Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 220
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Biosensors (Basel) ; 14(3)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38534249

ABSTRACT

Silicon nanowire field effect (SiNW-FET) biosensors have been successfully used in the detection of nucleic acids, proteins and other molecules owing to their advantages of ultra-high sensitivity, high specificity, and label-free and immediate response. However, the presence of the Debye shielding effect in semiconductor devices severely reduces their detection sensitivity. In this paper, a three-dimensional stacked silicon nanosheet FET (3D-SiNS-FET) biosensor was studied for the high-sensitivity detection of nucleic acids. Based on the mainstream Gate-All-Around (GAA) fenestration process, a three-dimensional stacked structure with an 8 nm cavity spacing was designed and prepared, allowing modification of probe molecules within the stacked cavities. Furthermore, the advantage of the three-dimensional space can realize the upper and lower complementary detection, which can overcome the Debye shielding effect and realize high-sensitivity Point of Care Testing (POCT) at high ionic strength. The experimental results show that the minimum detection limit for 12-base DNA (4 nM) at 1 × PBS is less than 10 zM, and at a high concentration of 1 µM DNA, the sensitivity of the 3D-SiNS-FET is approximately 10 times higher than that of the planar devices. This indicates that our device provides distinct advantages for detection, showing promise for future biosensor applications in clinical settings.


Subject(s)
Biosensing Techniques , Nanowires , Nucleic Acids , Silicon/chemistry , Transistors, Electronic , DNA , Biosensing Techniques/methods , Nanowires/chemistry
2.
Langmuir ; 39(32): 11238-11244, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37540623

ABSTRACT

Biotemplated mineralization is a promising and ecofriendly approach to manufacture metal nanoparticles and composites with precise size control. Plant viruses are suitable templates for biomineralization because they are chemically robust and highly scalable through molecular farming. Here, we report a gold-nanoparticle-coated tobacco mosaic virus (TMV) synthesized in a test tube or in plant extracts making use of a TMV displaying a gold-binding peptide (GBP). The methods developed are a step toward engineered living materials, where gold nanowires could be formed in plant tissues for sensing or energy harvest applications.


Subject(s)
Metal Nanoparticles , Nanowires , Tobacco Mosaic Virus , Tobacco Mosaic Virus/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Nanowires/chemistry , Peptides
3.
Adv Neurobiol ; 32: 353-384, 2023.
Article in English | MEDLINE | ID: mdl-37480466

ABSTRACT

Military personnel during combat or peacekeeping operations are exposed to extreme climates of hot or cold environments for longer durations. Spinal cord injury is quite common in military personnel following central nervous system (CNS) trauma indicating a possibility of altered pathophysiological responses at different ambient temperatures. Our previous studies show that the pathophysiology of brain injury is exacerbated in animals acclimated to cold (5 °C) or hot (30 °C) environments. In these diverse ambient temperature zones, trauma exacerbated oxidative stress generation inducing greater blood-brain barrier (BBB) permeability and cell damage. Extracts of Ginkgo biloba EGb-761 and BN-52021 treatment reduces brain pathology following heat stress. This effect is further improved following TiO2 nanowired delivery in heat stress in animal models. Several studies indicate the role of EGb-761 in attenuating spinal cord induced neuronal damages and improved functional deficit. This is quite likely that these effects are further improved following nanowired delivery of EGb-761 and BN-52021 with cerebrolysin-a balanced composition of several neurotrophic factors and peptide fragments in spinal cord trauma. In this review, TiO2 nanowired delivery of EGb-761 and BN-52021 with nanowired cerebrolysin is examined in a rat model of spinal cord injury at cold environment. Our results show that spinal cord injury aggravates cord pathology in cold-acclimated rats and nanowired delivery of EGb-761 and BN-52021 with cerebrolysin significantly induced superior neuroprotection, not reported earlier.


Subject(s)
Bilobalides , Ginkgo biloba , Neuroprotective Agents , Spinal Cord Injuries , Animals , Rats , Cold Temperature , Drug Delivery Systems , Nanowires , Neuroprotective Agents/therapeutic use , Plant Extracts/therapeutic use , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/physiopathology , China
4.
Adv Neurobiol ; 32: 385-416, 2023.
Article in English | MEDLINE | ID: mdl-37480467

ABSTRACT

Curcumin is a well-known antioxidant used as traditional medicine in China and India since ages to treat variety of inflammatory ailments as a food supplement. Curcumin has antitumor properties with neuroprotective effects in Alzheimer's disease. Curcumin elevates brain-derived neurotrophic factor (BDNF) and dopamine (DA) levels in the brain indicating its role in substance abuse. Methamphetamine (METH) is one of the most abused substances in the world that induces profound neurotoxicity by inducing breakdown of the blood-brain barrier (BBB), vasogenic edema and cellular injuries. However, influence of curcumin on METH-induced neurotoxicity is still not well investigated. In this investigation, METH neurotoxicity and neuroprotective effects of curcumin nanodelivery were examined in a rat model. METH (20 mg/kg, i.p.) neurotoxicity is evident 4 h after its administration exhibiting breakdown of BBB to Evans blue albumin in the cerebral cortex, hippocampus, cerebellum, thalamus and hypothalamus associated with vasogenic brain edema as seen measured using water content in all these regions. Nissl attaining exhibited profound neuronal injuries in the regions of BBB damage. Normal curcumin (50 mg/kg, i.v.) 30 min after METH administration was able to reduce BBB breakdown and brain edema partially in some of the above brain regions. However, TiO2 nanowired delivery of curcumin (25 mg/kg, i.v.) significantly attenuated brain edema, neuronal injuries and the BBB leakage in all the brain areas. BDNF level showed a significant higher level in METH-treated rats as compared to saline-treated METH group. Significantly enhanced DA levels in METH-treated rats were also observed with nanowired delivery of curcumin. Normal curcumin was able to slightly elevate DA and BDNF levels in the selected brain regions. Taken together, our observations are the first to show that nanodelivery of curcumin induces superior neuroprotection in METH neurotoxicity probable by enhancing BDNF and DA levels in the brain, not reported earlier.


Subject(s)
Brain Edema , Curcumin , Methamphetamine , Neuroprotective Agents , Animals , Rats , Brain-Derived Neurotrophic Factor , Dopamine , Methamphetamine/toxicity , Neuroprotective Agents/pharmacology , Nanowires/chemistry , Nanoparticle Drug Delivery System/chemistry , Nanoparticle Drug Delivery System/pharmacology
5.
Int J Hyperthermia ; 40(1): 2223371, 2023.
Article in English | MEDLINE | ID: mdl-37357335

ABSTRACT

OBJECTIVE: Magnetic nanowires (MNWs) are potential candidates for heating in biomedical applications that require rapid and uniform heating rates, such as warming cryopreserved organs and hyperthermia treatment of cancer cells. Therefore, it is essential to determine which materials and geometries will provide the optimal heating using available alternating magnetic fields (AMF). METHOD: Micromagnetic simulations are used to investigate the heating ability of MNWs by predicting their hysteretic behavior. MNWs composed of iron (Fe), nickel (Ni), cobalt (Co) or permalloy (FeNi alloy, Py) with different diameters (10-200 nm) are simulated using object oriented micromagnetic framework (OOMMF). RESULTS: Hysteresis loops are obtained for each simulated MNW, and the 2D/3D magnetic moment map is simulated to show the reversal mechanism. The heating ability, in terms of specific loss power (SLP), is calculated from the area of the hysteresis loop times frequency for each MNW for comparison with others. CONCLUSION: It is estimated that a theoretical optimal heating ability of 2730 W/g can be provided by isolated Co MNWs with 50 nm diameters using a typical AMF system that can supply 72 kA/m field amplitude and 50 kHz in frequency. Generalized correlation between coercivity and size/material of MNWs is provided as a guidance for researchers to choose the most appropriate MNW as a heater for their AMF system and vice versa.


Subject(s)
Hyperthermia, Induced , Nanowires , Heating , Magnetics , Magnetic Fields
6.
Int J Mol Sci ; 24(8)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37108198

ABSTRACT

Tuning and controlling the magnetic properties of nanomaterials is crucial to implement new and reliable technologies based on magnetic hyperthermia, spintronics, or sensors, among others. Despite variations in the alloy composition as well as the realization of several post material fabrication treatments, magnetic heterostructures as ferromagnetic/antiferromagnetic coupled layers have been widely used to modify or generate unidirectional magnetic anisotropies. In this work, a pure electrochemical approach has been used to fabricate core (FM)/shell (AFM) Ni@(NiO,Ni(OH)2) nanowire arrays, avoiding thermal oxidation procedures incompatible with integrative semiconductor technologies. Besides the morphology and compositional characterization of these core/shell nanowires, their peculiar magnetic properties have been studied by temperature dependent (isothermal) hysteresis loops, thermomagnetic curves and FORC analysis, revealing the existence of two different effects derived from Ni nanowires' surface oxidation over the magnetic performance of the array. First of all, a magnetic hardening of the nanowires along the parallel direction of the applied magnetic field with respect their long axis (easy magnetization axis) has been found. The increase in coercivity, as an effect of surface oxidation, has been observed to be around 17% (43%) at 300 K (50 K). On the other hand, an increasing exchange bias effect on decreasing temperature has been encountered when field cooling (3T) the oxidized Ni@(NiO,Ni(OH)2) nanowires below 100 K along their parallel lengths.


Subject(s)
Nanopores , Nanowires , Nanowires/chemistry , Aluminum Oxide , Nickel/chemistry , Nanotechnology/methods
7.
ACS Appl Mater Interfaces ; 15(16): 19892-19903, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37046176

ABSTRACT

Silicon nanowire (SiNW) biosensors have attracted a lot of attention due to their superior sensitivity. Recently, the dependence of biomolecule detection sensitivity on the nanowire (NW) width, number, and doping density has been partially investigated. However, the primary reason for achieving ultrahigh sensitivity has not been elucidated thus far. In this study, we designed and fabricated SiNW biosensors with different widths (10.8-155 nm) by integrating a complementary metal-oxide-semiconductor process and electron beam lithography. We aimed to investigate the detection limit of SiNW biosensors and reveal the critical effect of the 10-nm-scaled SiNW width on the detection sensitivity. The sensing performance was evaluated by detecting antiovalbumin immunoglobulin G (IgG) with various concentrations (from 6 aM to 600 nM). The initial thickness of the depletion region of the SiNW and the changes in the depletion region due to biomolecule binding were calculated. The basis of this calculation are the resistance change ratios as functions of IgG concentrations using SiNWs with different widths. The calculation results reveal that the proportion of the depletion region over the entire SiNW channel is the essential reason for high-sensitivity detection. Therefore, this study is crucial for an indepth understanding on how to maximize the sensitivity of SiNW biosensors.


Subject(s)
Biosensing Techniques , Nanowires , Silicon , Immunoglobulin G , Oxides , Printing
8.
Carbohydr Polym ; 302: 120313, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36604095

ABSTRACT

In this study, tunicate cellulose nanocrystals (TCNCs) were introduced into castor oil-based waterborne polyurethane (WPU) to prepare bio-based nanocomposites through a simple solution blending method. The effect of TCNCs content on the particle size and stability of the composite dispersions, as well as the thermophysical and mechanical properties of the composite films were studied and discussed. The unique structure and properties of TCNCs, such as high crystallinity, large aspect ratio and high modulus, not only greatly improved the storage stability of WPU, but also showed significant reinforcing/toughening effects and excellent compatibility to WPU. By drip-coating silver nanowires (AgNWs) on the surface of the composite films, the flexible strain sensors were fabricated, which showed excellent sensitivity in monitoring human movement.


Subject(s)
Nanocomposites , Nanoparticles , Nanowires , Urochordata , Wearable Electronic Devices , Animals , Humans , Cellulose/chemistry , Polyurethanes/chemistry , Castor Oil/chemistry , Silver , Nanoparticles/chemistry , Nanocomposites/chemistry
9.
Soft Robot ; 10(3): 590-600, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36577053

ABSTRACT

Jellyfish are among the widely distributed nature creatures that can effectively control the fluidic flow around their transparent soft body, thus achieving movements in the water and camouflage in the surrounding environments. Till now, it remains a challenge to replicate both transparent appearance and functionalities of nature jellyfish in synthetic systems due to the lack of transparent actuators. In this work, a fully transparent soft jellyfish robot is developed to possess both transparency and bio-inspired omni motions in water. This robot is driven by transparent dielectric elastomer actuators (DEAs) using hybrid silver nanowire networks and conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/waterborne polyurethane as compliant electrodes. The electrode exhibits large stretchability, low stiffness, high transmittance, and excellent conductivity at large strains. Consequently, the highly transparent DEA based on this hybrid electrode, with Very-High-Bond membranes as dielectric layers and polydimethylsiloxane as top coating, can achieve a maximum area strain of 146% with only 3% hysteresis loss. Driven by this transparent DEA, the soft jellyfish robot can achieve vertical and horizontal movements in water, by mimicking the actual pulsating rhythm of an Aurelia aurita. The bio-inspired robot can serve multiple functions as an underwater soft robot. The hybrid electrodes and bio-inspired design approach are potentially useful in a variety of soft robots and flexible devices.


Subject(s)
Nanowires , Robotics , Scyphozoa , Animals , Silver , Elastomers/chemistry
10.
Sci Rep ; 12(1): 16698, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36202902

ABSTRACT

Magnetic nanomaterials are increasingly impacting the field of biology and medicine. Their versatility in terms of shape, structure, composition, coating, and magnetic responsivity make them attractive for drug delivery, cell targeting and imaging. Adipose derived-mesenchymal cells (ASCs) are intensely scrutinized for tissue engineering and regenerative medicine. However, differentiation into musculoskeletal lineages can be challenging. In this paper, we show that uncoated nickel nanowires (Ni NW) partially released from their alumina membrane offer a mechanically-responsive substrate with regular topography that can be used for the delivery of magneto-mechanical stimulation. We have used a tailored protocol for improving ASCs adherence to the substrate, and showed that cells retain their characteristic fibroblastic appearance, cytoskeletal fiber distribution and good viability. We report here for the first time significant increase in osteogenic but not adipogenic differentiation of ASCs on Ni NW exposed to 4 mT magnetic field compared to non-exposed. Moreover, magnetic actuation is shown to induce ASCs osteogenesis but not adipogenesis in the absence of external biochemical cues. While these findings need to be verified in vivo, the use of Ni NW substrate for inducing osteogenesis in the absence of specific differentiation factors is attractive for bone engineering. Implant coating with similar surfaces for orthopedic and dentistry could be as well envisaged as a modality to improve osteointegration.


Subject(s)
Nanowires , Osteogenesis , Adipose Tissue/metabolism , Aluminum Oxide , Cell Differentiation , Cells, Cultured , Magnetic Phenomena , Nickel/metabolism
11.
Environ Sci Technol ; 56(20): 14817-14827, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36184803

ABSTRACT

The mobility of 79Se, a fission product of 235U and long-lived radioisotope, is an important parameter in the safety assessment of radioactive nuclear waste disposal systems. Nonradioactive selenium is also an important contaminant of drainage waters from black shale mountains and coal mines. Highly mobile and soluble in its high oxidation states, selenate (Se(VI)O42-) and selenite (Se(IV)O32-) oxyanions can interact with magnetite, a mineral present in anoxic natural environments and in steel corrosion products, thereby being reduced and consequently immobilized by forming low-solubility solids. Here, we investigated the sorption and reduction capacity of synthetic nanomagnetite toward Se(VI) at neutral and acidic pH, under reducing, oxygen-free conditions. The additional presence of Fe(II)aq, released during magnetite dissolution at pH 5, has an effect on the reduction kinetics. X-ray absorption spectroscopy analyses revealed that, at pH 5, trigonal gray Se(0) formed and that sorbed Se(IV) complexes remained on the nanoparticle surface during longer reaction times. The Se(0) nanowires grew during the reaction, which points to a complex transport mechanism of reduced species or to active reduction sites at the tip of the Se(0) nanowires. The concomitant uptake of aqueous Fe(II) and Se(VI) ions is interpreted as a consequence of small pH oscillations that result from the Se(VI) reduction, leading to a re-adsorption of aqueous Fe(II) onto the magnetite, renewing its reducing capacity. This effect is not observed at pH 7, where we observed only the formation of Se(0) with slow kinetics due to the formation of an oxidized maghemite layer. This indicates that the presence of aqueous Fe(II) may be an important factor to be considered when examining the environmental reactivity of magnetite.


Subject(s)
Nanowires , Radioactive Waste , Selenium Compounds , Selenium , Adsorption , Coal , Ferrosoferric Oxide/chemistry , Oxidation-Reduction , Selenic Acid , Selenious Acid/chemistry , Selenium/chemistry , Steel
12.
Biomater Adv ; 137: 212815, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35929231

ABSTRACT

Methicillin-resistant Staphylococcus (MRS) is a multi-drug resistant bacteria that pose a serious threat to human health. Antibacterial nanomaterials are becoming a promising antibiotic substitute or antibiotic adjuvants. In this work, selenium nanowires were modified with nano­silver (Ag NPs) with antibacterial activity and [Ru(bpy)2dppz]2+ with fluorescent labeling of DNA (SRA), and the antibacterial activity, antibacterial mechanism and biological toxicity of SRA synergistic antibiotics were studied. In vitro, antibacterial results show that SRA (12 µg/mL) improves the antibacterial activity of various antibiotics against resistant bacteria and significantly slows the development of bacterial resistance to antibiotics. Studies on antibacterial mechanisms have shown that SRA synergistic antibiotics destroy drug-resistant bacteria through a combination of physical (physical damage) and chemical pathways (destruction of biofilm, membrane depolarization, cell membrane destruction, adenosine triphosphate consumption and reactive oxygen species production). Transcriptomics analysis found that SRA affects bacterial activity by affecting bacterial biosynthesis, ATP synthesis and biofilm formation. Furthermore, SRA synergistic antibiotics can accelerate wound healing of bacterial infection by reducing the inflammatory response. The toxicity evaluation results show that SRA has extremely low cellular and in vivo toxicity. SRA has the potential of clinical application as multiple antibiotic adjuvants to deal with resistant bacterial infections.


Subject(s)
Bacterial Infections , Methicillin-Resistant Staphylococcus aureus , Nanowires , Selenium , Anti-Bacterial Agents/pharmacology , Bacteria , Drug Resistance, Multiple, Bacterial , Humans , Selenium/pharmacology
13.
Nanotechnology ; 33(41)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35777311

ABSTRACT

Bacterial infections pose a serious threat to human health, and the development of new antibiotics has not kept pace with the development of bacterial resistance. Therefore, there is an urgent need to design antibiotic-like nano-formulations that break through bacterial resistance mechanisms. In this work, we successfully synthesized a safe and effective antibacterial nano-formulation of Se@Ag@EGCG by self-assembly of epigallocatechin gallate (EGCG)-coated silver nanoparticles (Ag) on the surface of selenium nanowires (Se). Thein vitrobacteriostatic results showed that 40µg ml-1Se@Ag@EGCG had significant antibacterial activity against drug-resistantStaphylococcus aureus(S. aureus) andEscherichia coli(E. coli) by destroying the formation of bacterial biofilm, promoting the production of high concentration reactive oxygen species and destroying bacterial cell wall. In addition, the results ofin vivoantibacterial experiments showed that subcutaneous administration of 10 mg kg-1of Se@Ag@EGCG could promote wound healing by reducing apoptosis and inflammatory responses in infected wounds. It is worth mentioning that the reduced and modified Se@Ag@EGCG by this natural product has negligiblein vivotoxicity. This development strategy of nano-antibacterial materials, which breaks through the drug resistance mechanism, provides new ideas for the development of drugs for drug-resistant bacterial infections.


Subject(s)
Bacterial Infections , Metal Nanoparticles , Nanowires , Selenium , Anti-Bacterial Agents/pharmacology , Biofilms , Catechin/analogs & derivatives , Escherichia coli , Humans , Reactive Oxygen Species , Selenium/pharmacology , Silver/pharmacology , Staphylococcus aureus
14.
J Phys Chem Lett ; 13(6): 1431-1437, 2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35119872

ABSTRACT

Realizing bright colloidal infrared emitters in the midwavelength infrared (or mid-IR), which can be used for low-power IR light-emitting diodes (LEDs), sensors, and deep-tissue imaging, has been a challenge for the last few decades. Here, we present colloidal tellurium nanowires with strong emission intensity at room temperature and even lasing at 3.6 µm (ω) under cryotemperature. Furthermore, the second-harmonic field at 1.8 µm (2ω) and the third-harmonic field at 1.2 µm (3ω) are successfully generated thanks to the intrinsic property of the tellurium nanowire. These unique optical features have never been reported for colloidal tellurium nanocrystals. With the colloidal midwavelength infrared (MWIR) Te nanowire laser, we demonstrate its potential in biomedical applications. MWIR lasing has been clearly observed from nanowires embedded in a human neuroblastoma cell, which could further realize deep-tissue imaging and thermotherapy in the near future.


Subject(s)
Colloids/chemistry , Infrared Rays , Lasers , Nanowires/chemistry , Microscopy, Electron, Scanning , Semiconductors , X-Ray Diffraction
15.
Adv Mater ; 34(29): e2109661, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35165959

ABSTRACT

The ability to rapidly assess and monitor patient immune responses is critical for clinical diagnostics, vaccine design, and fundamental investigations into the presence or generation of protective immunity against infectious diseases. Recently, findings on the limits of antibody-based protection provided by B-cells have highlighted the importance of engaging pathogen-specific T-cells for long-lasting and broad protection against viruses and their emergent variants such as in SARS-CoV-2. However, low-cost and point-of-care tools for detecting engagement of T-cell immunity in patients are conspicuously lacking in ongoing efforts to assess and control population-wide disease risk. Currently available tools for human T-cell analysis are time and resource-intensive. Using multichannel silicon-nanowire field-effect transistors compatible with complementary metal-oxide-semiconductor, a device designed for rapid and label-free detection of human T-cell immune responses is developed. The generalizability of this approach is demonstrated by measuring T-cell responses against melanoma antigen MART1, common and seasonal viruses CMV, EBV, flu, as well as emergent pandemic coronavirus, SARS-CoV-2. Further, this device provides a modular and translational platform for optimizing vaccine formulations and combinations, offering quick and quantitative readouts for acquisition and persistence of T-cell immunity against variant-driven pathogens such as flu and pandemic SARS-CoV-2.


Subject(s)
Biosensing Techniques , COVID-19 , Nanowires , Antiviral Agents , COVID-19/diagnosis , Humans , SARS-CoV-2 , T-Lymphocytes
16.
Genes (Basel) ; 13(2)2022 01 22.
Article in English | MEDLINE | ID: mdl-35205244

ABSTRACT

MicroRNAs (miRNAs), which represent short (20 to 22 nt) non-coding RNAs, were found to play a direct role in the development of autism in children. Herein, a highly sensitive "silicon-on-insulator"-based nanosensor (SOI-NS) has been developed for the revelation of autism-associated miRNAs. This SOI-NS comprises an array of nanowire sensor structures fabricated by complementary metal-oxide-semiconductor (CMOS)-compatible technology, gas-phase etching, and nanolithography. In our experiments described herein, we demonstrate the revelation of ASD-associated miRNAs in human plasma with the SOI-NS, whose sensor elements were sensitized with oligonucleotide probes. In order to determine the concentration sensitivity of the SOI-NS, experiments on the detection of synthetic DNA analogues of autism-associated miRNAs in purified buffer were performed. The lower limit of miRNA detection attained in our experiments amounted to 10-17 M.


Subject(s)
Autistic Disorder , Biosensing Techniques , MicroRNAs , Nanowires , Autistic Disorder/genetics , Biomarkers , Child , Humans , MicroRNAs/genetics , Nanowires/chemistry , Silicon/chemistry
17.
STAR Protoc ; 3(1): 101066, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35024625

ABSTRACT

The protocol outlines the steps for growing silica nanowires on various substrates such as glass and stainless-steel foil. Silica nanowires are grown by thermal chemical vapor deposition via a vapor-liquid-solid mechanism, in which silicon wafers are used as silicon sources and platinum films as catalysts. This protocol can be used to grow silica nanowires on other substrates such as quartz filter, quartz sphere, alumina plate, and silicon wafer, provided the substrate materials can tolerate the temperature during process heating. For complete details on the use and execution of this profile, please refer to Lee et al. (2019), Tsai and Shieh (2019), and Tsai et al. (2021).


Subject(s)
Nanowires , Aluminum Oxide , Gases , Nanowires/chemistry , Quartz , Silicon/chemistry , Silicon Dioxide/chemistry
18.
Chemosphere ; 286(Pt 2): 131826, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34426141

ABSTRACT

Pesticides play critical roles in agricultural fields; however, pesticide residues can cause serious damage to human health and the ecological environment; therefore, developing a rapid and sensitive method for pesticide detection is urgently needed. Nanostructure-assisted matrix laser desorption/ionization (MALDI) mass spectrometry (MS) has great potential for the detection of low-mass pesticides. In this study, a novel Ti3C2 MXene nanowire (TMN) was prepared by a facile sol-gel method and served as a matrix to enhance MALDI MS performance in the analysis of pesticides in positive ion mode. The TMN showed superior performance in the high-throughput detection of six kinds of pesticides (organophosphorus, organochlorine, carbamate, neonicotinoids, triazole, and oxadiazines), with ultrahigh sensitivity (detection limits at sub-ppt levels), remarkable repeatability, excellent salt tolerance, and extremely low background compared to traditional organic matrices due to the specific polyaromatic structure and the doping of nitrogen. Furthermore, this matrix was successfully employed for the analysis of residual pesticides in traditional Chinese herbs, and the level of diniconazole was quantified with a linear range of 0-50 ng/mL (R2 > 0.99). More importantly, the spatial distribution of various endogenous compounds (e.g., amino acids and saccharides, fatty acids, alkaloids, and plant hormones) and xenobiotic pesticides from the intact root of the medicinal plant P. quinquefolium was clearly visualized using the TMN self-assembly film as a matrix for MALDI imaging mass spectrometry (IMS). With superior advantages such as sensitivity, simplicity, rapidness, and minimal sample requirement, TMN as a matrix-assisted MALDI MS shows great promise for various applications.


Subject(s)
Nanowires , Pesticides , High-Throughput Screening Assays , Humans , Lasers , Pesticides/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Titanium
19.
Biosensors (Basel) ; 11(11)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34821658

ABSTRACT

The prevalence of hepatitis B virus (HBV) is a global healthcare threat, particularly chronic hepatitis B (CHB) that might lead to hepatocellular carcinoma (HCC) should not be neglected. Although many types of HBV diagnosis detection methods are available, some technical challenges, such as the high cost or lack of practical feasibility, need to be overcome. In this study, the polycrystalline silicon nanowire field-effect transistors (pSiNWFETs) were fabricated through commercial process technology and then chemically functionalized for sensing hepatitis B virus surface antigen (HBsAg) and hepatitis B virus X protein (HBx) at the femto-molar level. These two proteins have been suggested to be related to the HCC development, while the former is also the hallmark for HBV diagnosis, and the latter is an RNA-binding protein. Interestingly, these two proteins carried opposite net charges, which could serve as complementary candidates for evaluating the charge-based sensing mechanism in the pSiNWFET. The measurements on the threshold voltage shifts of pSiNWFETs showed a consistent correspondence to the polarity of the charges on the proteins studied. We believe that this report can pave the way towards developing an approachable tool for biomedical applications.


Subject(s)
Hepatitis B Surface Antigens/analysis , Hepatitis B/diagnosis , Nanowires , Trans-Activators/analysis , Viral Regulatory and Accessory Proteins/analysis , Carcinoma, Hepatocellular , Delivery of Health Care , Hepatitis B virus , Humans , Liver Neoplasms , Silicon
20.
Ann Med ; 53(1): 1850-1862, 2021 12.
Article in English | MEDLINE | ID: mdl-34693843

ABSTRACT

Introduction: Recently, zein-coated MgO nanowires were synthesized, which could be promising as an effective antimicrobial compounds that can be combined in the preparation of a diversity of new dental formulations. However, there is a deficiency of information concerning their toxicological profile regarding the human health.Objective: This in vivo study aimed to explore the hepato- and nephrotoxicity of low versus high doses of zein-coated MgO nanowires in rats.Materials and Methods: A 21-day recurrent dose toxicity research was carried out. Wistar rats were divided into 2 main groups, males and females (n = 18). Each group was further subdivided into 3 subgroups: control, MgO-zein nanowires low dose, MgO-zein nanowires high dose. The low dose used was 100 mg/kg while the high dose used was 200 mg/kg.Results: The results showed that MgO-zein nanowires at both doses did not affect the electrolytes levels compared to the control levels. Also, they did not produce any significant alteration in liver function markers in both rats' genders. MgO-zein nanowires at both doses did not produce any effective alteration in serum creatinine in treated rats of both genders. Moreover, very minimal histological alterations were observed in both doses of MgO-zein nanowires in liver and kidney of both genders.Conclusion: Based on the observed safety of zein-coated MgO nanowires, it can be utilized as an effective antimicrobial compound that can be combined in the preparation of a diversity of new dental formulations.KEY MESSAGESMgO NPs are globally used in multiple fields including the therapeutic field.Zein has wide pharmaceutical applications especially coating the tablet over sugar.There are no cytotoxic studies that investigate MgO-zein nanowires safety until now.


Subject(s)
Anti-Infective Agents/pharmacology , Magnesium Oxide/toxicity , Nanowires , Zein/chemistry , Animals , Dose-Response Relationship, Drug , Female , Humans , Magnesium Oxide/pharmacology , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL