Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Pest Manag Sci ; 79(3): 1131-1139, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36358028

ABSTRACT

BACKGROUND: Bradysia procera, a ginseng stem fungus gnat, is one of the most serious insect pests of Korean ginseng (Panax ginseng), causing significant damage to plant growth. The goal of this study was to determine the toxicity and mechanism of action of phenylpropanoids (trans-anethole and estragole) isolated from the methanol extract and hydrodistillate of Illicium verum fruit against third-instar larvae and eggs of Bradysia procera. RESULTS: The filter-paper mortality bioassay revealed that estragole [median lethal concentration (LC50 ) = 4.68 g/cm2 ] has a significant fumigant effect, followed by trans-anethole (LC50 = 43.92 g/cm2 ). However, estragole had the lowest toxic effect when compared to commercially available insecticides. After 7 days, estragole and trans-anethole at 75 g/cm2 inhibited egg hatchability up to 97% and 93%, respectively. At 0.09 g/cm2 , insecticides had an inhibitory effect on egg-hatching ability ranging from 88% to 94%. Furthermore, in both closed and open containers, these active constituents were able to consistently induce vapor-phased toxicity. Both estragole and trans-anethole have the ability to inhibit acetylcholinesterase (AChE), which is involved in neurotransmitter function. However, the active constituent estragole from I. verum fruit acted as a potent AChE inhibitor and had a slightly lower effect on cyclic adenosine monophosphate (AMP) than octopamine alone. CONCLUSION: This finding suggests that estragole may influence Bradysia procera neurotransmitter function via both the AChE and octopaminergic receptors. More research is needed to demonstrate the potential applications of I. verum fruit-derived products as potential larvicides and ovicides for Bradysia procera population control. © 2022 Society of Chemical Industry.


Subject(s)
Illicium , Insecticides , Animals , Insecticides/chemistry , Illicium/chemistry , Fruit/chemistry , Acetylcholinesterase , Plant Extracts/pharmacology , Nematocera
2.
Sci Rep ; 7(1): 3249, 2017 06 12.
Article in English | MEDLINE | ID: mdl-28607407

ABSTRACT

Garlic, a widely cultivated global vegetable crop, is threatened by the underground pest Bradysia odoriphaga in China. Previous reports indicated that garlic essential oil, of which the dominant components are sulfides or thiosulfinates, exhibits insecticidal activity against pests. However, it is unclear whether the resistance of garlic to B. odoriphaga is related to thiosulfinates. Here, we compared the resistance of 10 garlic cultivars at various growth stages to B. odoriphaga by field investigation and indoor life-table data collection. Furthermore, the relationship between thiosulfinates content and resistance, as well as the toxicity of garlic oil and allicin against B. odoriphaga larvae was determined. Field surveys demonstrated that the garlic cultivars Qixian and Cangshan possessed the highest resistance, while Siliuban and Yishui were the most sensitive. When reared on Qixian, B. odoriphaga larval survival and fecundity declined by 26.2% and 17.7% respectively, but the development time was prolonged by 2.8 d compared with Siliuban. A positive correlation was detected between thiosulfinates content and resistance. Furthermore, garlic oil and allicin exhibited strong insecticidal activity. We screened out 2 pest-resistant cultivars, for which thiosulfinate content was highest. Additionally, the insecticidal activity displayed by sulfides and allcin suggests their potential for exploitation as botanical insecticides.


Subject(s)
Garlic/chemistry , Nematocera/drug effects , Allyl Compounds/analysis , Allyl Compounds/pharmacology , Animals , Disulfides , Female , Fertility/drug effects , Garlic/genetics , Insecticides/pharmacology , Larva/drug effects , Male , Nematocera/growth & development , Plant Breeding , Sulfides/analysis , Sulfides/pharmacology , Sulfinic Acids/analysis , Sulfinic Acids/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL