Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Bioelectromagnetics ; 42(5): 357-370, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33998011

ABSTRACT

Low-frequency pulsed magnetic field (LF-PMF) application is a non-invasive, easy, and inexpensive treatment method in pain management. However, the molecular mechanism underlying the effect of LF-PMF on pain is not fully understood. Considering the obvious dysregulations of gene expression observed in certain types of voltage-gated sodium channels (VGSCs) in pain conditions, the present study tested the hypothesis that LF-PMF shows its pain-relieving effect by regulating genes that code VGSCs proteins. Five experimental rat groups (Control, Streptozotocin-induced experimental painful diabetic neuropathy (PDN), PDN Sham, PDN 10 Hz PMF, and PDN 30 Hz PMF) were established. After the pain formation in PDN groups, the magnetic field groups were exposed to 10/30 Hz, 1.5 mT PMF for 4 weeks, an hour daily. Progression of pain was evaluated using behavioral pain tests during the entire experimental processes. After the end of PMF treatment, SCN9A (NaV1.7 ), SCN10A (NaV1.8 ), SCN11A (NaV1.9 ), and SCN3A (NaV1.3 ) gene expression level changes were determined by analyzing real-time polymerase chain reaction results. We found that 10 Hz PMF application was more effective than 30 Hz on pain management. In addition, NaV1.7 and NaV1.3 transcriptions were upregulated while NaV1.8 and NaV1.9 were downregulated in painful conditions. Notably, the downregulated expression of the genes encoding NaV1.8 and NaV1.9 were re-regulated and increased to control level by 10 Hz PMF application. Consequently, it may be deduced that 10 Hz PMF application reduces pain by modulating certain VGSCs at the transcriptional level. © 2021 Bioelectromagnetics Society.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Neuropathies , Neuralgia , Animals , Diabetic Neuropathies/genetics , Diabetic Neuropathies/therapy , Magnetic Fields , NAV1.3 Voltage-Gated Sodium Channel/genetics , NAV1.8 Voltage-Gated Sodium Channel , NAV1.9 Voltage-Gated Sodium Channel , Neuralgia/genetics , Neuralgia/therapy , Rats , Sodium Channels
2.
Naunyn Schmiedebergs Arch Pharmacol ; 394(2): 299-306, 2021 02.
Article in English | MEDLINE | ID: mdl-32970203

ABSTRACT

Mutations within the SCN11A gene which encodes the voltage-gated sodium channel NaV1.9 mainly expressed in small fiber sensory neurons have been associated with neuropathic disorders; however, suitable medications have not been fully investigated. To develop drug therapies against NaV1.9-related neuropathic pain, we aimed to establish a novel model using mice carrying the Scn11a p.R222S mutation initially identified in patients with familial episodic limb pain that is characterized by paroxysmal pain induced by fatigue or bad weather conditions. We investigated the influence of cold exposure (4 °C, overnight) on the behavioral and biochemical phenotypes of Scn11a p.R222S mutant (R222S) and wild type C57BL/6N (WT) mice. We also tested the effects of acetaminophen (125, 250 mg/kg, perorally, p.o.) and traditional Japanese medicine, goshajinkigan (0.5 or 1.0 g/kg, p.o.), which are analgesic drugs prescribed to patients with neuropathic pain, in this model of cold-induced mechanical allodynia in R222S mice.Cold-exposed R222S mice exhibited enhanced mechanical allodynia and thermal hypersensitivity compared with WT mice. The decrease of the mechanical withdrawal threshold in R222S mice was reversible 24 h after housing at room temperature. There was no significant change in the levels of interleukin-1ß, interleukin-6, tumor necrosis factor-α, or interferon-γ in the plasma or spinal cords of WT and R222S mice after cold exposure. Both acetaminophen (250 mg/kg) and goshajinkigan (1.0 g/kg) significantly attenuated mechanical allodynia in R222S mice. The model of cold-induced mechanical allodynia in mice with the Scn11a p.R222S mutation is novel and useful for evaluating analgesic drugs for intractable neuropathies related to NaV1.9.


Subject(s)
Disease Models, Animal , Hyperalgesia , NAV1.9 Voltage-Gated Sodium Channel/genetics , Neuralgia , Acetaminophen/therapeutic use , Analgesics/therapeutic use , Animals , Cold Temperature , Cytokines/blood , Cytokines/immunology , Drugs, Chinese Herbal/therapeutic use , Hindlimb/pathology , Hyperalgesia/drug therapy , Hyperalgesia/genetics , Hyperalgesia/immunology , Hyperalgesia/pathology , Male , Mice, Inbred C57BL , Mice, Mutant Strains , Mutation, Missense , Neuralgia/drug therapy , Neuralgia/genetics , Neuralgia/immunology , Neuralgia/pathology , Spinal Cord/immunology , Touch
3.
J Pain ; 22(4): 440-453, 2021 04.
Article in English | MEDLINE | ID: mdl-33227509

ABSTRACT

Oral amitriptyline hydrochloride (amitriptyline) is ineffective against some forms of chronic pain and is often associated with dose-limiting adverse events. We evaluated the potential effectiveness of high-dose topical amitriptyline in a preliminary case series of chemotherapy-induced peripheral neuropathy patients and investigated whether local or systemic adverse events associated with the use of amitriptyline were present in these patients. We also investigated the mechanism of action of topically administered amitriptyline in mice. Our case series suggested that topical 10% amitriptyline treatment was associated with pain relief in chemotherapy-induced peripheral neuropathy patients, without the side effects associated with systemic absorption. Topical amitriptyline significantly increased mechanical withdrawal thresholds when applied to the hind paw of mice, and inhibited the firing responses of C-, Aß- and Aδ-type peripheral nerve fibers in ex vivo skin-saphenous nerve preparations. Whole-cell patch-clamp recordings on cultured sensory neurons revealed that amitriptyline was a potent inhibitor of the main voltage-gated sodium channels (Nav1.7, Nav1.8, and Nav1.9) found in nociceptors. Calcium imaging showed that amitriptyline activated the transient receptor potential cation channel, TRPA1. Our case series indicated that high-dose 10% topical amitriptyline could alleviate neuropathic pain without adverse local or systemic effects. This analgesic action appeared to be mediated through local inhibition of voltage-gated sodium channels. PERSPECTIVE: Our preliminary case series suggested that topical amitriptyline could provide effective pain relief for chemotherapy-induced peripheral neuropathy patients without any systemic or local adverse events. Investigation of the mechanism of this analgesic action in mice revealed that this activity was mediated through local inhibition of nociceptor Nav channels.


Subject(s)
Amitriptyline/pharmacology , Analgesics, Non-Narcotic/pharmacology , Antineoplastic Agents/adverse effects , Nociceptive Pain/drug therapy , Nociceptors/drug effects , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/drug therapy , TRPA1 Cation Channel/drug effects , Voltage-Gated Sodium Channel Blockers/pharmacology , Voltage-Gated Sodium Channels/drug effects , Administration, Topical , Adolescent , Adult , Aged , Aged, 80 and over , Amitriptyline/administration & dosage , Amitriptyline/adverse effects , Analgesics, Non-Narcotic/administration & dosage , Analgesics, Non-Narcotic/adverse effects , Animals , Behavior, Animal/drug effects , Child , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , NAV1.7 Voltage-Gated Sodium Channel , NAV1.8 Voltage-Gated Sodium Channel , NAV1.9 Voltage-Gated Sodium Channel , Voltage-Gated Sodium Channel Blockers/administration & dosage , Voltage-Gated Sodium Channel Blockers/adverse effects , Young Adult
4.
Sci Rep ; 10(1): 2326, 2020 02 11.
Article in English | MEDLINE | ID: mdl-32047194

ABSTRACT

Acute pruritus occurs in various disorders. Despite severe repercussions on quality of life treatment options remain limited. Voltage-gated sodium channels (NaV) are indispensable for transformation and propagation of sensory signals implicating them as drug targets. Here, NaV1.7, 1.8 and 1.9 were compared for their contribution to itch by analysing NaV-specific knockout mice. Acute pruritus was induced by a comprehensive panel of pruritogens (C48/80, endothelin, 5-HT, chloroquine, histamine, lysophosphatidic acid, trypsin, SLIGRL, ß-alanine, BAM8-22), and scratching was assessed using a magnet-based recording technology. We report an unexpected stimulus-dependent diversity in NaV channel-mediated itch signalling. NaV1.7-/- showed substantial scratch reduction mainly towards strong pruritogens. NaV1.8-/- impaired histamine and 5-HT-induced scratching while NaV1.9 was involved in itch signalling towards 5-HT, C48/80 and SLIGRL. Furthermore, similar microfluorimetric calcium responses of sensory neurons and expression of itch-related TRP channels suggest no change in sensory transduction but in action potential transformation and conduction. The cumulative sum of scratching over all pruritogens confirmed a leading role of NaV1.7 and indicated an overall contribution of NaV1.9. Beside the proposed general role of NaV1.7 and 1.9 in itch signalling, scrutiny of time courses suggested NaV1.8 to sustain prolonged itching. Therefore, NaV1.7 and 1.9 may represent targets in pruritus therapy.


Subject(s)
Histamine/toxicity , NAV1.7 Voltage-Gated Sodium Channel/physiology , NAV1.8 Voltage-Gated Sodium Channel/physiology , NAV1.9 Voltage-Gated Sodium Channel/physiology , Pruritus/prevention & control , Animals , Mice , Mice, Knockout , NAV1.7 Voltage-Gated Sodium Channel/chemistry , NAV1.8 Voltage-Gated Sodium Channel/chemistry , NAV1.9 Voltage-Gated Sodium Channel/chemistry , Pruritus/chemically induced , Pruritus/pathology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL