Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 776
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Microb Pathog ; 190: 106604, 2024 May.
Article in English | MEDLINE | ID: mdl-38490458

ABSTRACT

Early blight caused by Alternaria solani is a common foliar disease of potato around the world, and serious infections result in reduced yields and marketability due to infected tubers. The major aim of this study is to figure out the synergistic effect between microorganism and fungicides and to evaluate the effectiveness of Bacillus subtilis NM4 in the control of early blight in potato. Based on its colonial morphology and a 16S rRNA analysis, a bacterial antagonist isolated from kimchi was identified as B. subtilis NM4 and it has strong antifungal and anti-oomycete activity against several phytopathogenic fungi and oomycetes. The culture filtrate of strain NM4 with the fungicide effectively suppressed the mycelial growth of A. solani, with the highest growth inhibition rate of 83.48%. Although exposure to culture filtrate prompted hyphal alterations in A. solani, including bulging, combining it with the fungicide caused more severe hyphal damage with continuous bulging. Surfactins and fengycins, two lipopeptide groups, were isolated and identified as the main compounds in two fractions using LC-ESI-MS. Although the surfactin-containing fraction failed to inhibit growth, the fengycin-containing fraction, alone and in combination with chlorothalonil, restricted mycelial development, producing severe hyphal deformations with formation of chlamydospores. A pot experiment combining strain NM4, applied as a broth culture, with fungicide, at half the recommended concentration, resulted in a significant reduction in potato early blight severity. Our results indicate the feasibility of an integrated approach for the management of early blight in potato that can reduce fungicide application rates, promoting a healthy ecosystem in agriculture.


Subject(s)
Alternaria , Bacillus subtilis , Fungicides, Industrial , Lipopeptides , Nitriles , Plant Diseases , Solanum tuberosum , Solanum tuberosum/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Alternaria/drug effects , Alternaria/growth & development , Bacillus subtilis/drug effects , Bacillus subtilis/growth & development , Fungicides, Industrial/pharmacology , Nitriles/pharmacology , Lipopeptides/pharmacology , RNA, Ribosomal, 16S/genetics , Hyphae/drug effects , Hyphae/growth & development , Mycelium/drug effects , Mycelium/growth & development , Peptides, Cyclic/pharmacology
2.
J Sci Food Agric ; 104(10): 6311-6321, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38482895

ABSTRACT

BACKGROUND: As a result of the ineffectiveness of existing control methods against Verticillium dahliae, the causal agent of verticillium wilt of olive (Olea europaea; VWO), it is necessary to search for sustainable and environmentally friendly alternatives, such as bioprotection by products based on plant extracts and other naturally synthesized compounds. Therefore, present study aimed to evaluate the effects of seven natural-based commercial products on the inhibition of mycelial growth, the germination of V. dahliae conidia and microsclerotia, and disease progression in olive plants (cv. Picual). Aluminium lignosulfonate and a copper phosphonate salt (copper phosphite) were included for comparative purposes. RESULTS: The seaweed and willow extracts and copper phosphite inhibited V. dahliae mycelial growth by more than 50% at the high doses tested. Most of the products inhibited conidial germination by up to 90% compared to the control at the high doses tested. However, none of the products showed efficacy above 50% in inhibiting microsclerotia germination. The willow extract was the most effective at reducing disease severity and progression in olive plants, with no significant differences compared to the non-inoculated negative control. CONCLUSION: The results of the present study suggest that the use of natural-based products (i.e. seaweed and willow extracts) is a potential sustainable alternative in an integrated VWO control strategy. © 2024 Society of Chemical Industry.


Subject(s)
Olea , Plant Diseases , Olea/microbiology , Olea/chemistry , Plant Diseases/prevention & control , Plant Diseases/microbiology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Seaweed/microbiology , Mycelium/drug effects , Mycelium/growth & development , Ascomycota/drug effects , Ascomycota/growth & development , Biological Products/pharmacology , Biological Products/chemistry , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Spores, Fungal/drug effects , Spores, Fungal/growth & development , Verticillium
3.
Int J Med Mushrooms ; 26(4): 41-51, 2024.
Article in English | MEDLINE | ID: mdl-38523448

ABSTRACT

Liquid fermentation could yield substantial mycelia mass and valuable secondary metabolites in large-scale production within a short, fermented duration. The liquid fermented process of mycelia of Poria cocos was optimized using a combination of single-factor experimentation and response surface methodology (RSM) to obtain more extract of P. cocos. The optimal conditions were determined as follows: The carbon source concentration at 1%, the nitrogen source concentration at 1%, the inoculum volume at 7% and a culture time of 9 d. Under these conditions, the ethyl acetate extract mass of P. cocos mycelia reached 0.0577 ± 0.0041 mg. There were significant interactions between nitrogen source concentration and cultivation time. The predicted values by the mathematical model based on the response surface analysis showed a close agreement with experimental data.


Subject(s)
Wolfiporia , Fermentation , Wolfiporia/metabolism , Mycelium , Nitrogen/metabolism
4.
Int J Med Mushrooms ; 26(3): 1-13, 2024.
Article in English | MEDLINE | ID: mdl-38505899

ABSTRACT

Edible mushrooms have rich nutrition (e.g., proteins, dietary fibers, polysaccharides) and they can be potential sources of important ingredients in food processing. However, the cultivation of mushroom fruiting bodies needs a relatively long time, and they can be easily polluted during the growth process. At the same time, a lot of labor and larger planting areas are also required. As we all know, submerged fermentation is a good way to produce edible mushroom mycelia with less environmental pollution and small footprint, which are also rich in nutrition and bioactive components that are used as dietary supplements or health care products in the food industry. Therefore, it can be considered that the replacement of edible mushroom fruiting bodies with edible mushroom mycelia produced through submerged fermentation has great application potential in food production. At present, most of the research about edible mushroom mycelia focuses on the production of bioactive metabolites in fermentation liquid, but there are few reports that concentrate on their applications in food. This paper reviews the research progress of submerged culture of edible mushroom mycelia and their applications in food products.


Subject(s)
Agaricales , Agaricales/metabolism , Dietary Supplements , Fermentation , Dietary Fiber , Mycelium
5.
BMC Biotechnol ; 24(1): 9, 2024 02 08.
Article in English | MEDLINE | ID: mdl-38331794

ABSTRACT

BACKGROUND: The production of Pleurotus ostreatus mycelium as a promising object for use in food and other industries is hampered by a lack of information about the strain-specificity of this fungus mycelium growth and its acquisition of various biological activities. Therefore, this research aimed to investigate mycelial growth of different P. ostreatus strains on varies solid and liquid media as well as to evaluate strains antagonistic, antibacterial, antiradical scavenging activities, and total phenolic content. RESULTS: Potato Dextrose Agar medium was suitable for all strains except P. ostreatus strain 2460. The best growth rate of P. ostreatus 2462 strain on solid culture media was 15.0 ± 0.8 mm/day, and mycelia best growth on liquid culture media-36.5 ± 0.2 g/l. P. ostreatus strains 551 and 1685 were more susceptible to positive effect of plant growth regulators Ivin, Methyur and Kamethur. Using of nutrient media based on combination of natural waste (amaranth flour cake and wheat germ, wheat bran, broken vermicelli and crumbs) has been increased the yield of P. ostreatus strains mycelium by 2.2-2.9 times compared to the control. All used P. ostreatus strains displayed strong antagonistic activity in co-cultivation with Aspergillus niger, Candida albicans, Issatchenkia orientalis, Fusarium poae, Microdochium nivale in dual-culture assay. P. ostreatus 2462 EtOAc mycelial extract good inhibited growth of Escherichia coli (17.0 ± 0.9 mm) while P. ostreatus 2460 suppressed Staphylococcus aureus growth (21.5 ± 0.5 mm) by agar well diffusion method. The highest radical scavenging effect displayed both mycelial extracts (EtOH and EtOAc) of P. ostreatus 1685 (61 and 56%) by DPPH assay as well as high phenolic content (7.17 and 6.73 mg GAE/g) by the Folin-Ciocalteu's method. The maximal total phenol content (7.52 mg GAE/g) demonstrated of P. ostreatus 2461 EtOH extract. CONCLUSIONS: It is found that the growth, antibacterial, antiradical scavenging activity as well as total phenolic content were dependent on studied P. ostreatus strains in contrast to antagonistic activity. The proposed culture mediums of natural waste could be an alternative to commercial mediums for the production mycelial biomass of P. ostreatus strains.


Subject(s)
Pleurotus , Agar/analysis , Agar/pharmacology , Anti-Bacterial Agents/pharmacology , Culture Media/chemistry , Plant Extracts/pharmacology , Mycelium
6.
Int J Med Mushrooms ; 26(1): 55-66, 2024.
Article in English | MEDLINE | ID: mdl-38305262

ABSTRACT

The liver was regarded as the most important metabolic and detoxification organ in vivo, and Morchella esculenta had been reported as the admittedly rare edible fungus belonging to Ascomycetes contributing to the abundant bioactivities. The objective of this study aimed to confirm the potential antioxidant activities of selenium mycelium polysaccharides (Se-MIP) from M. esculenta against alcoholic liver diseases (ALD) in mice. The results indicated that a selenium concentration of 25 µg/mL exhibited potential in vitro antioxidant capacities of Se-MIP. The in vivo mice results demonstrated that Se-MIP showed potential anti-ALD effects by improving the antioxidant activities and alleviating the hepatic dysfunctions. The present conclusions suggested that Se-MIP could be used as a candidate on improving ALD and its complications for further clinical investigations.


Subject(s)
Agaricales , Ascomycota , Liver Diseases, Alcoholic , Selenium , Mice , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Selenium/metabolism , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/prevention & control , Ascomycota/metabolism , Polysaccharides/pharmacology , Polysaccharides/metabolism , Agaricales/metabolism , Mycelium/metabolism
7.
Waste Manag ; 175: 245-253, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38219462

ABSTRACT

Gentamicin mycelium residues (GMRs) abundant in organic substances were generated during the production of gentamicin. Inappropriate handling techniques not only waste valuable resources, they could also result in residual gentamicin into the natural environment, leading to the generation of antibiotic resistance genes (ARGs), which would cause a significant threat to ecological system and human health. In the present work, the effects of thermal treatment on the removal of residual gentamicin in GMRs, as well as the changes of associated ARGs abundance, antimicrobial activity and bioresources properties were investigated. The results indicated that the hazards of GMRs was significantly reduced through thermal treatment. The degradation rate of residual gentamicin in GMRs reached 100 %, the total abundance of gentamicin resistance genes declined from 8.20 to 1.14 × 10-5 and the antibacterial activity of the decomposition products of GMRs on Vibrio fischeri was markedly reduced at 200 °C for 120 min. Additionally, the thermal treatment remarkably influenced the bioresource properties of GMRs-decomposition products. The release of soluble organic matters including soluble carbohydrates and soluble proteins have been enhanced in GMRs, while excessively high temperatures could lead to a reduction of nutrient substances. Generally, thermal treatment technology was a promising strategy for synergistic reducing hazards and utilizing bioresources of GMRs.


Subject(s)
Anti-Bacterial Agents , Gentamicins , Humans , Gentamicins/pharmacology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Nutrients , Mycelium/metabolism , Genes, Bacterial
8.
Int J Med Mushrooms ; 25(12): 55-64, 2023.
Article in English | MEDLINE | ID: mdl-37947064

ABSTRACT

This research aimed to use a novel and effective ultrasound (US) approach for obtaining high bio-compound production, hence proposing strategies for boosting active ingredient biosynthesis. Furthermore, the US promotes several physiological effects on the relevant organelles in the cell, morphological effects on the structure of Phellinus igniarius mycelium, and increases the transfer of nutrients and metabolites. One suitable US condition for flavonoid fermentation was determined as once per day for 7-9 days at a frequency 22 + 40 kHz, power density 120 W/L, treated 10 min, treatment off time 7 s. The flavonoid content and production increased about 47.51% and 101.81%, respectively, compared with the untreated fermentation (P < 0.05). SEM showed that sonication changes the morphology and structure of Ph. igniarius mycelium; TEM reveals the ultrasonic treatment causes organelle aggregation. The ultrasound could affect the metabolism of the biosynthesis of the active ingredients.


Subject(s)
Agaricales , Basidiomycota , Salix , Agaricales/chemistry , Flavonoids/analysis , Fermentation , Basidiomycota/chemistry , Mycelium/chemistry
9.
Int J Med Mushrooms ; 25(12): 65-80, 2023.
Article in English | MEDLINE | ID: mdl-37947065

ABSTRACT

The optimal cultivation conditions and chemical components of Poria cocos fruiting bodies were examined by employing the single factor and response surface methods to screen for optimal conditions for artificial cultivation. The differences in chemical composition among the fruiting bodies, fermented mycelium, and sclerotia of P. cocos were compared using UV spectrophotometry and high-performance liquid chromatography (HPLC). The optimal growth conditions for P. cocos fruiting bodies were 28.5°C temperature, 60% light intensity, and 2.5 g pine sawdust, which resulted in the production of numerous basidiocarps and basidiospores under microscopic examination. Polysaccharides, triterpenoids, and other main active components of P. cocos were found in the fruiting bodies, sclerotia, and fermented mycelium. The triterpenoid components of the fruiting bodies were consistent with those of the sclerotia. The content of pachymic acid in the fruiting bodies was significantly higher than that in the sclerotia, with a value of 33.37 ± 0.1902 mg/g. These findings provide novel insights into the sexual breeding and comprehensive development and utilization of P. cocos.


Subject(s)
Wolfiporia , Wolfiporia/chemistry , Chromatography, Gas , Mycelium/chemistry , Chromatography, High Pressure Liquid , Fruiting Bodies, Fungal
10.
Sci Rep ; 13(1): 21051, 2023 11 29.
Article in English | MEDLINE | ID: mdl-38030880

ABSTRACT

With its distinctive material properties, fungal mycelium has emerged as an innovative material with a diverse array of applications across various industries. This study focuses on how the growth strategies of wood fungi adapt to nutrient availability. The effect of malt extract concentration in the growth medium on radial growth kinetics, morphology, mycelium network connectivity, and mechanical characteristics of mycelium from two Ganoderma species were investigated. While an evident pattern of radial growth rate enhancement with malt concentrations was not apparent, there was a discernible trend towards denser mycelium network characteristics as revealed by spectrophotometry. Increased malt extract contents corresponded to elevated optical density measurements and were visually confirmed by denser mycelium networks in photographic images. Investigating the mechanical characteristics of mycelium cultivated on varying solid substrate concentrations, the Young's modulus exhibited a substantial difference between mycelium grown on 5 wt% malt substrate and samples cultivated on 2 wt% and 0.4 wt% malt substrates. The obtained results represent a new understanding of how malt availability influences mycelial growth of two Ganoderma species, a crucial insight for potentially refining mycelium cultivation across diverse applications, including meat alternatives, smart building materials, and alternative leather.


Subject(s)
Ganoderma , Culture Media/chemistry , Fungi , Mycelium , Plant Extracts/analysis
11.
Int J Med Mushrooms ; 25(11): 27-40, 2023.
Article in English | MEDLINE | ID: mdl-37831510

ABSTRACT

Mushrooms have two components, the fruiting body, which encompasses the stalk and the cap, and the mycelium, which supports the fruiting body underground. The part of the mushroom most commonly consumed is the fruiting body. Given that it is more time consuming to harvest the fruiting body versus simply the mycelia, we were interested in understanding the difference in metabolite content between the fruiting bodies and mycelia of four widely consumed mushrooms in Taiwan: Agrocybe cylindracea (AC), Coprinus comatus (CC), Hericium erinaceus (HE), and Hypsizygus marmoreus (HM). In total, we identified 54 polar metabolites using 1H NMR spectroscopy that included sugar alcohols, amino acids, organic acids, nucleosides and purine/pyrimidine derivatives, sugars, and others. Generally, the fruiting bodies of AC, CC, and HM contained higher amounts of essential amino acids than their corresponding mycelia. Among fruiting bodies, HE had the lowest essential amino acid content. Trehalose was the predominant carbohydrate in most samples except for the mycelia of AC, in which the major sugar was glucose. The amount of adenosine, uridine, and xanthine in the samples was similar, and was higher in fruiting bodies compared with mycelia, except for HM. The organic acid and sugar alcohol content between fruiting bodies and mycelia did not tend to be different. Although each mushroom had a unique metabolic profile, the metabolic profile of fruiting bodies and mycelia were most similar for CC and HE, suggesting that the mycelia of CC and HE may be good replacements for their corresponding fruiting bodies. Additionally, each mushroom species had a unique polar metabolite fingerprint, which could be utilized to identify adulteration.


Subject(s)
Agaricales , Ascomycota , Basidiomycota , Fruiting Bodies, Fungal/chemistry , Agaricales/chemistry , Basidiomycota/chemistry , Mycelium/chemistry , Sugars/analysis , Sugars/metabolism
12.
Int J Med Mushrooms ; 25(11): 75-87, 2023.
Article in English | MEDLINE | ID: mdl-37831514

ABSTRACT

The present study for the first time addressed whether the simultaneous presence of selenium, zinc and iron may have effects on the selenium uptake in the mycelia of the winter mushroom (also known as enoki), Flammulina velutipes. Response surface methodology was used to optimize concentrations of selenium, zinc and iron in the range of 0 to 120 mg L-1. The findings showed that application of selenium, zinc and iron (singly, in pairs, or triads) significantly enhanced the selenium accumulation in the mycelia. The highest amount of the selenium accumulation was observed when selenium (60 mg L-1) and zinc (120 mg L-1) were applied into submerged culture media, concurrently, leading to an 85-fold and 88-fold increase in the selenium content of the mycelia compared to that of the mycelia treated with selenium only and untreated mycelia, respectively. In addition, accumulation of selenium into the mycelia had no deteriorative effects on the mycelial biomass. The findings presented in this study may have implications for daily nutrition and industrial bioproduction of mushroom mycelia enriched with selenium.


Subject(s)
Agaricales , Flammulina , Selenium , Zinc , Iron , Mycelium
13.
Nutrients ; 15(18)2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37764798

ABSTRACT

Mycelial cultures of Lentinula edodes, an edible and medicinal mushroom, have been used in our previous research to obtain selenium-containing immunomodulatory preparations. Our current attempts to obtain a new preparation containing both selenium and zinc, two micronutrients necessary for the functioning of the immune system, extended our interest in the simultaneous accumulation of these elements by mycelia growing in media enriched with selenite and zinc(II) ions. Subsequently, we have studied the effects of new L. edodes mycelium water extracts with different concentrations of selenium and zinc on the activation of T cell fraction in human peripheral blood mononuclear cells (PBMCs). Flow cytometry analysis was used to measure the expression of activation markers on human CD4+ and CD8+ T cells stimulated by anti-CD3 and anti-CD3/CD28 antibodies (Abs). It was demonstrated that statistically significant changes were observed for PD-1 and CD25 antigens on CD8+ T cells. The selenium and zinc content in the examined preparations modified the immunomodulatory activity of mycelial polysaccharides; however, the mechanisms of action of various active ingredients in the mycelial extracts seem to be different.


Subject(s)
Selenium , Shiitake Mushrooms , Humans , Selenium/pharmacology , Leukocytes, Mononuclear , Dietary Supplements , Mycelium
14.
Int J Biol Macromol ; 248: 125951, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37499724

ABSTRACT

Coriolus versicolor, a popular traditional Chinese medicinal herb, is widely used in China to treat spleen and liver diseases; however, the beneficial effects of C. versicolor polysaccharides (CVPs) on nonalcoholic fatty liver disease (NAFLD) remain elusive. Herein we isolated and purified a novel CVP (molecular weight, 17,478 Da) from fermented mycelium powder. This CVP was composed of mannose, galacturonic acid, glucose, galactose, xylose, and fucose at a molar ratio of 22:1:8:15:10:3. Methylation, gas chromatography-mass spectrometry, and nuclear magnetic resonance analyses indicated that the CVP backbone consisted of →1)-ß-D-Man-(6,4→1)-α-D-Gal-(3→1)-α-D-Man-(4→1)-α-D-Gal-(6→, with branches of →1)-α-D-Glc-(6→1)-α-D-Man-(4,3→1)-ß-D-Xyl-(2→1)-ß-D-Glc on the O-6 position of →1)-ß-D-Man-(6,4→ of the main chain. The secondary branches linked to the O-4 position of →1)-α-D-Man-(4,3→ with the chain of →1)-α-D-Fuc-(4→1)-α-D-Man. Further, CVP treatment alleviated the symptoms of NAFLD in an HFD-induced mice model. CVP altered gut microbiota, predominantly suppressing microbes associated with bile acids both in the serum and cecal contents. In vitro data showed that CVP reduced HFD-induced hyperlipidemia via farnesoid X receptor. Our results improve our understanding of the mechanisms underlying the cholesterol- and lipid-lowering effects of CVP and indicate that CVP is a promising candidate for NAFLD therapy.


Subject(s)
Non-alcoholic Fatty Liver Disease , Polyporaceae , Humans , Animals , Mice , Non-alcoholic Fatty Liver Disease/drug therapy , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Polysaccharides/chemistry , Mycelium/chemistry
15.
Zhongguo Zhong Yao Za Zhi ; 48(10): 2732-2738, 2023 May.
Article in Chinese | MEDLINE | ID: mdl-37282933

ABSTRACT

In Zherong county, Fujian province, the black spot of Pseudostellaria heterophylla often breaks out in the rainy season from April to June every year. As one of the main leaf diseases of P. heterophylla, black spot seriously affects the yield and quality of the medicinal material. To identify and characterize the pathogens causing black spot, we isolated the pathogens, identified them as a species of Alternaria according to Koch's postulates, and then tested their pathogenicity and biological characteristics. The results showed that the pathogens causing P. heterophylla black spot were A. gaisen, as evidenced by the similar colony morphology, spore characteristics, sporulation phenotype, and the same clade with A. gaisen on the phylogenetic tree(the maximum likelihood support rate of 100% and the Bayesian posterior probability of 1.00) built based on the tandem sequences of ITS, tef1, gapdh, endoPG, Alta1, OPA10-2, and KOG1077. The optimum conditions for mycelial growth of the pathogen were 25 ℃, pH 5-8, and 24 h dark culture. The lethal conditions for mycelia and spores were both treatment at 50 ℃ for 10 min. We reported for the first time the A. gaisen-caused black spot of P. heterophylla. The results could provide a theoretical basis for the diagnosis and control of P. heterophylla leaf spot diseases.


Subject(s)
Alternaria , Caryophyllaceae , Plant Diseases , Alternaria/classification , Alternaria/genetics , Alternaria/growth & development , Alternaria/pathogenicity , Caryophyllaceae/microbiology , DNA, Fungal/genetics , Mycelium/growth & development , Phylogeny , Plant Diseases/microbiology , Plant Diseases/prevention & control , China
16.
Front Immunol ; 14: 1150287, 2023.
Article in English | MEDLINE | ID: mdl-37114040

ABSTRACT

Background: Ophiocordyceps sinensis is well-known worldwide as a traditional medicine. An alternative natural source of O. sinensis is provided by mycelial cultivation. However, the bioactivities of cultured mycelial-enriched ß-D-glucan polysaccharides from a novel fungus O. sinensis OS8 are still unknown. Methods: We investigated the potential bioactivities via anticancer, antioxidant, and immunomodulatory polysaccharides (OS8P) produced from cultured mycelia of O. sinensis OS8. This strain is a novel fungus isolated from natural O. sinensis, which is further cultured by submerged mycelial cultivation for polysaccharide production. Results: The yield of mycelial biomass was 23.61 g/l, and it contained 306.1 mg/100 g of adenosine and 3.22 g/100 g of polysaccharides. This OS8P was enriched with ß-D-glucan at 56.92% and another form of α-D-glucan at 35.32%. The main components of OS8P were dodecamethyl pentasiloxane, 2,6-bis (methylthiomethyl) pyridine, 2-(4-pyrimidinyl)-1H-Benzimidazole, and 2-Chloro-4-(4-nitroanilino)-6-(O-toluidino)-1,3,5-triazine at the rates of 32.5, 20.0, 17.5, and 16.25%, respectively. The growth of colon cancer cells (HT-29) was significantly inhibited by OS8P, with IC50 value of 202.98 µg/ml, and encouraged apoptosis in HT-29 cells as confirmed by morphological change analysis via AO/PI and DAPI staining, DNA fragmentation, and scanning electron microscopic observations. In addition, significant antioxidant activity was demonstrated by OS8P through DPPH and ABTS assays, with IC50 values of 0.52 and 2.07 mg/ml, respectively. The OS8P also exhibited suitable immunomodulatory activities that significantly enhanced (P< 0.05) the induction of splenocyte proliferation. Conclusion: The OS8P enriched with ß-D-glucan polysaccharides and produced by submerged mycelial culture of a new fungal strain of O. sinensis OS8 strongly inhibited the proliferation of colon cancer cells without any cytotoxicity against normal cells. The potential effect of the OS8P on the cancer cells was due to the stimulation of apoptosis. Also, the OS8P exhibited good antioxidant and immunomodulatory activities. The results indicate that OS8P has promising applications in the functional food industry and/or therapeutic agents for colon cancer.


Subject(s)
Cordyceps , Cordyceps/chemistry , Glucans , Antioxidants/analysis , Polysaccharides/pharmacology , Polysaccharides/analysis , Mycelium/chemistry
17.
Int J Med Mushrooms ; 25(4): 75-92, 2023.
Article in English | MEDLINE | ID: mdl-37075086

ABSTRACT

The asexual form of Ophiocordyceps sinensis has been controversial, but various morphologic mycelium appeared when O. sinensis was cultured under experimental conditions. To explore the generation mechanism of morphologic mycelium, developmental transcriptomes were analyzed from three kinds of mycelium (aerial mycelium, hyphae knot, and substrate mycelium). The results showed that diameter and morphology of these three kinds of mycelium were obviously different. KEGG functional enrichment analysis showed that the differential expressed genes (DEGs) of substrate mycelium were enriched in ribosomes and peroxisomes, indicating that prophase culture was rich in nutrients and the metabolism of substrate mycelium cells was vigorous in the stage of nutrient absorption. The up-DEGs of hyphae knot were mainly enriched in the oxidative phosphorylation pathway, indicating that oxidative phosphorylation was the main energy source for mycelium formation in the stage of nutrient accumulation and reproductive transformation. The up-DEGs of aerial mycelium were mainly enriched in the synthesis and degradation pathways of valine, leucine, and isoleucine, suggesting that the occurrence of aerial mycelium was related to amino acid metabolism at the later stage of culture, and nutritional stress accelerated the reproduction of asexual spores. In addition, the important roles of mycelium formation related genes were verified by combined analysis of qRT-PCR and transcriptome sequencing. Collectively, this study will provide theoretical guidance for inhibiting the occurrence of aerogenous mycelium and promoting the development of mycelium into pinhead primordia in the culture of O. sinensis in the future.


Subject(s)
Cordyceps , Mycelium , Cordyceps/genetics , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Mycelium/genetics , Transcriptome/genetics
18.
Int J Med Mushrooms ; 25(3): 37-46, 2023.
Article in English | MEDLINE | ID: mdl-37017660

ABSTRACT

This study was conducted to evaluate extraction yield, antioxidant content, antioxidant capacity and antibacterial activity of extracts obtained from submerged mycelium (ME) and fruiting body (FBE) of Phellinus robiniae NTH-PR1. The results showed that yields of ME and FBE reached 14.84 ± 0.63 and 18.89 ± 0.86%, respectively. TPSC, TPC, and TFC were present in both mycelium and fruiting body, and the more contents of them were found in fruiting body. The concentrations of TPSC, TPC and TFC in ME and FBE were 17.61 ± 0.67 and 21.56 ± 0.89 mg GE g-1, 9.31 ± 0.45 and 12.14 ± 0.56 mg QAE g-1, and 8.91 ± 0.53 and 9.04 ± 0.74 mg QE g-1, respectively. EC50 values for DPPH radical scavenging revealed FBE (260.62 ± 3.33 µg mL-1) was more effective than ME (298.21 ± 3.61 µg mL-1). EC50 values for ferrous ion chelating in ME and FBE were 411.87 ± 7.27 and 432.39 ± 2.23 µg mL-1, respectively. Thus, both extracts were able to inhibit Gram-positive and Gram-negative pathogenic bacterial strains, at concentrations ranging in 25-100 mg mL-1 of ME and 18.75-75 mg mL-1 of FBE for Gram-positive bacteria; ranging in 75-100 mg mL-1 of ME and 50-75 of FBE for Gram-negative bacteria. Overall submerged mycelial biomass and fruiting bodies of Ph. robiniae NTH-PR1 can be considered as useful natural sources for development of functional food, pharmaceuticals and cosmetic products or cosmeceuticals.


Subject(s)
Agaricales , Anti-Infective Agents , Ascomycota , Basidiomycota , Agaricales/chemistry , Antioxidants/pharmacology , Anti-Infective Agents/pharmacology , Mycelium/chemistry , Fruiting Bodies, Fungal/chemistry
19.
Biomed Pharmacother ; 161: 114424, 2023 May.
Article in English | MEDLINE | ID: mdl-36827712

ABSTRACT

Melanoma is one of the most aggressive forms of skin cancer and is characterized by high metastatic potential. Despite improvements in early diagnosis and treatment, the mortality rate among metastatic melanoma patients continues to represent a significant clinical challenge. Therefore, it is imperative that we search for new forms of treatment. Trametes versicolor is a mushroom commonly used in Chinese traditional medicine due to its numerous beneficial properties. In the present work, we demonstrate T. versicolor fruiting body and mycelium ethanol extracts exhibit potent cytotoxic activity towards A375 (IC50 = 663.3 and 114.5 µg/mL respectively) and SK-MEL-5 (IC50 = 358.4 and 88.6 µg/mL respectively) human melanoma cell lines. Further studies revealed that T. versicolor mycelium extract induced apoptotic cell death and poly (ADP-ribose) polymerase cleavage, upregulated the expression of autophagy-associated marker LC3-II, increased the presentation of major histocompatibility complex II and expression of programmed death-ligand receptor, and inhibited cell migration in SK-MEL-5 cells. Therefore, our present findings highlight the therapeutic potential of T. versicolor mycelium extract for the treatment of melanoma and merit further study.


Subject(s)
Antineoplastic Agents , Polyporaceae , Humans , Trametes , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Mycelium
20.
Int J Med Mushrooms ; 25(2): 49-54, 2023.
Article in English | MEDLINE | ID: mdl-36749056

ABSTRACT

Species of the genus Morchella are highly prized worldwide for their excellent flavor and high medicinal value. In recent years, artificial cultivations of medicinal fungi with many advantages have elicited great interest as a promising alternative to produce certain valuable metabolites. Therefore, the secondary metabolites of fermented M. importuna belonging to the black morel clade isolated from China were investigated. The strain was cultured in a fermentation tank in PDB liquid medium by two-step method. The mycelia and fermentation broth were extracted by ethyl acetate. The secondary metabolites were separated and purified by repeated silica gel column chromatography. Structures of compounds were determined by NMR data and references. One new natural compound (1) and six known compounds (2-7) were obtained. Compounds 1, 2, 4, and 5 were first isolated from genus Morchella and compounds 3, 6, and 7 are first isolated from species M. importuna.


Subject(s)
Agaricales , Ascomycota , Mycelium/metabolism , Ascomycota/chemistry , China
SELECTION OF CITATIONS
SEARCH DETAIL