacology , Cyclooctanes/therapeutic use , Dexamethasone/adverse effects , Gene Expression/drug effects , Lignans/pharmacology , Lignans/therapeutic use , Muscle, Skeletal/metabolism , Muscular Atrophy/genetics , Muscular Atrophy/prevention & control , Phytotherapy , Polycyclic Compounds/pharmacology , Polycyclic Compounds/therapeutic use , Schisandra/chemistry , Animals , Cells, Cultured , Cyclooctanes/administration & dosage , Cyclooctanes/isolation & purification , Lignans/administration & dosage , Lignans/isolation & purification , Male , Mice, Inbred C57BL , Muscle Proteins/genetics , Muscle Proteins/metabolism , Muscle Strength/drug effects , Muscle, Skeletal/drug effects , Muscular Atrophy/chemically induced , Muscular Atrophy/physiopathology , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Myostatin/genetics , Myostatin/metabolism , Organ Size/drug effects , Polycyclic Compounds/administration & dosage , Polycyclic Compounds/isolation & purification , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , SKP Cullin F-Box Protein Ligases/genetics , SKP Cullin F-Box Protein Ligases/metabolism , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
15.
Arthroscopy ; 36(9): 2537-2549, 2020 09.
Article in English | MEDLINE | ID: mdl-32438028

ABSTRACT

PURPOSE: To assess whether a standardized dietary supplementation can help to decrease postoperative muscle atrophy and/or improve rehabilitation outcomes in patients who underwent anterior cruciate ligament reconstruction (ACLR). METHODS: A systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). MEDLINE, Scopus, and Cochrane Library databases were searched, and articles that examined protein or amino acid, vitamin, or any other type of supplementation in ACLR were reviewed. Two independent reviewers conducted the search using pertinent Boolean operations. RESULTS: A total of 1818 articles were found after our database search. Ten studies fulfilled our inclusion criteria and only assessed patients undergoing ACLR. Four studies assessed protein-based supplementation. One study assessed creatine as a supplement. Four studies assessed vitamin-based supplementation. One study assessed testosterone supplementation. Protein and amino acid supplementation showed potential benefits; multiple authors demonstrated a combination of improved achievement of rehabilitation benchmarks, graft maturation, muscular hypertrophic response, and peak dynamic muscle strength. When we examined creatine, vitamin, or hormone-based protocols, none demonstrated results, suggesting these factors may attenuate muscle atrophy after surgery. Vitamin C and E demonstrated potentially increased local inflammation in skeletal muscle, which runs contrary to the belief that antioxidant vitamin-based supplementation may decrease the inflammatory response that plays a role in the post injury/operative period. CONCLUSIONS: Protein-based supplementation may play a role in mitigating muscle atrophy associated with ACLR, as multiple authors demonstrated a combination of improved achievement of rehabilitation benchmarks, thigh hypertrophic response, and peak dynamic muscle strength. However, based on current literature, it is not possible to recommend a specific protein-based supplementation protocol at this time for patients undergoing ACLR. Limited evidence suggests no benefit for creatine, vitamin, or hormone-based protocols. LEVEL OF EVIDENCE: II, a systematic review of level I-II studies.


Subject(s)
Anterior Cruciate Ligament Injuries/surgery , Anterior Cruciate Ligament Reconstruction , Dietary Supplements , Muscle, Skeletal/surgery , Muscular Atrophy/physiopathology , Ascorbic Acid/therapeutic use , Creatine/therapeutic use , Humans , Inflammation , Muscle Strength , Vitamin E/therapeutic use
16.
Nutr Res ; 74: 10-22, 2020 02.
Article in English | MEDLINE | ID: mdl-31895993

ABSTRACT

Skeletal muscle atrophy is the consequence of various conditions, such as disuse, denervation, fasting, aging, and disease. Even if the underlying molecular mechanisms are still not fully understood, an elevated oxidative stress related to mitochondrial dysfunction has been proposed as one of the major contributors to skeletal muscle atrophy. Researchers have described various forms of nutritional supplementation to prevent oxidative stress-induced muscle wasting. Among a variety of nutrients, attention has also focused on polyphenols, a wide range of plant-based compounds with antioxidant and inflammatory properties, many of which have beneficial effects on human health and might retard skeletal muscle loss and function impairment. The purpose of this review is to describe polyphenol actions in skeletal muscle atrophy prevention. Published articles from the last 10 years were searched on PubMed and other databases. Polyphenols are important molecules that should be considered when discussing possible strategies against muscle atrophy. In particular, the collected studies describe, for each polyphenol subclass, the beneficial effect on muscle mass preservation in various skeletal muscle disorders. In these examples, the polyphenol compounds appear to mainly act by reversing mitochondrial dysfunction. Given that the current information on polyphenols is mostly restricted to basic studies, more comprehensive research and additional studies should be performed to clarify their mechanisms of action in improving skeletal muscle functions during atrophy.


Subject(s)
Muscle, Skeletal/physiopathology , Muscular Atrophy/prevention & control , Polyphenols/administration & dosage , Acids, Carbocyclic/administration & dosage , Animals , Anti-Inflammatory Agents/administration & dosage , Antioxidants/administration & dosage , Diet , Dietary Supplements , Flavonoids/administration & dosage , Fruit , Humans , Mitochondria, Muscle/drug effects , Mitochondria, Muscle/physiology , Muscle, Skeletal/drug effects , Muscle, Skeletal/ultrastructure , Muscular Atrophy/physiopathology , Stilbenes , Vegetables
17.
BMC Complement Altern Med ; 19(1): 267, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31615487

ABSTRACT

BACKGROUND: Cancer cachexia is a cancer-induced multifactorial debilitating syndrome directly accounting for 20% of cancer deaths without effective therapeutic approaches. It is extremely urgent to explore effective anti-cachexia drugs to ameliorate muscle and fat loss in cachexia patients. METHODS: Lewis lung carcinoma bearing C57BL/6 mice were applied as the animal model to examine the therapeutic effect of Coix seed oil (CSO) on cancer cachexia. The food intake and body weight change were monitored every 3 days throughout the experiment. The IL-6 and TNF-α levels in serum were detected by ELISA assay. Several key proteins involved in muscle wasting and fat lipolysis were tested by Western blot to identify the potential mechanism of CSO. RESULTS: Administration of CSO through gavage significantly prevented body weight loss and ameliorated systemic inflammation without affecting food intake and tumor size. The weight and histological morphology of gastrocnemius muscle and epididymal adipose tissue in CSO-treated mice were also improved. In mechanism, we found that CSO decreased the expression of MuRF1 and the ratio of phospho-p65 (Ser536) to p65 in muscle tissue. Meanwhile, cancer-induced activation of HSL and AMPK was also inhibited by CSO administration. CONCLUSION: Coix seed oil exerts an anti-cachexia pharmaceutical effect by counteracting muscle and adipose tissue loss most likely through regulating NF-κB-MuRF1 and AMPK-HSL pathway.


Subject(s)
Adipose Tissue/metabolism , Cachexia/drug therapy , Coix/chemistry , Lipolysis/drug effects , Lung Neoplasms/complications , Muscular Atrophy/drug therapy , Plant Oils/administration & dosage , Adipose Tissue/drug effects , Animals , Body Weight/drug effects , Cachexia/etiology , Cachexia/metabolism , Cachexia/physiopathology , Female , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Male , Mice , Mice, Inbred C57BL , Muscular Atrophy/etiology , Muscular Atrophy/metabolism , Muscular Atrophy/physiopathology , NF-kappa B/genetics , NF-kappa B/metabolism , Seeds/chemistry
18.
Nutrients ; 11(9)2019 Sep 06.
Article in English | MEDLINE | ID: mdl-31500089

ABSTRACT

Previously, we reported that polyphenol-rich fraction (named E80) promotes skeletal muscle hypertrophy induced by functional overload in mice. This study indicates that E80 has potential for affecting skeletal muscle mass. Then, we evaluate the effect of E80 on atrophic and recovery conditions of skeletal muscle in mice. Hindlimb suspension (unloading) and relanding (reloading) are used extensively to observe disuse muscle atrophy and subsequent muscle mass recovery from atrophy. Eight-week old C57BL/6 mice were fed either a normal diet or a diet containing 0.5% E80 for two weeks under conditions of hindlimb suspension and a subsequent 5 or 10 days of reloading. We found that E80 administration did not prevent atrophy during hindlimb suspension, but promoted recovery of slow-twitch (soleus) muscle mass from atrophy induced by hindlimb suspension. After five days of reloading, we discovered that phosphorylation of the Akt/mammalian target of rapamycin (mTOR) pathway proteins, such as Akt and P70 ribosomal protein S6 kinase (S6K), was activated in the muscle. Therefore, E80 administration accelerated mTOR signal and increased protein synthesis in the reloaded soleus muscle.


Subject(s)
Camellia sinensis/chemistry , Muscle, Skeletal/drug effects , Muscular Atrophy/drug therapy , Plant Extracts/pharmacology , Polyphenols/pharmacology , Animals , Cell Line , Disease Models, Animal , Hindlimb Suspension , Male , Mice, Inbred C57BL , Molecular Weight , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Muscular Atrophy/physiopathology , Myoblasts, Skeletal/drug effects , Myoblasts, Skeletal/metabolism , Myoblasts, Skeletal/pathology , Phosphorylation , Plant Extracts/isolation & purification , Polyphenols/isolation & purification , Protein Biosynthesis/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Recovery of Function , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
19.
Trials ; 20(1): 526, 2019 Aug 23.
Article in English | MEDLINE | ID: mdl-31443727

ABSTRACT

BACKGROUND: Persons with spinal cord injury (SCI) are at heightened risks of developing unfavorable cardiometabolic consequences due to physical inactivity. Functional electrical stimulation (FES) and surface neuromuscular electrical stimulation (NMES)-resistance training (RT) have emerged as effective rehabilitation methods that can exercise muscles below the level of injury and attenuate cardio-metabolic risk factors. Our aims are to determine the impact of 12 weeks of NMES + 12 weeks of FES-lower extremity cycling (LEC) compared to 12 weeks of passive movement + 12 weeks of FES-LEC on: (1) oxygen uptake (VO2), insulin sensitivity, and glucose disposal in adults with SCI; (2) skeletal muscle size, intramuscular fat (IMF), and visceral adipose tissue (VAT); and (3) protein expression of energy metabolism, protein molecules involved in insulin signaling, muscle hypertrophy, and oxygen uptake and electron transport chain (ETC) activities. METHODS/DESIGN: Forty-eight persons aged 18-65 years with chronic (> 1 year) SCI/D (AIS A-C) at the C5-L2 levels, equally sub-grouped by cervical or sub-cervical injury levels and time since injury, will be randomized into either the NMES + FES group or Passive + FES (control group). The NMES + FES group will undergo 12 weeks of evoked RT using twice-weekly NMES and ankle weights followed by twice-weekly progressive FES-LEC for an additional 12 weeks. The control group will undergo 12 weeks of passive movement followed by 12 weeks of progressive FES-LEC. Measurements will be performed at baseline (B; week 0), post-intervention 1 (P1; week 13), and post-intervention 2 (P2; week 25), and will include: VO2 measurements, insulin sensitivity, and glucose effectiveness using intravenous glucose tolerance test; magnetic resonance imaging to measure muscle, IMF, and VAT areas; muscle biopsy to measure protein expression and intracellular signaling; and mitochondrial ETC function. DISCUSSION: Training through NMES + RT may evoke muscle hypertrophy and positively impact oxygen uptake, insulin sensitivity, and glucose effectiveness. This may result in beneficial outcomes on metabolic activity, body composition profile, mitochondrial ETC, and intracellular signaling related to insulin action and muscle hypertrophy. In the future, NMES-RT may be added to FES-LEC to improve the workloads achieved in the rehabilitation of persons with SCI and further decrease muscle wasting and cardio-metabolic risks. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02660073 . Registered on 21 Jan 2016.


Subject(s)
Bicycling , Electric Stimulation Therapy/methods , Energy Metabolism , Muscle, Skeletal/innervation , Muscular Atrophy/therapy , Resistance Training/methods , Spinal Cord Injuries/rehabilitation , Adolescent , Adult , Aged , Biomarkers/blood , Blood Glucose/metabolism , Electric Stimulation Therapy/adverse effects , Female , Humans , Insulin/blood , Lower Extremity , Male , Middle Aged , Multicenter Studies as Topic , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/blood , Muscular Atrophy/diagnosis , Muscular Atrophy/physiopathology , Randomized Controlled Trials as Topic , Resistance Training/adverse effects , Spinal Cord Injuries/blood , Spinal Cord Injuries/diagnosis , Spinal Cord Injuries/physiopathology , Time Factors , Treatment Outcome , Virginia , Young Adult
20.
J Appl Physiol (1985) ; 127(2): 531-545, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31343947

ABSTRACT

Investigate the underlying cellular basis of muscle atrophy (Placebo) and atrophy reduction (essential amino acid supplementation, EAAs) in total knee arthroplasty (TKA) patients by examining satellite cells and other key histological markers of inflammation, recovery, and fibrosis. Forty-one subjects (53-76 yr) scheduled for TKA were randomized into two groups, ingesting 20 g of EAAs or placebo, twice-daily, for 7 days before TKA and for 6 wk after surgery. A first set of muscle biopsies was obtained from both legs before surgery in the operating room, and patients were randomly assigned and equally allocated to have two additional biopsies at either 1 or 2 wk after surgery. Biopsies were processed for gene expression and immunohistochemistry. Satellite cells were significantly higher in patients ingesting 20 g of essential amino acids twice daily for the 7 days leading up to surgery compared with Placebo (operative leg P = 0.03 for satellite cells/fiber and P = 0.05 for satellite cell proportions for Type I-associated cells and P = 0.05 for satellite cells/fiber for Type II-associated cells.) Myogenic regulatory factor gene expression was different between groups, with the Placebo Group having elevated MyoD expression at 1 wk and EAAs having elevated myogenin expression at 1 wk. M1 macrophages were more prevalent in Placebo than the EAAs Group. IL-6 and TNF-α transcripts were elevated postsurgery in both groups; however, TNF-α declined by 2 wk in the EAAs Group. EAAs starting 7 days before surgery increased satellite cells on the day of surgery and promoted a more favorable inflammatory environment postsurgery.NEW & NOTEWORTHY Clinical studies by our group indicate that the majority of muscle atrophy after total knee arthroplasty (TKA) in older adults occurs rapidly, within the first 2 wks. We have also shown that essential amino acid supplementation (EAAs) before and after TKA mitigates muscle atrophy; however, the mechanisms are unknown. These results suggest that satellite cell numbers are elevated with EAA ingestion before surgery, and after surgery, EAA ingestion positively influences markers of inflammation. Combined, these data may help inform further studies designed to address the accelerated sarcopenia that occurs in older adults after major surgery.


Subject(s)
Amino Acids, Essential/administration & dosage , Muscular Atrophy/physiopathology , Aged , Arthroplasty, Replacement, Knee/methods , Biopsy/methods , Dietary Supplements , Female , Gene Expression Regulation/drug effects , Humans , Interleukin-6/metabolism , Male , Middle Aged , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Myogenin/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL