Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 596
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Mar Pollut Bull ; 200: 116067, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38320443

ABSTRACT

The aim of the present study was to determine the levels of acetylcholinesterase (AChE) activity in the tail muscle tissue of wild populations of Nephrops norvegicus from the Northern Adriatic, and correlate it to body size, seasons, sex and the content of mercury, arsenic, cadmium, lead and copper. The animals of both sexes were collected in spring and autumn from two relatively distant fishing grounds. A marked variability of muscle AChE activity was found (0.49 to 11.22 nmol/min/mg prot.), displaying the opposite seasonal trend between two sampling sites. Small, but significant negative correlation has been found between AChE activity and carapace length (rs = - 0.35, p < 0.05). Data reported here provide an essential baseline for future studies of neurotoxicity in crustaceans. The study highlights the necessity for continuous monitoring of potentially toxic metals in edible marine species to avoid possible repercussions of seafood consumption on human health.


Subject(s)
Decapoda , Nephropidae , Female , Male , Humans , Animals , Nephropidae/physiology , Acetylcholinesterase , Seasons , Metals , Seafood , Muscles , Body Size , Norway
3.
J Neurophysiol ; 127(3): 702-713, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35044860

ABSTRACT

Post-translational modifications (PTMs) diversify peptide structure and allow for greater flexibility within signaling networks. The cardiac neuromuscular system of the American lobster, Homarus americanus, is made up of a central pattern generator, the cardiac ganglion (CG), and peripheral cardiac muscle. Together, these components produce flexible output in response to peptidergic modulation. Here, we examined the role of PTMs in determining the effects of a cardioactive neuropeptide, myosuppressin (pQDLDHVFLRFamide), on the whole heart, the neuromuscular junction/muscle, the isolated CG, and the neurons of the CG. Mature myosuppressin and noncyclized myosuppressin (QDLDHVFLRFamide) elicited similar and significant changes in whole heart contraction amplitude and frequency, stimulated muscle contraction amplitude and the bursting pattern of the intact and ligatured neurons of the ganglion. In the whole heart, nonamidated myosuppressin (pQDLDHVFLRFG) elicited only a small decrease in frequency and amplitude. In the absence of motor neuron input, nonamidated myosuppressin did not cause any significant changes in the amplitude of stimulated contractions. In the intact CG, nonamidated myosuppressin elicited a small but significant decrease in burst duration. Further analysis revealed a correlation between the extent of modulation elicited by nonamidated myosuppressin in the whole heart and the isolated, intact CG. When the neurons of the CG were physically decoupled, nonamidated myosuppressin elicited highly variable responses. Taken together, these data suggest that amidation, but not cyclization, is critical in enabling this peptide to exert its effects on the cardiac neuromuscular system.NEW & NOTEWORTHY Myosuppressin (pQDLDHVFLRFamide), a well-characterized crustacean neuropeptide, and its noncyclized (QDLDHVFLRFamide) and nonamidated (pQDLDHVFLRFG) isoforms alter the output of the cardiac neuromuscular system of the American lobster, Homarus americanus. Mature myosuppressin and noncyclized myosuppressin elicited similar and significant changes across all levels of the isolated system, whereas responses to nonamidated myosuppressin were significantly different from other isoforms and were highly variable. These data support the diversity of peptide action as a function of peptide structure.


Subject(s)
Nephropidae , Neuropeptides , Animals , Heart/physiology , Muscles , Nephropidae/physiology , Neuropeptides/pharmacology , Protein Isoforms/pharmacology
4.
Biol Bull ; 243(3): 353-358, 2022 12.
Article in English | MEDLINE | ID: mdl-36716484

ABSTRACT

AbstractTo determine whether eyes of American lobsters (Homarus americanus) are more sensitive to light at night than during the day, electroretinograms were continuously recorded from 23 adult lobsters for at least 3 days (range: 3 to 9 days) in constant darkness. A green light-emitting diode, mounted 10 cm away from the eyes, was briefly flashed every 2 minutes to evoke the electroretinogram. The average increase in the response to a light flash, between the minimum during the subjective day and the maximum during the subjective night, was 105.6% ± 38.8%; and there was a statistically significant difference between day and night responses. This change in visual sensitivity took place while lobsters were held in constant darkness, suggesting that it was due to the influence of a circadian clock. The average period (tau) for the 10 animals that expressed significant circadian rhythms was 23.4 ± 0.8 hours. Previous studies have demonstrated that lobsters have circadian clocks that influence their locomotor activity; and the present data suggest that this is also true for their eyes, leading to an increase in their visual sensitivity at night, when they are typically most active.


Subject(s)
Circadian Clocks , Decapoda , Animals , Nephropidae/physiology , Circadian Rhythm/physiology , Electroretinography , Locomotion
5.
Sci Rep ; 11(1): 23330, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34857790

ABSTRACT

Ocean acidification (OA) affects marine organisms through various physiological and biological processes, yet our understanding of how these translate to large-scale population effects remains limited. Here, we integrated laboratory-based experimental results on the life history and physiological responses to OA of the American lobster, Homarus americanus, into a dynamic bioclimatic envelope model to project future climate change effects on species distribution, abundance, and fisheries catch potential. Ocean acidification effects on juvenile stages had the largest stage-specific impacts on the population, while cumulative effects across life stages significantly exerted the greatest impacts, albeit quite minimal. Reducing fishing pressure leads to overall increases in population abundance while setting minimum size limits also results in more higher-priced market-sized lobsters (> 1 lb), and could help mitigate the negative impacts of OA and concurrent stressors (warming, deoxygenation). However, the magnitude of increased effects of climate change overweighs any moderate population gains made by changes in fishing pressure and size limits, reinforcing that reducing greenhouse gas emissions is most pressing and that climate-adaptive fisheries management is necessary as a secondary role to ensure population resiliency. We suggest possible strategies to mitigate impacts by preserving important population demographics.


Subject(s)
Models, Theoretical , Nephropidae/physiology , Seafood/economics , Seafood/statistics & numerical data , Seawater/analysis , Spatio-Temporal Analysis , Animals , Ecosystem , Hydrogen-Ion Concentration , Nephropidae/growth & development , Seafood/analysis
6.
Sci Rep ; 11(1): 24100, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34916552

ABSTRACT

An approximate 1:1 sex ratio of American lobsters can be skewed due to environmental factors or fisheries management. Substantial skewness can impact mating behaviour and lower reproduction which could have far-reaching ecological and economic consequences. The aim was to investigate the sex ratio patterns of lobsters in two lobster fishing areas (LFAs) in southwestern Nova Scotia, Canada and identify factors associated with skewed sex ratios. This study analyzed biological data from more than 270,000 lobsters sampled over ten years (2010-2019) by the Fishermen and Scientists Research Society. A mixed effect logistic regression model evaluated the effect of spatial, temporal and environmental factors as well as size on the sex ratio of lobsters. There were significant temporal patterns in sex ratios that differed by LFA. After the effects of sampling month, year and LFA were accounted for, lower bottom temperature and deeper water depth were associated with a higher prevalence of females, especially in larger lobsters. We present the first long term analyses of sex ratio patterns in H. americanus in Atlantic Canada's most commercially important region for this species and provide evidence that these patterns are influenced by environmental factors and fisheries. In view of future climate change scenarios, monitoring the population dynamics of this iconic fishery species is crucial to ensure sustainable fisheries and healthy lobster stocks.


Subject(s)
Ecosystem , Fisheries , Nephropidae/physiology , Reproduction/physiology , Sex Ratio , Sexual Behavior, Animal/physiology , Animals , Climate Change , Female , Logistic Models , Male , Nova Scotia , Seawater , Shellfish , Temperature , Time Factors
7.
Article in English | MEDLINE | ID: mdl-34146688

ABSTRACT

Optimal rearing temperatures for European lobster Homarus gammarus in aquaculture differ from those prevalent in their aquatic ecosystems and acclimating juveniles to the prevailing temperatures before release may aid in the success of re-stocking programs. As the dietary nutritional composition is important for optimal performance of H. gammarus, in this study we aimed to investigate whether juvenile growth and energy metabolism responses to temperature variation could be modulated by the diet. Prior to the trial start, the juveniles were divided into two groups. One was maintained at 19 °C and the other gradually adapted to 13 °C. From this point and for a 24-day period, juveniles (~ 100 mg) within each temperature group were assigned one of two experimental diets: a carbohydrate-rich (HC) or a protein-rich (HP) extruded feed. Antarctic krill (AK) was used as a control diet within each temperature group. Feed intake, growth, glycogen, glucose, lactate, and protein concentrations of H. gammarus in each group were evaluated. Regardless the dietary treatment, feed intake, cephalothorax protein and glucose, and abdominal glycogen and glucose levels decreased at colder temperature. The effect of lower temperature on growth (SGR and moulting rate declines) and energy metabolism (reduction on cephalothorax glycogen and protein) was more severe in HC-fed lobsters. Results showed that the impact of lower temperature on juvenile H. gammarus can be modulated by diet highlighting the importance of designing optimized diets not only for growth and feed efficiency but also for resilience to environmental variation.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Diet , Glycogen/metabolism , Nephropidae/physiology , Acclimatization , Animals , Denmark , Ecosystem , Energy Metabolism , Female , Glucose/metabolism , Lactic Acid/metabolism , Molting , Temperature
8.
PLoS One ; 16(6): e0252824, 2021.
Article in English | MEDLINE | ID: mdl-34133448

ABSTRACT

Underwater video monitoring systems are being widely used in fisheries to investigate fish behavior in relation to fishing gear and fishing gear performance during fishing. Such systems can be useful to evaluate the catch composition as well. In demersal trawl fisheries, however, their applicability can be challenged by low light conditions, mobilized sediment and scattering in murky waters. In this study, we introduce a novel observation system (called NepCon) which aims at reducing current limitations by combining an optimized image acquisition setup and tailored image analyses software. The NepCon system includes a high-contrast background to enhance the visibility of the target objects, a compact camera and an artificial light source. The image analysis software includes a machine learning algorithm which is evaluated here to test automatic detection and count of Norway lobster (Nephrops norvegicus). NepCon is specifically designed for applications in demersal trawls and this first phase aims at increasing the accuracy of N. norvegicus detection at the data acquisition level. To find the best contrasting background for the purpose we compared the output of four image segmentation methods applied to static images of N. norvegicus fixed in front of four test background colors. The background color with the best performance was then used to evaluate computer vision and deep learning approaches for automatic detection, tracking and counting of N. norvegicus in the videos. In this initial phase we tested the system in an experimental setting to understand the feasibility of the system for future implementation in real demersal fishing conditions. The N. norvegicus directed trawl fishery typically has no assistance from underwater observation technology and therefore are largely conducted blindly. The demonstrated perception system achieves 76% accuracy (F-score) in automatic detection and count of N. norvegicus, which provides a significant elevation of the current benchmark.


Subject(s)
Fisheries , Nephropidae/physiology , Remote Sensing Technology/methods , Robotics/methods , Seafood/statistics & numerical data , Algorithms , Animals , Conservation of Natural Resources/methods , Norway , Population Dynamics , Remote Sensing Technology/instrumentation , Reproducibility of Results , Robotics/instrumentation
9.
J Nutr Sci ; 10: e36, 2021.
Article in English | MEDLINE | ID: mdl-35401973

ABSTRACT

Extruded feeds are widely used for major aquatic animal production, particularly for finfish. However, the transition from fresh/frozen to extruded/pelleted feeds remains a major obstacle to progressing sustainable farming of European lobster (Homarus gammarus). The aim of the present study was to investigate the effects of using extruded feeds with different protein levels and lipid/carbohydrate ratios on growth, feed utilisation, nucleic acid derived indices (sRD) and digestive enzymatic activity of H. gammarus juveniles. Six extruded feeds were formulated to contain two protein levels (400 and 500 g/kg), with three lipid/carbohydrate ratios (LOW - 1:3; MEDium - 1:2; HIGH - 1:1). The extruded feeds were tested against Antarctic krill (Euphausia superba) used as control (CTRL). Overall, the CTRL and 500MED feed supported the highest growth and nutritional condition estimated by means of sRD, while the poorest results were observed for the 400HIGH and 400MED groups. The FCR was significantly lower in the CTRL than all extruded feeds, among which the most efficient, i.e., lower FCR, was the 500MED. The highest activity of trypsin and amylase in lobsters fed the 400MED and 400HIGH feeds points to the activation of a mechanism to maximise nutrients assimilation. The highest lipase activity observed for the 500LOW and 500MED groups indicates a higher capacity to metabolise and store lipids. Overall, the results suggest that the 500MED feed (500 g/kg protein, 237 g/kg carbohydrates and 119 g/kg lipids) is a suitable extruded feed candidate to replace Antarctic krill, commonly used to grow lobster juveniles.


Subject(s)
Euphausiacea , Nephropidae , Animals , Antarctic Regions , Carbohydrates/pharmacology , Lipids , Nephropidae/physiology
10.
Sci Robot ; 5(48)2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33239320

ABSTRACT

Knowing the displacement capacity and mobility patterns of industrially exploited (i.e., fished) marine resources is key to establishing effective conservation management strategies in human-impacted marine ecosystems. Acquiring accurate behavioral information of deep-sea fished ecosystems is necessary to establish the sizes of marine protected areas within the framework of large international societal programs (e.g., European Community H2020, as part of the Blue Growth economic strategy). However, such information is currently scarce, and high-frequency and prolonged data collection is rarely available. Here, we report the implementation of autonomous underwater vehicles and remotely operated vehicles as an aid for acoustic long-baseline localization systems for autonomous tracking of Norway lobster (Nephrops norvegicus), one of the key living resources exploited in European waters. In combination with seafloor moored acoustic receivers, we detected and tracked the movements of 33 tagged lobsters at 400-m depth for more than 3 months. We also identified the best procedures to localize both the acoustic receivers and the tagged lobsters, based on algorithms designed for off-the-shelf acoustic tags identification. Autonomous mobile platforms that deliver data on animal behavior beyond traditional fixed platform capabilities represent an advance for prolonged, in situ monitoring of deep-sea benthic animal behavior at meter spatial scales.


Subject(s)
Fisheries , Nephropidae , Robotics/instrumentation , Acoustics , Algorithms , Animals , Behavior, Animal , Computer Simulation , Conservation of Natural Resources/methods , Conservation of Natural Resources/statistics & numerical data , Ecosystem , Equipment Design , Nephropidae/physiology , Oceans and Seas , Remote Sensing Technology/instrumentation , Remote Sensing Technology/statistics & numerical data , Robotics/statistics & numerical data , Seafood
11.
Ecotoxicol Environ Saf ; 204: 111111, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32795703

ABSTRACT

Bath treatment chemotherapeutants, used to control sea lice infestations in the salmonid aquaculture industry, are released directly into the marine environment around fish farms and pose a serious risk to non-target species, particularly crustaceans. Hydrogen peroxide (H2O2) is the most frequently used bath treatment chemotherapeutant on Norwegian fish farms, however, limited information is available on its toxicity to European lobsters (Homarus gammarus), a commercially important species at risk of exposure due to its distribution overlapping with salmon farm locations. The aim of this study was to investigate the lethal effects of H2O2 on pelagic (stage I-IV) larvae/post-larvae and its sub-lethal effects on the benthic stage V H. gammarus. To assess the lethal effects of H2O2, we carried out a series of 1 h toxicity tests and assessed mortality after a 24 h post-exposure period. Exposure to H2O2 was toxic to all pelagic larval stages tested, with estimated median lethal concentrations (LC50) of 177, 404, 665 and 737 mg/L for stage I, II, III and IV, respectively. These concentrations represent approximately 10, 23, 40 and 43%, of the recommended H2O2 concentrations used for delousing salmon on Norwegian fish farms, respectively. To assess the sub-lethal effects of H2O2 on H. gammarus, stage V juveniles were exposed to H2O2 at concentrations of 85, 170 and 510 mg/L for 1 h and shelter-seeking behaviour and mobility endpoints were assessed. Numerous behavioural parameters including distance travelled to shelter, time to locate shelter and the number of shelter inspections, were negatively affected in lobsters exposed to H2O2 when assessed immediately after the exposure period. However, no differences between control and exposed lobsters were detected after a 24 h post-exposure period. Our results demonstrate that short term exposures to H2O2 are lethal to pelagic H. gammarus life stages and can negatively affect the shelter seeking behaviour of benthic life stages, though these behavioural changes may be short-lived.


Subject(s)
Hydrogen Peroxide/toxicity , Nephropidae/physiology , Animals , Aquaculture/methods , Exploratory Behavior , Fisheries , Larva/drug effects , Lethal Dose 50 , Nephropidae/drug effects , Norway , Salmon , Toxicity Tests
12.
Invert Neurosci ; 20(1): 3, 2020 02 11.
Article in English | MEDLINE | ID: mdl-32048048

ABSTRACT

Like all organisms, members of the crustacean order Decapoda must coordinate their physiology and behavior to accommodate recurring patterns of environmental change. Genetically encoded biological clocks are responsible, at least in part, for the proper timing of these organism-environment patternings. While biological clocks cycling on a wide range of timescales have been identified, the circadian signaling system, which serves to coordinate physiological/behavioral events to the solar day, is perhaps the best known and most thoroughly investigated. While many circadian patterns of physiology/behavior have been documented in decapods, few data exist concerning the identity of circadian genes/proteins in members of this taxon. In fact, large collections of circadian genes/proteins have been described from just a handful of decapod species. Here, a publicly accessible transcriptome, produced from tissues that included the nervous system (brain and eyestalk ganglia), was used to identify the molecular components of a circadian signaling system for rock lobster, Jasus edwardsii, a member of the decapod infraorder Achelata. Complete sets of core clock (those involved in the establishment of the molecular feedback loop that allows for ~ 24-h cyclical timing), clock-associated (those involved in modulation of core clock output), and clock input pathway (those that allow for synchronization of the core clock to the solar day) genes/proteins are reported. This is the first description of a putative circadian signaling system from any member of the infraorder Achelata, and as such, expands the decapod taxa for which complete complements of putative circadian genes/proteins have been identified.


Subject(s)
Circadian Rhythm/physiology , Nephropidae/physiology , Animals
13.
Aquat Toxicol ; 220: 105401, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31924586

ABSTRACT

The number of submarine power cables using either direct or alternating current is expected to increase drastically in coming decades. Data concerning the impact of magnetic fields generated by these cables on marine invertebrates are scarce. In this context, the aim of this study was to explore the potential impact of anthropogenic static and time-varying magnetic fields on the behavior of recently settled juvenile European lobsters (Homarus gammarus) using two different behavioral assays. Day-light conditions were used to stimulate the sheltering behavior and facilitate the video tracking. We showed that juvenile lobsters did not exhibit any change of behavior when submitted to an artificial magnetic field gradient (maximum intensity of 200 µT) compared to non-exposed lobsters in the ambient magnetic field. Additionally, no influence was noted on either the lobsters' ability to find shelter or modified their exploratory behavior after one week of exposure to anthropogenic magnetic fields (225 ±â€¯5 µT) which remained similar to those observed in control individuals. It appears that static and time-varying anthropogenic magnetic fields, at these intensities, do not significantly impact the behavior of juvenile European lobsters in daylight conditions. Nevertheless, to form a complete picture for this biological model, further studies are needed on the other life stages as they may respond differently.


Subject(s)
Behavior, Animal/physiology , Magnetic Fields/adverse effects , Nephropidae/physiology , Ships , Animals , Avoidance Learning/physiology , Europe , Exploratory Behavior/physiology , Homing Behavior/physiology , Models, Theoretical , Video Recording
14.
J Exp Biol ; 223(Pt 4)2020 02 19.
Article in English | MEDLINE | ID: mdl-31953362

ABSTRACT

Previous studies have demonstrated that male European lobsters (Homarus gammarus) use chemical and visual signals as a means of intraspecific communication during agonistic encounters. In this study, we show that they also produce buzzing sounds during these encounters. This result was missed in earlier studies because low-frequency buzzing sounds are highly attenuated in tanks, and are thus difficult to detect with hydrophones. To address this issue, we designed a behavioural tank experiment using hydrophones, with accelerometers placed on the lobsters to directly detect their carapace vibrations (i.e. the sources of the buzzing sounds). While we found that both dominant and submissive individuals produced carapace vibrations during every agonistic encounter, very few of the associated buzzing sounds (15%) were recorded by the hydrophones. This difference is explained by their high attenuation in tanks. We then used the method of algorithmic complexity to analyse the carapace vibration sequences as call-and-response signals between dominant and submissive individuals. Even though some intriguing patterns appeared for closely size-matched pairs (<5 mm carapace length difference), the results of the analysis did not permit us to infer that the processes underlying these sequences could be differentiated from random ones. Thus, such results prevented any conclusions about acoustic communication. This concurs with both the high attenuation of the buzzing sounds during the experiments and the poor understanding of acoustic perception by lobsters. New approaches that circumvent tank acoustic issues are now required to validate the existence of acoustic communication in lobsters.


Subject(s)
Agonistic Behavior/physiology , Animal Communication , Nephropidae/physiology , Acoustics , Animal Shells/physiology , Animals , Male , Vibration
15.
Mar Environ Res ; 149: 126-136, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31221492

ABSTRACT

Anthropogenic subsidies to natural systems can influence the diet of mobile omnivore species and co-occurring species. This study assessed if fall-off from mussel aquaculture subsidized wild populations of mobile scavengers and predators, such as the commercially important lobster Homarus americanus. A Bayesian stable isotope-mixing model with parameters determined from the literature and from a 105 days laboratory feeding experiment was applied to wild lobsters to determine how important the various food sources were in these lobsters, especially mussel fall-off. Isotopic values were mainly affected by lobster size with model outputs indicating that large lobsters (>80 mm cephalothorax) fed mainly on mussels from the mussel farm (46% of the diet) while small ones fed mostly on the rock crab Cancer irroratus (99%). The contribution of mussel subsidies to the lobster's diet was thus size-specific and direct (i.e. through mussel fall-off and not through co-occurring species such as rock crab). The absence of a link between food sources and lipid energy content in lobsters suggested that the reduction of rock crab consumption would have to be more drastic to affect the general health of large lobsters in the short term.


Subject(s)
Aquaculture , Bivalvia , Diet , Food Chain , Nephropidae/physiology , Animals , Brachyura , Ecological Parameter Monitoring , Glycogen/analysis , Isotope Labeling , Lipids/analysis , Models, Theoretical , Nutritive Value , Proteins/analysis , Seafood
16.
Article in English | MEDLINE | ID: mdl-31207282

ABSTRACT

The physiological consequences of exposing marine organisms to predicted future ocean scenarios, i.e. simultaneous increase in temperature and pCO2, have only recently begun to be investigated. Adult American lobster (Homarus americanus) were exposed to either current (16 °C, 47 Pa pCO2, pH 8.10) or predicted year 2300 (20 °C, 948 Pa pCO2, pH 7.10) ocean parameters for 14-16 days prior to assessing physiological changes in their hemolymph parameters as well as whole animal ammonia excretion and resting metabolic rate. Acclimation of lobster simultaneously to elevated pCO2 and temperature induced a prolonged respiratory acidosis that was only partially compensated for via accumulation of extracellular HCO3- and ammonia. Furthermore, acclimated animals possessed significantly higher ammonia excretion and oxygen consumption rates suggesting that future ocean scenarios may increase basal energetic demands on H. americanus. Enzyme activity related to protein metabolism (glutamine dehydrogenase, alanine aminotransferase, and aspartate aminotransferase) in hepatopancreas and muscle tissue were unaltered in future ocean scenario exposed animals; however, muscular citrate synthase activity was reduced suggesting that, while protein catabolism may be unchanged, the net energetic output of muscle may be compromised in future scenarios. Overall, H. americanus acclimated to ocean conditions predicted for the year 2300 appear to be incapable of fully compensating against climate change-related acid-base challenges and experience an increase in metabolic waste excretion and oxygen consumption. Combining our study with past literature on H. americanus suggests that the whole lifecycle from larvae to adult stages is at risk of severe growth, survival and reproductive consequences due to climate change.


Subject(s)
Carbon Dioxide/metabolism , Climate Change , Muscles/metabolism , Nephropidae/physiology , Acclimatization/genetics , Ammonia/chemistry , Ammonia/metabolism , Animals , Larva/growth & development , Oxygen Consumption , Seawater , Temperature
17.
Proc Biol Sci ; 286(1894): 20182455, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30963876

ABSTRACT

Marine protected areas (MPAs) are considered viable fisheries management tools due to their potential benefits of adult spillover and recruitment subsidy to nearby fisheries. However, before-after control-impact studies that explore the biological and fishery effects of MPAs to surrounding fisheries are scarce. We present results from a fine-scale spatial gradient study conducted before and after the implementation of a 5 km2 lobster MPA in southern Norway. A significant nonlinear response in lobster abundance, estimated as catch-per-unit-effort (CPUE) from experimental fishing, was detected within 2 years of protection. After 4 years, CPUE values inside the MPA had increased by a magnitude of 2.6 compared to before-protection values. CPUE showed a significant nonlinear decline from the centre of the MPA, with a depression immediately outside the border and a plateau in fished areas. Overall fishing pressure almost doubled over the course of the study. The highest increase in fishing pressure (by a magnitude of 3) was recorded within 1 km of the MPA border, providing a plausible cause for the depression in CPUE. Taken together, these results demonstrate the need to regulate fishing pressure in surrounding areas when MPAs are implemented as fishery management tools.


Subject(s)
Conservation of Natural Resources , Fisheries , Nephropidae/physiology , Animals , Norway , Population Density
18.
J Vis Exp ; (146)2019 04 08.
Article in English | MEDLINE | ID: mdl-31009003

ABSTRACT

We present a protocol related to a video-tracking technique based on the background subtraction and image thresholding that makes it possible to individually track cohoused animals. We tested the tracking routine with four cohoused Norway lobsters (Nephrops norvegicus) under light-darkness conditions for 5 days. The lobsters had been individually tagged. The experimental setup and the tracking techniques used are entirely based on the open source software. The comparison of the tracking output with a manual detection indicates that the lobsters were correctly detected 69% of the times. Among the correctly detected lobsters, their individual tags were correctly identified 89.5% of the times. Considering the frame rate used in the protocol and the movement rate of lobsters, the performance of the video tracking has a good quality, and the representative results support the validity of the protocol in producing valuable data for research needs (individual space occupancy or locomotor activity patterns). The protocol presented here can be easily customized and is, hence, transferable to other species where the individual tracking of specimens in a group can be valuable for answering research questions.


Subject(s)
Locomotion , Nephropidae/physiology , Video Recording/methods , Animals , Darkness , Male , Norway
19.
Mar Environ Res ; 143: 111-123, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30477878

ABSTRACT

The transition from the last pelagic larval stage to the first benthic juvenile stage in the complex life cycle of marine invertebrates, such as the American lobster Homarus americanus, a species of high economic importance, represents a delicate phase in these species development. Under future elevated pCO2 conditions, ocean acidification and other elevated pCO2 events can negatively affect crustaceans. This said their effects on the benthic settlement phase are virtually unknown. This study aimed to identify the effects of elevated seawater pCO2 on stage V American lobsters exposed to seven pCO2 levels. The survival, development time, metabolic and feeding rates, carapace composition, and energy metabolism enzyme function were investigated. Results suggested an increase in mortality, slower development and an increase in aerobic capacity with increasing pCO2. Our study points to potential reduction in juvenile recruitment success as seawater pCO2 increases, thus foreshadowing important socio-economic repercussions for the lobster fisheries and industry.


Subject(s)
Animal Shells/growth & development , Larva/growth & development , Larva/physiology , Nephropidae , Animal Shells/drug effects , Animals , Aquaculture , Calcification, Physiologic/drug effects , Carbon Dioxide/toxicity , Crustacea , Energy Metabolism , Hydrogen-Ion Concentration/drug effects , Molting/drug effects , Nephropidae/embryology , Nephropidae/physiology , Salinity , Seawater
20.
J Exp Biol ; 222(Pt 2)2019 01 18.
Article in English | MEDLINE | ID: mdl-30464043

ABSTRACT

Recent genomic/transcriptomic studies have identified a novel peptide family whose members share the carboxyl terminal sequence -GSEFLamide. However, the presence/identity of the predicted isoforms of this peptide group have yet to be confirmed biochemically, and no physiological function has yet been ascribed to any member of this peptide family. To determine the extent to which GSEFLamides are conserved within the Arthropoda, we searched publicly accessible databases for genomic/transcriptomic evidence of their presence. GSEFLamides appear to be highly conserved within the Arthropoda, with the possible exception of the Insecta, in which sequence evidence was limited to the more basal orders. One crustacean in which GSEFLamides have been predicted using transcriptomics is the lobster, Homarus americanus Expression of the previously published transcriptome-derived sequences was confirmed by reverse transcription (RT)-PCR of brain and eyestalk ganglia cDNAs; mass spectral analyses confirmed the presence of all six of the predicted GSEFLamide isoforms - IGSEFLamide, MGSEFLamide, AMGSEFLamide, VMGSEFLamide, ALGSEFLamide and AVGSEFLamide - in H. americanus brain extracts. AMGSEFLamide, of which there are multiple copies in the cloned transcripts, was the most abundant isoform detected in the brain. Because the GSEFLamides are present in the lobster nervous system, we hypothesized that they might function as neuromodulators, as is common for neuropeptides. We thus asked whether AMGSEFLamide modulates the rhythmic outputs of the cardiac ganglion and the stomatogastric ganglion. Physiological recordings showed that AMGSEFLamide potently modulates the motor patterns produced by both ganglia, suggesting that the GSEFLamides may serve as important and conserved modulators of rhythmic motor activity in arthropods.


Subject(s)
Amides/chemistry , Nephropidae/physiology , Nerve Net/physiology , Neuropeptides/genetics , Transcriptome , Amino Acid Sequence , Animals , Arthropod Proteins/chemistry , Arthropod Proteins/genetics , Nephropidae/genetics , Neuropeptides/chemistry , Neurotransmitter Agents/chemistry , Neurotransmitter Agents/genetics , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL