Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.518
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Food Chem Toxicol ; 161: 112816, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35131361

ABSTRACT

The present study demonstrates the efficacy of fruit extract of Pithecellobium dulce (FPD) against Dalton's lymphoma ascites (DLA) cell lines in vitro and in vivo (DLA induced ascitic and solid tumor). Administration of FPD induced apoptosis in DLA cells via p53 regulation both in vitro and in vivo. Cell viability was quantified by MTT assay. Apoptotic cells were determined by qualitative (staining methods) and quantitative analysis (Annexin-propidium iodide based flow cytometry). Expression of pro-apoptotic markers (Caspase 3, Caspase 9, and Bax) were markedly elevated, while expression of anti-apoptotic proteins (Bcl 2 and Bcl XL) were downregulated in tumor cells. FPD administration effectively reduced tumor burden, increased mean survival time via modulating NF-kB, and reduced the level of proinflammatory cytokines (IL-6, IL-1ß, GM-CSF and TNF-α). Phytochemical screening of FPD by GC/MS analysis divulged the presence of several novel bioactive chemical constituents. Further, bioactive components identified from extract were evaluated for drug-like properties by Lipinski rule of five and properties. Naringenin, nootkatone, and gallic acid showed good drug-like properties and good pharmacokinetic profiles compared to other bioactive constituents in the extract.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Cytokines/metabolism , Fabaceae/chemistry , Fruit/chemistry , Plant Extracts/pharmacology , Animals , Antineoplastic Agents, Phytogenic/chemistry , Cell Line, Tumor , Cytokines/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Mice , Mice, Inbred BALB C , Neoplasms, Experimental , Plant Extracts/chemistry , Xenograft Model Antitumor Assays
2.
Dalton Trans ; 51(11): 4423-4428, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35195131

ABSTRACT

Metal phosphides have been proved to be potential theranostic agents of tumors. However, the limitations of single-modal imaging or the treatment effect of such materials need to be further improved. Here, we successfully prepared polyvinylpyrrolidone-modified bimetallic nickel cobalt phosphide (NiCoP/PVP) nanoparticles as a theranostic agent of tumors. Owing to the different types of magnetic properties of Ni and Co components, T1- and T2-weighted magnetic resonance imaging (MRI) could be simultaneously achieved to compensate the low accuracy brought about by single-modal MRI. In addition, NiCoP/PVP possesses excellent photothermal properties owing to its obvious absorption in the near-infrared (NIR) region, which endows NiCoP/PVP with high photothermal conversion efficiency (PCE) to serve as a photothermal agent for tumor ablation. Therefore, NiCoP/PVP is a promising theranostic agent for accurate diagnosis and effective treatment of tumors.


Subject(s)
Antineoplastic Agents/pharmacology , Magnetic Resonance Imaging , Organometallic Compounds/pharmacology , Phototherapy , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Copper/chemistry , Copper/pharmacology , Drug Screening Assays, Antitumor , Humans , Infrared Rays , Mice , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Nickel/chemistry , Nickel/pharmacology , Optical Imaging , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Particle Size , Phosphines/chemistry , Phosphines/pharmacology , Povidone/chemistry , Povidone/pharmacology , Theranostic Nanomedicine
3.
ACS Appl Mater Interfaces ; 14(2): 2650-2662, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34995459

ABSTRACT

Smart nanotheranostic systems (SNSs) have attracted extensive attention in antitumor therapy. Nevertheless, constructing SNSs with disease diagnosis ability, improved drug delivery efficiency, inherent imaging performance, and high treatment efficiency remains a scientific challenge. Herein, ultrasmall tin dioxide (SnO2) was assembled with upconversion nanoparticles (UCNPs) to form mesoporous nanocapsules by an in situ hydrothermal deposition method, followed by loading with doxorubicin (DOX) and modification with bovine serum albumin (BSA). pH/near-infrared dual-responsive nanotheranostics was constructed for computed tomography (CT) and magnetic resonance (MR) imaging-induced collaborative cancer treatment. The mesoporous channel of SnO2 was utilized as a reservoir to encapsulate DOX, an antineoplastic drug, for chemotherapy and as a semiconductor photosensitizer for photodynamic therapy (PDT). Furthermore, the DOX-loaded UCNPs@SnO2-BSA nanocapsules combined PDT, Nd3+-doped UCNP-triggered hyperthermia effect, and DOX-triggered chemotherapy simultaneously and demonstrated prominently enhanced treatment efficiency compared to the monotherapy model. Moreover, tin, as one of the trace elements in the human body, has a similar X-ray attenuation coefficient to iodine and therefore can act as a contrast agent for CT imaging to monitor the treatment process. Such an orchestrated synergistic anticancer treatment exhibited apparent inhibition of tumor growth in tumor-bearing mice with negligible side effects. Our study demonstrates nanocapsules with excellent biocompatibility and great potential for cancer treatment.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Biocompatible Materials/pharmacology , Doxorubicin/pharmacology , Nanocapsules/chemistry , Photosensitizing Agents/pharmacology , Theranostic Nanomedicine , Tin Compounds/pharmacology , Animals , Antibiotics, Antineoplastic/chemistry , Biocompatible Materials/chemistry , Cell Proliferation/drug effects , Cells, Cultured , Doxorubicin/chemistry , Drug Screening Assays, Antitumor , Female , Humans , Hydrogen-Ion Concentration , Infrared Rays , Materials Testing , Mice , Mice, Inbred Strains , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Particle Size , Photosensitizing Agents/chemistry , Porosity , Serum Albumin, Bovine/chemistry , Surface Properties , Tin Compounds/chemistry
4.
Carbohydr Polym ; 278: 118941, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34973759

ABSTRACT

Self-assembled microparticles from chitosan (SAMC) was prepared by depolymerization induced by potassium persulfate. Particle size distribution data showed averaged around 5 µm size and SEM indicated the sequential formation of "RBC" shaped particles. Soluble SAMC consists of 'deacetylated' residues as revealed by 13C NMR. SAMC showed antitumor efficacy in human breast cancer cell lines through mitigation in cell proliferation, colony formation and cell migration. Anti-tumor and anti-angiogenic properties of SAMC was found in vivo Ehrlich ascites tumor (EAT) bearing mice model resulting in tumor growth inhibition (EAT control, 17.4 ml; SAMC treated, 6.8 ml) and improved survival potency (15 days). Moreover, the decrease in ascites VEGF secretion (EAT control, 1354 ng; SAMC treated, 351 ng) accompanied with reduction in neovessel formation. Apoptosis induction by SAMC was confirmed by DNA fragmentation, caspase activities and fluorescence staining methods respectively. SAMC may be a safe candidate for anti-tumor dietary supplement production in food industry.


Subject(s)
Apoptosis/drug effects , Carcinoma, Ehrlich Tumor/drug therapy , Chitosan/pharmacology , Neovascularization, Pathologic/drug therapy , Animals , Carbohydrate Conformation , Carcinoma, Ehrlich Tumor/metabolism , Carcinoma, Ehrlich Tumor/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Chitosan/chemical synthesis , Chitosan/chemistry , Drug Screening Assays, Antitumor , Female , Humans , Mice , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Neovascularization, Pathologic/pathology
5.
J Mater Sci Mater Med ; 33(1): 10, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35022850

ABSTRACT

Herein we report synthesis of hematite (α-Fe2O3) nanorods by calcinating hydrothermally synthesized goethite nanorods at 5000C. The structural, optical and MRI imaging guided cancer therapeutic properties of fabricated nanorods have been discussed in this manscript. FESEM and TEM imaging techniques were used to confirm the nanorod like morphology of as prepared materials. As we know that Fe2O3 nanorods with size in the range of 25-30 nm exhibit super magnetism. After coating with the PEG, the as prepared nanorods can be used as T2 MR imaging contrast agents. An excellent T2 MRI contrast of 38.763 mM-1s-1 achieved which is highest reported so far for α-Fe2O3. Besides the as prepared nanorods display an excellent photothermal conversion efficiency of 39.5% thus acts as an excellent photothermal therapeutic agent. Thus, we envision the idea of testing our nanorods for photothermal therapy and MR imaging application both in vitro and in vivo, achieving an excellent T2 MRI contrast and photothermal therapy effect with as prepared PEGylated nanorods.


Subject(s)
Ferric Compounds/chemistry , Nanotubes/chemistry , Animals , Biocompatible Materials/chemistry , Cell Line , Cell Survival , Female , Ferric Compounds/toxicity , HeLa Cells , Humans , In Vitro Techniques , Magnetic Resonance Imaging , Materials Testing , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Microscopy, Electron, Scanning , Nanotubes/toxicity , Nanotubes/ultrastructure , Neoplasms, Experimental/pathology , Neoplasms, Experimental/therapy , Phototherapy/methods , Polyethylene Glycols/chemistry , Spectrum Analysis, Raman , X-Ray Diffraction
6.
J Ethnopharmacol ; 284: 114771, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34737010

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Coptis chinensis Franch (CC) and Zingiber officinale Roscoe (dried ginger; DG) are traditional Chinese medicines. CC can dry dampness, relieve fire and detoxify, and is used to treat gastritis, gastric ulcer, colitis. DG can warm spleen and stomach for dispelling cold, used for the treatment of spleen and stomach deficiency. Both CC and DG are widely used to treat gastrointestinal diseases. CC-DG herb medicine combination originates from Huanglian decoction and Pinellia xiexin decoction in "Shanghan Lun" to comfort the stomach and intestines. CC and DG are used for the treatment of nausea and choking diaphragm which highly associated with gastric cancer clinically in ancient time. AIM OF THE STUDY: This study aimed to investigate the effects and underlying molecular mechanisms of CC-DG combination on gastric cancer. MATERIALS AND METHODS: The CC-DG extract was subjected to HPLC analysis. Viability (MTT) and cytotoxicity (CCK8) assays were performed using the SGC7901 and MFC cells. Cell cycle and apoptosis were measured by flow cytometry. The mRNA expression levels were measured by RT-PCR. In vivo anti-tumor activity of CC-DG was assessed in a tumor xenograft model. RESULTS: Twelve different proportions of CC-DG were tested for inhibitory effects on gastric cancer cells; CC-DG ratio 1:1 was found most effective. CC-DG administration significantly reduced the cell proliferation, migration, and colony formation, while increased cell apoptosis compared with the control group. CC-DG regulated differentially expressed genes in SGC7901 cells were subjected to pathway enrichment analysis. CC-DG significantly inhibited the cell glucose metabolism, downregulated the expression of LDHA and SLC2A1 genes, and changed the expression of other related genes including ME2, LDHD, LDHB, HIF1A, PKM, Pcx, and Got1. In addition, CC-DG suppressed tumorigenesis and inhibited MKI67 expression in the tumor xenograft model. CONCLUSIONS: CC-DG inhibited the proliferation, migration, invasion of SGC7901/MFC gastric cells, and in turn, suppressed tumorigenesis by regulating glucose metabolism through regulation of LDHA and SLC2A1 genes.


Subject(s)
Coptis chinensis/chemistry , Glucose Transporter Type 1/metabolism , Glucose/metabolism , L-Lactate Dehydrogenase/metabolism , Phytotherapy , Zingiber officinale/chemistry , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/therapeutic use , Apoptosis/drug effects , Carcinoma, Hepatocellular/drug therapy , Cell Movement , Dose-Response Relationship, Drug , Glucose Transporter Type 1/genetics , Humans , L-Lactate Dehydrogenase/genetics , Liver Neoplasms/drug therapy , Male , Mice , Mice, Nude , Neoplasms, Experimental , Random Allocation , Stomach Neoplasms , Xenograft Model Antitumor Assays
7.
Eur J Med Chem ; 228: 113960, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34774339

ABSTRACT

Gastric cancer represents a significant health burden worldwide. Previously, inspired by the traditional Chinese medicine Wu-Chu-Yu to treat the spleen and stomach system for thousands of years, we identified N14-phenyl substituted evodiamine derivatives as potential antitumor agents with favorable inhibition on Top1. Herein, structural optimization and structure-activity relationship studies (SARs) led us to discovering a highly active evodiamine derivative compound 6t against gastric cancer. Further anti-tumor mechanism studies revealed that compound 6t played as the inhibition of topoisomerase 1 (Top1), effectively induced apoptosis, obviously arrested the cell cycle at the G2/M phase, and significantly inhibited the migration and invasion of SGC-7901 and MGC-803 cell lines in a dose-dependent manner. Moreover, the compound 6t was low toxicity in vivo and exhibited excellent anti-tumor activity (TGI = 70.12%) in the MGC-803 xenograft models. In summary, compound 6t represents a promising candidate as a potential chemotherapeutic agent against gastric cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Quinazolines/pharmacology , Stomach Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Quinazolines/chemical synthesis , Quinazolines/chemistry , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Structure-Activity Relationship
8.
J Ethnopharmacol ; 285: 114898, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34906637

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The mushroom Inonotus hispidus is traditional Chinese medicine, which has been used to treat tumor illness for many years in China. However, the potential anti-tumor mechanisms of I. hispidus remain unclear. OBJECTIVE: This study aimed to reveal the anti-tumor mechanism of I. hispidus petroleum ether extract (IPE) on H22 tumor-bearing mice from the point of view of metabonomics. MATERIALS AND METHODS: The model of H22 tumor-bearing mice was constructed according to the histopathological data and biochemical parameters, while the serum metabolomics was analyzed by non-targeted ultra-high performance liquid chromatography and high-resolution mass spectrometry (UPLC-MS/MS) to study the potential anti-tumor mechanisms of IPE. RESULTS: These results indicated that IPE has significant anti-tumor effect on H22 tumor-bearing mice and no obvious adverse reactions were observed. After the intervention of IPE, the biosynthesis of cortisol and corticosterone as the metabolics in the downstream of steroid biosynthesis pathway and the biosynthesis of succinate, fumarate and malate as the metabolics in the downstream of tricarboxylic acid cycle pathway were inhibited; but the metabolic pathways of the amino acids as tryptophan, lysine degradation, alanine, aspartate and glutamate and other amino acid were activated. CONCLUSION: IPE has significant anti-tumor effect in H22 tumor-bearing mice, and the anti-tumor activity of IPE is main through the regulation of energy, amino acids, and steroid hormone biosynthesis pathways expression.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Inonotus/chemistry , Liver Neoplasms/drug therapy , Phytotherapy , Plant Extracts/pharmacology , Animals , Cluster Analysis , Corticosterone/blood , Energy Metabolism/drug effects , Female , Hydrocortisone/blood , Least-Squares Analysis , Mice , Mice, Inbred BALB C , Neoplasms, Experimental , Plant Extracts/chemistry , Principal Component Analysis
9.
J Ethnopharmacol ; 283: 114689, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34592340

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: In traditional Chinese medicine, there is a long history that curcuma longa L is used to treat distending pain of chest and belly, arthralgia of shoulder and arm aggravated by cold. Traditional Chinese medicine holds that breast cancer is caused by cold congelation, stagnation of qi and blood stasis. It is usually treated with some pungent and warm Chinese herbs, such as Curcuma longaL and Curcuma zedoaria (Christm.) Rosc, which are effective in promoting blood circulation for removing blood stasis, activating qi-flowing and relieving pain. Curcumin, a polyphenolic compound, is the main pharmacological component extracted from the rhizome of Curcuma longa L. Modern pharmacological studies have found that curcumin has many kinds of pharmacological activities of anti-inflammatory, anti-tumor, anti-angiogenesis, anti-metastasis and anti-multidrug resistance. AIM OF THE STUDY: To explore the mechanism of curcumin and Glioma-associated oncogene homolod-1 (Gli1) on invasion and metastasis of triple negative breast cancer (TNBC) cells through the Hedgehog (Hh)/Gli signaling pathway. MATERIAL AND METHODS: The effect of curcumin on TNBC cells was detected by colony formation, wound healing and transwell assay. Breast cancer stem cells (BCSCs) were cultured in serum-free medium and its stemness was detected by flow cytometry and subcutaneous xenografted tumor assay. The formation of mammospheres was used to detect the effect of curcumin and GANT61 (Gli inhibitor)on the formation ability of BCSCs. Gli1 overexpressed was conducted in MDA-MB-231 cells by lentivirus vector HBLV-h-Gli1-3xflag-ZsGreen-PURO. RT-qPCR and Western blot were detected the mRNA and protein level of genes of Hh pathway, Epithelial-mesenchymal transition (EMT) and stemness. The nuclear localization and expression of Gli1 was observed by laser confocal microscope scanning. Co-IP was investigated the key genes interacted with Gli1. RESULTS: The abilities of proliferation, invasion, migration and the formation of mammospheres in TNBC cells were inhibited by curcumin. Furthermore, curcumin reduced the invasion and migration abilities in stable Gli1-overexpressing MDA-MB-231 cell. Moreover, curcumin down-regulated the expression of genes related Hh pathway, EMT and stemness in MDA-MB-231 mammospheres. Observation of laser confocal microscope showed that Gli1 were expressed mainly in nucleus in MDA-MB-231 adherent cells and completely in nucleus in BCSCs, which was significantly reduced in the nucleus and cytoplasm after curcumin treatment. Besides, our results suggested that vimentin was interacted with Gli1. CONCLUSIONS: Curcumin can inhibit the proliferation and metastasis of TNBC cells, EMT and characteristics of BCSC by Hedgehog/Gli1 pathway.


Subject(s)
Curcumin/pharmacology , Hedgehog Proteins/metabolism , Triple Negative Breast Neoplasms , Zinc Finger Protein GLI1/metabolism , Animals , Cell Line, Tumor , Cell Survival/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Hedgehog Proteins/genetics , Humans , Mice , Mice, Nude , Neoplasms, Experimental , Xenograft Model Antitumor Assays , Zinc Finger Protein GLI1/genetics
10.
J Ethnopharmacol ; 284: 114801, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34748868

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Fuzheng Xiaozheng prescription (FZXZP) is a traditional Chinese medicine (TCM) that was derived from Sanjiasan, a famous decoction documented in the book of Wenyilun in Ming dynasty. Based on our years' clinic application, FZXZP demonstrated satisfactory therapeutic effects in cirrhosis and hepatocellular carcinoma (HCC) treatments. However, the underlying mechanisms are still largely unknown. AIM OF STUDY: In this study, we aim to systematically evaluate the intervention effects of FZXZP on rat HCC and deeply elucidate the underlying regulative mechanisms on rat HCC. MATERIALS AND METHODS: The HCC rats were induced by using diethylnitrosamine (DEN) and two doses of FZXZP were adopted to treat the HCC rats. Liver phenotype, blood chemistry and liver histopathology were used to evaluate the intervention effects. High performance liquid chromatography (HPLC) was conducted to analyze the components of FZXZP. Finally, miRNA-Seq and mRNA-Seq were performed to investigate the regulative mechanisms of FZXZP on rat HCC and qRT-PCR was carried out to verify the accuracies of the two RNA-Seqs. RESULTS: Results of liver phenotypes, blood chemistry and liver histopathology demonstrated that FZXZP significantly alleviated the liver damage, inhibited the progresses of HCC. Nine potential components were identified from FZXZP, and anti-cancer prediction suggested that almost all of them were reported to show an anti-cancer effect. Mechanistically, FZXZP was found to promote the lipid related metabolisms, improve the anti-inflammation ability by activating PPAR signaling pathway, arachidonic acid metabolism, bile secretion, etc. CONCLUSION: our results suggested that FZXZP significantly alleviated the rat HCC, mechanistically by improving the anti-inflammation ability and promoting the lipid related metabolisms.


Subject(s)
Carcinoma, Hepatocellular , Drugs, Chinese Herbal , Liver Neoplasms , Phytotherapy , Animals , Male , Rats , Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/drug therapy , Diethylnitrosamine/toxicity , Drugs, Chinese Herbal/therapeutic use , Gene Expression Regulation, Neoplastic/drug effects , Liver/drug effects , Liver/pathology , Liver Neoplasms/chemically induced , Liver Neoplasms/drug therapy , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms, Experimental/drug therapy , Random Allocation , Rats, Sprague-Dawley , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome
11.
J Nanobiotechnology ; 19(1): 419, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34903233

ABSTRACT

Accurate diagnosis and effective treatment of primary liver tumors are of great significance, and optical imaging has been widely employed in clinical imaging-guided surgery for liver tumors. The second near-infrared window (NIR-II) emissive AIEgen photosensitizers have attracted a lot of attention with higher-resolution bioimaging and deeper penetration. NIR-II aggregation-induced emission-based luminogen (AIEgen) photosensitizers have better phototherapeutic effects and accuracy of the image-guided surgery/phototherapy. Herein, an NIR-II AIEgen phototheranostic dot was proposed for NIR-II imaging-guided resection surgery and phototherapy for orthotopic hepatic tumors. Compared with indocyanine green (ICG), the AIEgen dots showed bright and sharp NIR-II emission at 1250 nm, which extended to 1600 nm with high photostability. Moreover, the AIEgen dots efficiently generated reactive oxygen species (ROS) for photodynamic therapy. Investigations of orthotopic liver tumors in vitro and in vivo demonstrated that AIEgen dots could be employed both for imaging-guided tumor surgery of early-stage tumors and for 'downstaging' intention to reduce the size. Moreover, the therapeutic strategy induced complete inhibition of orthotopic tumors without recurrence and with few side effects.


Subject(s)
Antineoplastic Agents , Liver Neoplasms , Photosensitizing Agents , Spectroscopy, Near-Infrared/methods , Surgery, Computer-Assisted/methods , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Liver/drug effects , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/therapy , Mice , Mice, Inbred BALB C , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Photochemotherapy , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology
12.
Biomater Sci ; 10(1): 258-269, 2021 Dec 21.
Article in English | MEDLINE | ID: mdl-34850790

ABSTRACT

Combination therapy has been widely studied due to its promising applications in tumor therapy. However, a sophisticated nanoplatform and sequential irradiation with different laser sources for phototherapy complicate the treatment process. Unlike the integration of therapeutic agents, we report a FeS2@SRF@BSA nanoplatform for the combination of chemo-combined photothermal therapy (PTT) enhanced photodynamic therapy (PDT) and chemodynamic therapy (CDT) to achieve an "all-in-one" therapeutic agent. Ultrasmall FeS2 nanoparticles (NPs) with a size of 7 nm exhibited higher Fenton reaction rates due to their large specific surface areas. A photodynamic reaction could be triggered and could generate 1O2 to achieve PDT under 808 nm irradiation. FeS2 NPs also exhibited the desired photothermal properties under the same wavelength of the laser. The Fenton reaction and photodynamic reaction were both significantly improved to accumulate more reactive oxygen species (ROS) with an increase of temperature under laser irradiation. Besides, loading of the chemotherapeutic drug sorafenib (SRF) further improved the efficacy of tumor treatment. To realize long blood circulation, bovine serum albumin (BSA) was used as a carrier to encapsulate FeS2 NPs and SRF, remarkably improving the biocompatibility and tumor enrichment ability of the nanomaterials. Additionally, the tumors on mice treated with FeS2@SRF@BSA almost disappeared under 808 nm irradiation. To sum up, FeS2@SRF@BSA NPs possess good biocompatibility, stability, and sufficient therapeutic efficacy in combination therapy for cancer treatment. Our study pointed out a smart design of the nanoplatform as a multifunctional therapeutic agent for combination cancer therapy in the near future.


Subject(s)
Nanoparticles , Neoplasms, Experimental/therapy , Photochemotherapy , Photothermal Therapy , Animals , Cell Line, Tumor , Mice , Serum Albumin, Bovine , Sorafenib
13.
ACS Appl Mater Interfaces ; 13(49): 58422-58433, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34855366

ABSTRACT

Despite the unique ability of lanthanide-doped upconversion nanoparticles (UCNPs) to convert near-infrared (NIR) light to high-energy UV-vis radiation, low quantum efficiency has rendered their application unpractical in biomedical fields. Here, we report anatase titania-coated plasmonic gold nanorods decorated with UCNPs (Au NR@aTiO2@UCNPs) for combinational photothermal and photodynamic therapy to treat cancer. Our novel architecture employs the incorporation of an anatase titanium dioxide (aTiO2) photosensitizer as a spacer and exploits the localized surface plasmon resonance (LSPR) properties of the Au core. The LSPR-derived near-field enhancement induces a threefold boost of upconversion emissions, which are re-absorbed by neighboring aTiO2 and Au nanocomponents. Photocatalytic experiments strongly infer that LSPR-induced hot electrons are injected into the conduction band of aTiO2, generating reactive oxygen species. As phototherapeutic agents, our hybrid nanostructures show remarkable in vitro anticancer effect under NIR light [28.0% cancer cell viability against Au NR@aTiO2 (77.3%) and UCNP@aTiO2 (98.8%)] ascribed to the efficient radical formation and LSPR-induced heat generation, with cancer cell death primarily following an apoptotic pathway. In vivo animal studies further confirm the tumor suppression ability of Au NR@aTiO2@UCNPs through combinatorial photothermal and photodynamic effect. Our hybrid nanomaterials emerge as excellent multifunctional phototherapy agents, providing a valuable addition to light-triggered cancer treatments in deep tissue.


Subject(s)
Antineoplastic Agents/pharmacology , Glioblastoma/drug therapy , Photochemotherapy , Photosensitizing Agents/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Glioblastoma/metabolism , Glioblastoma/pathology , Gold/administration & dosage , Gold/chemistry , Humans , Lanthanoid Series Elements/administration & dosage , Lanthanoid Series Elements/chemistry , Materials Testing , Mice , Mice, Inbred BALB C , Mice, Nude , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Optical Imaging , Particle Size , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/chemistry , Titanium/administration & dosage , Titanium/chemistry
14.
J Mater Chem B ; 9(48): 9932-9945, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34842269

ABSTRACT

An integration combination of phototherapy and chemotherapy to treat carcinoma, solving the inner limitation of individual-modal chemical agent-based therapy or phototherapy, emerges to be a strategy with high prospects for achieving synergistic curative effects. The dye IR780-iodide (IR780) close to infrared radiation is a phototherapy agent with high prospects. However, it is limited in its clinical applications due to poor solubility in water. While epigallocatechin-3-gallate (EGCG), naturally resourced green tea polyphenol, has been extensively proven with intrinsic antitumor activity, but it is largely restricted by its low bioavailability in vivo. Hence, novel multiple-function nanoparticles comprising hyaluronic acid (HA) and IR780 were proposed to deliver EGCG, defined as EGCG@THSI nano-scale particles (EGCG@THSI NPs), thereby rapidly solving limitations of EGCG and IR780. Amphiphilic nano-scale carrier was prepared by triphenylphosphine (TPP), hyaluronic acid (HA), cystamine, and IR780, termed as TPP-HA-SS-IR780, and EGCG was loaded into the amphiphilic copolymer by self-assembly. TPP-HA-SS-IR780 endowed the as-synthesized EGCG@THSI NPs with excellent TPP-mediated mitochondrial-targeted and glutathione-triggered rapid drug release properties. As impacted by the integration of phototherapy and chemotherapy, the EGCG@THSI NPs under NIR laser irradiation showed a prominent anti-tumor effect. Taken together, this study presented a multiple-function nano-scale carrier platform with high prospects in improving the therapeutic efficacy of anti-carcinoma drugs.


Subject(s)
Antineoplastic Agents/pharmacology , Catechin/analogs & derivatives , Fluorescent Dyes/pharmacology , Indoles/pharmacology , Iodides/pharmacology , Photosensitizing Agents/pharmacology , Photothermal Therapy , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Catechin/chemistry , Catechin/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Design , Drug Screening Assays, Antitumor , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , Humans , Indoles/chemistry , Iodides/chemistry , Materials Testing , Mitochondria/drug effects , Mitochondria/metabolism , Molecular Structure , Nanoparticles/chemistry , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/chemistry , Zebrafish
15.
Mol Pharm ; 18(12): 4531-4542, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34739255

ABSTRACT

Having benefited from the combination of different therapeutic modalities, functionalized nanoplatforms with synergistic strategies have aroused great interest in anticancer treatment. Herein, an engineered, a biodegradable hollow mesoporous organosilica nanoparticle (HMON)-based nanoplatform was fabricated for photothermal-enhanced chemotherapy of tumor. For the first time, we demonstrated that HMONs could serve as nanocarriers for co-delivering of both the paclitaxel and photothermal agent new indocyanine green (IR820), denoted as Paclitaxel/IR820@ HMONs-PEG. The as-prepared nanosystem exhibited a high paclitaxel-loading capacity of 28.4%, much higher than most paclitaxel-loaded nanoformulations. Furthermore, incorporating thioether bonds (S-S) into the HMONs' framework endowed them with GSH-responsive biodegradation behavior, leading to the controllable release of drugs under a tumor reducing microenvironment, and hindered the premature release of paclitaxel. Upon being irradiated with an NIR laser, the obtained co-delivery nanosystem exhibited great photothermal properties generated from IR820. The fabricated nanocomposites could significantly suppress tumor growth under NIR laser irradiation, as validated by in vitro and in vivo assessments. Combined with outstanding biocompatibility, the constructed nanosystem holds great potential in combinational antitumor therapy.


Subject(s)
Drug Delivery Systems , Nanoparticles/chemistry , Neoplasms, Experimental/drug therapy , Organosilicon Compounds/chemistry , Paclitaxel/chemistry , Phototherapy/methods , Animals , Drug Liberation , Female , Glutathione/metabolism , Hyperthermia, Induced , Mice , Mice, Inbred BALB C , Paclitaxel/pharmacokinetics , Paclitaxel/therapeutic use , Tissue Distribution , Xenograft Model Antitumor Assays
16.
Int J Mol Sci ; 22(18)2021 Sep 11.
Article in English | MEDLINE | ID: mdl-34575998

ABSTRACT

During the last decade, we have persistently addressed the question, "how can the innate immune system be used as a therapeutic tool to eliminate cancer?" A cancerous tumor harbors innate immune cells such as macrophages, which are held in the tumor-promoting M2 state by tumor-cell-released cytokines. We have discovered that these tumor-associated macrophages (TAM) are repolarized into the nitric oxide (NO)-generating tumoricidal M1 state by the dietary agent curcumin (CC), which also causes recruitment of activated natural killer (NK) cells and cytotoxic T (Tc) cells into the tumor, thereby eliminating cancer cells as well as cancer stem cells. Indications are that this process may be NO-dependent. Intriguingly, the maximum blood concentration of CC in mice never exceeds nanomolar levels. Thus, our results submit that even low, transient levels of curcumin in vivo are enough to cause repolarization of the TAM and recruitment NK cells as well as Tc cells to eliminate the tumor. We have observed this phenomenon in two cancer models, glioblastoma and cervical cancer. Therefore, this approach may yield a general strategy to fight cancer. Our mechanistic studies have so far implicated induction of STAT-1 in this M2→M1 switch, but further studies are needed to understand the involvement of other factors such as the lipid metabolites resolvins in the CC-evoked anticancer pathways.


Subject(s)
Curcumin/therapeutic use , Glioblastoma/drug therapy , Neoplasms, Experimental/drug therapy , Uterine Cervical Neoplasms/drug therapy , Animals , Female , Glioblastoma/immunology , Glioblastoma/pathology , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/pathology , Mice , Neoplasms, Experimental/immunology , Neoplasms, Experimental/pathology , Nitric Oxide/immunology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/pathology , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/pathology , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/pathology
17.
Food Funct ; 12(21): 10602-10614, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34585194

ABSTRACT

The aim of this study was to investigate the anti-fatigue activity of Chinese Yam polysaccharides (CYPs). The structural characterization of CYPs was conducted using Fourier transform-infrared spectroscopy, nuclear magnetic resonance spectroscopy, gel permeation chromatography-light scattering-refractive index, and ion chromatography. The weight-loaded swimming capability, behavior performance, tumor growth, content of adenosine triphosphate (ATP), and biochemical markers of CYP in a cancer-related fatigue mouse model were tested. The results showed that CYP is a mixture with an average Mw of 75.57 kDa and is mainly composed of rhamnose, glucuronic acid, glucose, galactose, and arabinose with a molar ratio of 0.01 : 0.06 : 1.00 : 0.17 : 0.01. CYP increased the exhausting swimming time, which was decreased in the cisplatin (DDP) control group and the model group. CYP also increased the content of ATP in musculus gastrocnemius, which was down-regulated by DDP; the DDP had significantly enhanced the contents of interleukin-1ß (IL-lß), malondialdehyde (MDA), blood urea nitrogen (BUN) and lactic dehydrogenase (LDH) and inhibited the activity of superoxide dismutase (SOD) in the muscle. Administration of CYP decreased the levels of IL-lß, MDA, BUN and LDH, and up-regulated the SOD activity. The DDP + CYP group presented a decreased tumor volume and a lower tumor weight as compared with the model group. Moreover, the mice in the CYP or DDP + CYP groups had heavier body weights than the mice in the model group and DDP group. These results suggest that CYP should improve cancer-related fatigue via the regulation of inflammatory responses, oxidative stress and increase in energy supplementation.


Subject(s)
Dioscorea/chemistry , Fatigue/drug therapy , Fatigue/etiology , Neoplasms, Experimental/complications , Polysaccharides/pharmacology , Adenosine Triphosphate/metabolism , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cisplatin/therapeutic use , Mice , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Phytotherapy , Polysaccharides/chemistry
18.
Food Funct ; 12(21): 10632-10643, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34585698

ABSTRACT

Safflower yellow (SY) is the main active ingredient isolated from the traditional Chinese medicine Carthamus tinctorius, which is a valuable natural edible pigment that is widely used to treat cerebrovascular and cardiovascular diseases. However, the effect of SY on hepatocellular carcinoma (HCC) remains unclear. In this study, we showed that SY decreased the degree of injury and inhibited the release of inflammatory factors in the liver of a diethylnitrosamine (DEN)-induced HCC mouse model. Flow cytometry and immunoblotting showed that SY increased the infiltration of CD8+ T cells and Gr-1+ macrophages to improve the immune microenvironment by affecting the expression of collagen fibers. Further cellular experiments showed that SY degraded the collagens in the liver cells through the TGF-ß/Smad signalling pathway. SY also regulated the gut microbiota which may contribute to the immune microenvironment. In conclusion, SY exhibited a potent effect on the development of HCC by enhancing liver immune infiltration by promoting collagen degradation and modulating the gut microbiota. This study provides novel insights into the mechanism of SY as a candidate for the treatment of HCC in the future.


Subject(s)
Carcinoma, Hepatocellular/chemically induced , Chalcone/analogs & derivatives , Diethylnitrosamine/toxicity , Gastrointestinal Microbiome/drug effects , Liver Neoplasms/chemically induced , Liver/drug effects , Animals , Carcinoma, Hepatocellular/prevention & control , Cell Line, Tumor , Chalcone/pharmacology , Collagen/metabolism , Humans , Liver/immunology , Liver/metabolism , Liver Neoplasms/prevention & control , Macrophages, Peritoneal/drug effects , Male , Mice , Neoplasms, Experimental/chemically induced , Neoplasms, Experimental/prevention & control , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
19.
J Mater Chem B ; 9(39): 8300-8307, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34518860

ABSTRACT

Second near-infrared (NIR-II) absorbing organic photothermal agents (PTAs) usually suffer from laborious and time-consuming synthesis; therefore, it is of importance to develop a simple and easy-to-handle method for the preparation of NIR-II PTAs. Charge-transfer complexes (CTCs) can be easily used to construct NIR-II absorbing PTAs, although the relationship between their molecular structure and photophysical properties is yet to be uncovered. Herein, three kinds of electron donors with different substitutions (chloroethyl, ethyl, and methyl) were synthesized and assembled with electron-deficient F4TCNQ to afford corresponding CTC nanoparticles (Cl-F4, Et-F4, and Me-F4 NPs). The large energy gap (>0.61 eV) between HOMO of the donor and LUMO of the acceptor made the CTCs exhibit high charge transfer (>0.93) and dramatic differences in photophysical properties. Additionally, Et-F4 NPs possess the highest NIR-II absorption ability and best photothermal effect because of different packing modes (mass extinction coefficient of 11.0 L g-1 cm-1 and photothermal conversion efficiency of 40.2% at 1060 nm). The mixed stacking mode formed strong charge-transfer absorption bands, indicating that the photophysical properties of CTCs can be tailored by changing the molecular structure and aggregate behaviors. Furthermore, Et-F4 NPs with cyano groups could specifically react with cysteine to block the intracellular biosynthesis of GSH and result in ROS accumulation and ferroptosis. Et-F4 NPs possess outstanding antitumor efficacy for the combined actions of NIR-II triggered photothermal killing effect and ferroptosis in vivo.


Subject(s)
Cysteine/chemistry , Drug Design , Ferroptosis/drug effects , Phototherapy , Animals , Cell Line, Tumor , Female , Humans , Infrared Rays , Mice , Molecular Structure , Nanoparticles , Neoplasms, Experimental , Photothermal Therapy , Random Allocation
20.
Cancer Lett ; 523: 57-71, 2021 12 28.
Article in English | MEDLINE | ID: mdl-34563641

ABSTRACT

High fluence low-level laser (HF-LLL), a mitochondria-targeted tumour phototherapy, results in oxidative damage and apoptosis of tumour cells, as well as damage to normal tissue. To circumvent this, the therapeutic effect of low fluence LLL (LFL), a non-invasive and drug-free therapeutic strategy, was identified for tumours and the underlying molecular mechanisms were investigated. We observed that LFL enhanced antigen-specific immune response of macrophages and dendritic cells by upregulating MHC class II, which was induced by mitochondrial reactive oxygen species (ROS)-activated signalling, suppressing tumour growth in both CD11c-DTR and C57BL/6 mice. Mechanistically, LFL upregulated MHC class II in an MHC class II transactivator (CIITA)-dependent manner. LFL-activated protein kinase C (PKC) promoted the nuclear translocation of CIITA, as inhibition of PKC attenuated the DNA-binding efficiency of CIITA to MHC class II promoter. CIITA mRNA and protein expression also improved after LFL treatment, characterised by direct binding of Src and STAT1, and subsequent activation of STAT1. Notably, scavenging of ROS downregulated LFL-induced Src and PKC activation and antagonised the effects of LFL treatment. Thus, LFL treatment altered the adaptive immune response via the mitochondrial ROS-activated signalling pathway to control the progress of neoplastic disease.


Subject(s)
Histocompatibility Antigens Class II/immunology , Low-Level Light Therapy/methods , Neoplasms, Experimental/therapy , Protein Kinase C/physiology , Reactive Oxygen Species/metabolism , T-Lymphocytes/immunology , src-Family Kinases/physiology , Active Transport, Cell Nucleus , Animals , Antigen Presentation , Dendritic Cells/physiology , Macrophages/physiology , Mice , Mice, Inbred C57BL , Neoplasms, Experimental/immunology , Neoplasms, Experimental/metabolism , Nuclear Proteins/physiology , STAT1 Transcription Factor/physiology , Trans-Activators/physiology
SELECTION OF CITATIONS
SEARCH DETAIL