Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Phytomedicine ; 115: 154832, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37121059

ABSTRACT

BACKGROUND: Various brain disorders, including neurodegenerative diseases and major depressive disorders, threaten an increasing number of patients. Seabuckthorn, a fruit from Hippophae rhamnoides L., is an example of "medicine food homology". The fruit has enriched flavonoids that reported to have benefits in treating cognitive disorders. However, the studies on potential functions of Seabuckthorn and/or its flavonoid-enriched fraction in treating neurodegenerative disorders are limited. PURPOSE: This study aimed to determine the ability and mechanism of the flavonoid-enriched fraction of Seabuckthorn (named as SBF) in mimicking the neurotrophic functions in inducing neurite outgrowth of cultured neurons. METHODS: Cultured PC12 cell line, SH-SY5Y cell line and primary neurons (cortical and hippocampal neurons isolated from E17-19 SD rat embryos) were the employed models to evaluate SBF in inducing neurite outgrowth by comparing to the effects of NGF and BDNF. Immuno-fluorescence staining was applied to identify the morphological change during the neuronal differentiation. Luciferase assay was utilized for analyzing the transcriptional regulation of neurofilaments and cAMP/CREB-mediated gene. Western blot assay was conducted to demonstrate the expressions of neurofilaments and phosphorylated proteins. RESULTS: The application of SBF induced neuronal cell differentiation, and this differentiating activation was blocked by the inhibitors of PI3K/Akt and ERK pathways. Additionally, SBF showed synergy with neurotrophic factors in stimulating the neurite outgrowth of cultured neurons. Moreover, the major flavonoids within SBF, i.e., isorhamnetin, quercetin and kaempferol, could account for the neurotrophic activities of SBF. CONCLUSION: Seabuckthorn flavonoids mimicked neurotrophic functions in inducing neuronal cell differentiation via activating PI3K/Akt and ERK pathways. The results suggest the beneficial functions of Seabuckthorn as a potential health food supplement in treating various brain disorders, e.g., neurodegenerative diseases.


Subject(s)
Depressive Disorder, Major , Hippophae , Neuroblastoma , Neurodegenerative Diseases , Rats , Humans , Animals , MAP Kinase Signaling System , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Flavonoids/pharmacology , Flavonoids/therapeutic use , Neurites/metabolism , Depressive Disorder, Major/metabolism , Rats, Sprague-Dawley , Neuroblastoma/metabolism , Neurons , Neuronal Outgrowth , Neurodegenerative Diseases/drug therapy
2.
Cells ; 11(2)2022 01 12.
Article in English | MEDLINE | ID: mdl-35053363

ABSTRACT

Increased collagen-derived advanced glycation end-products (AGEs) are consistently related to painful diseases, including osteoarthritis, diabetic neuropathy, and neurodegenerative disorders. We have recently developed a model combining a two-dimensional glycated extracellular matrix (ECM-GC) and primary dorsal root ganglion (DRG) that mimicked a pro-nociceptive microenvironment. However, culturing primary cells is still a challenge for large-scale screening studies. Here, we characterized a new model using ECM-GC as a stimulus for human sensory-like neurons differentiated from SH-SY5Y cell lines to screen for analgesic compounds. First, we confirmed that the differentiation process induces the expression of neuron markers (MAP2, RBFOX3 (NeuN), and TUBB3 (ß-III tubulin), as well as sensory neuron markers critical for pain sensation (TRPV1, SCN9A (Nav1.7), SCN10A (Nav1.8), and SCN11A (Nav1.9). Next, we showed that ECM-GC increased c-Fos expression in human sensory-like neurons, which is suggestive of neuronal activation. In addition, ECM-GC upregulated the expression of critical genes involved in pain, including SCN9A and TACR1. Of interest, ECM-GC induced substance P release, a neuropeptide widely involved in neuroinflammation and pain. Finally, morphine, the prototype opiate, decreased ECM-GC-induced substance P release. Together, our results suggest that we established a functional model that can be useful as a platform for screening candidates for the management of painful conditions.


Subject(s)
Analgesics/analysis , Analgesics/pharmacology , Collagen/pharmacology , Drug Evaluation, Preclinical , Models, Biological , Sensory Receptor Cells/cytology , Animals , Antigens, Neoplasm/metabolism , Biomarkers/metabolism , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Extracellular Matrix/metabolism , Galectin 3/metabolism , Gene Expression Regulation/drug effects , Glycosylation/drug effects , Humans , Mitogen-Activated Protein Kinases/metabolism , NAV1.7 Voltage-Gated Sodium Channel/genetics , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Neurites/drug effects , Neurites/metabolism , Neurons/cytology , Neurons/drug effects , Proto-Oncogene Proteins c-fos/metabolism , Rats , Receptors, Neurokinin-1/genetics , Receptors, Neurokinin-1/metabolism , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/metabolism , Substance P/metabolism , beta-Endorphin/metabolism
3.
Acta Histochem ; 123(6): 151759, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34425524

ABSTRACT

The regenerative capability of spinal cord neurons is limited to impossible. Thus, experimental approaches supporting reconstruction/regeneration are in process. This study focused on the evaluation of the protective potency of an extract from Gynostemma pentaphyllum (GP), a plant used in traditional medicine with anti-oxidative and neuroprotective activities, in vitro on organotypic spinal cord cultures, the motor-neuron-like NSC-34 cell line and the microglial cell line BV-2. Organotypic cultures were mechanically stressed by the slicing procedure and the effect of GP on motor neuron survival and neurite sprouting was tested by immunohistochemistry. NSC-34 cells were neuronal differentiated by using special medium. Afterwards, cell survival (propidium iodide/fluorescein diacetate labeling), proliferation (BrdU-incorporation), and neurite sprouting were evaluated. BV-2 cells were stimulated with LPS/interferon γ and subjected to migration assay and nanoparticle uptake. Cell survival, proliferation and the expression pattern of different microglial activation markers (cFOS, iNOS) as well as transcription factors (PPARγ, YB1) were analyzed. In organotypic cultures, high-dose GP supported survival of motor neurons and especially of the neuronal fiber network. Despite reduced neurodegeneration, however, there was a GP-mediated activation of astro- and microglia. In NSC-34 cells, high-dosed GP had degenerative and anti-proliferative effects, but only in normal medium. Moreover, GP supported the neuro-differentiation ability. In BV-2 cells, high-dosed GP was toxic. In lower dosages, GP affected cell survival and proliferation when combined with LPS/interferon γ. Nanoparticle uptake, migration ability, and the transcription factor PPARγ, however, GP affected directly. The data suggest positive effects of GP on injured spinal motor neurons. Moreover, GP activated microglial cells. The dual role of microglia (protective/detrimental) in neurodegenerative processes required further experiments to enhance the knowledge about GP effects. Therefore, a possible clinical use of GP in spinal cord injuries is still a long way off.


Subject(s)
Gynostemma/chemistry , Microglia/metabolism , Motor Neurons/metabolism , Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , Spinal Cord/metabolism , Animals , Cell Line , Cell Movement/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Interferon-gamma/pharmacology , Lipopolysaccharides/pharmacology , Mice , Microglia/pathology , Motor Neurons/pathology , Neurites/metabolism , Neuroprotective Agents/chemistry , Plant Extracts/chemistry , Rats , Rats, Wistar , Spinal Cord/pathology
4.
Cell Rep ; 35(3): 109016, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33882317

ABSTRACT

The mammalian cochlea cannot regenerate functional hair cells (HCs) spontaneously. Atoh1 overexpression as well as other strategies are unable to generate functional HCs. Here, we simultaneously upregulated the expression of Gfi1, Pou4f3, and Atoh1 in postnatal cochlear supporting cells (SCs) in vivo, which efficiently converted SCs into HCs. The newly regenerated HCs expressed HC markers Myo7a, Calbindin, Parvalbumin, and Ctbp2 and were innervated by neurites. Importantly, many new HCs expressed the mature and terminal marker Prestin or vesicular glutamate transporter 3 (vGlut3), depending on the subtypes of the source SCs. Finally, our patch-clamp analysis showed that the new HCs in the medial region acquired a large K+ current, fired spikes transiently, and exhibited signature refinement of ribbon synapse functions, in close resemblance to native wild-type inner HCs. We demonstrated that co-upregulating Gfi1, Pou4f3, and Atoh1 enhances the efficiency of HC generation and promotes the functional maturation of new HCs.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , DNA-Binding Proteins/genetics , Hair Cells, Auditory/metabolism , Homeodomain Proteins/genetics , Labyrinth Supporting Cells/metabolism , Organogenesis/genetics , Transcription Factor Brn-3C/genetics , Transcription Factors/genetics , Action Potentials/physiology , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Amino Acid Transport Systems, Acidic/genetics , Amino Acid Transport Systems, Acidic/metabolism , Animals , Animals, Newborn , Basic Helix-Loop-Helix Transcription Factors/metabolism , Calbindins/genetics , Calbindins/metabolism , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Developmental , Hair Cells, Auditory/cytology , Homeodomain Proteins/metabolism , Ion Transport , Labyrinth Supporting Cells/cytology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Molecular Motor Proteins/genetics , Molecular Motor Proteins/metabolism , Myosin VIIa/genetics , Myosin VIIa/metabolism , Neurites/metabolism , Neurites/ultrastructure , Parvalbumins/genetics , Parvalbumins/metabolism , Patch-Clamp Techniques , Potassium/metabolism , Signal Transduction , Transcription Factor Brn-3C/metabolism , Transcription Factors/metabolism
5.
PLoS One ; 16(3): e0248139, 2021.
Article in English | MEDLINE | ID: mdl-33690613

ABSTRACT

This work tries to help overcome the lack of relevant translational screening assays, as a limitation for the identification of novel analgesics for neuropathic pain. Hyperexcitability and neurite shortening are common adverse effects of antiviral and antitumor drugs, leading to neuropathic pain. Now, as seen in the drug screening that we developed here, a high-content microscopy-based assay with immortalized dorsal root ganglia (DRG) neurons (differentiated F11 cells) allowed to identify drugs able to protect against the iatrogenic neurite shortening induced by the antitumor drug vincristine and the antiviral drug rilpivirine. We observed that vincristine and rilpivirine induced a significant reduction in the neurite length, which was reverted by α-lipoic acid. We had also evidenced protective effects of pregabalin and melatonin, acting through the α2δ-2 subunit of the voltage-dependent calcium channels and the MT1 receptor, respectively. Additionally, two hits originated from a previous primary screening aimed to detect inhibitors of hyperexcitability to inflammatory mediators in DRG neurons (nitrendipine and felodipine) also prevented neurite shortening in our model. In summary, in this work we developed a novel secondary assay for identifying hits with neuroprotective effect against iatrogenic neurite shortening, consistent with the anti-hyperexcitability action previously tested: highlighting nitrendipine and felodipine against iatrogenic damage in DRG neurons.


Subject(s)
Drug Evaluation, Preclinical/methods , Neurites/drug effects , Analgesics/pharmacology , Cell Line , Ganglia, Spinal/drug effects , Ganglia, Spinal/physiology , Humans , Iatrogenic Disease , Melatonin/pharmacology , Neuralgia/drug therapy , Neurites/metabolism , Neurons/drug effects , Neurons/physiology , Neuroprotective Agents/pharmacology , Pregabalin/pharmacology , Rilpivirine/adverse effects , Rilpivirine/pharmacology , Thioctic Acid/pharmacology , Vincristine/adverse effects , Vincristine/pharmacology
6.
Mol Metab ; 49: 101191, 2021 07.
Article in English | MEDLINE | ID: mdl-33592336

ABSTRACT

OBJECTIVE: The distal dying-back of the longest nerve fibres is a hallmark of diabetic neuropathy, and impaired provision of energy in the form of adenosine triphosphate (ATP) may contribute to this neurodegenerative process. We hypothesised that energy supplementation via glycolysis and/or mitochondrial oxidative phosphorylation is compromised in cultured dorsal root ganglion (DRG) sensory neurons from diabetic rodents, thus contributing to axonal degeneration. Functional analysis of glycolysis and mitochondrial respiration and real-time measurement of ATP levels in live cells were our specific means to test this hypothesis. METHODS: DRG neuron cultures from age-matched control or streptozotocin (STZ)-induced type 1 diabetic rats were used for in vitro studies. Three plasmids containing ATP biosensors of varying affinities were transfected into neurons to study endogenous ATP levels in real time. The Seahorse XF analyser was used for glycolysis and mitochondrial respiration measurements. RESULTS: Fluorescence resonance energy transfer (FRET) efficiency (YFP/CFP ratio) of the ATP biosensors AT1.03 (low affinity) and AT1.03YEMK (medium affinity) were significantly higher than that measured using the ATP-insensitive construct AT1.03R122/6K in both cell bodies and neurites of DRG neurons (p < 0.0001). The ATP level was homogenous along the axons but higher in cell bodies in cultured DRG neurons from both control and diabetic rats. Treatment with oligomycin (an ATP synthase inhibitor in mitochondria) decreased the ATP levels in cultured DRG neurons. Likewise, blockade of glycolysis using 2-deoxy-d-glucose (2-DG: a glucose analogue) reduced ATP levels (p < 0.001). Cultured DRG neurons derived from diabetic rats showed a diminishment of ATP levels (p < 0.01), glycolytic capacity, glycolytic reserve and non-glycolytic acidification. Application of insulin-like growth factor-1 (IGF-1) significantly elevated all the above parameters in DRG neurons from diabetic rats. Oligomycin pre-treatment of DRG neurons, to block oxidative phosphorylation, depleted the glycolytic reserve and lowered basal respiration in sensory neurons derived from control and diabetic rats. Depletion was much higher in sensory neurons from diabetic rats compared to control rats. In addition, an acute increase in glucose concentration, in the presence or absence of oligomycin, elevated parameters of glycolysis by 1.5- to 2-fold while having no impact on mitochondrial respiration. CONCLUSION: We provide the first functional evidence for decreased glycolytic capacity in DRG neurons derived from type 1 diabetic rats. IGF-1 protected against the loss of ATP supplies in DRG cell bodies and axons in neurons derived from diabetic rats by augmenting various parameters of glycolysis and mitochondrial respiration.


Subject(s)
Adenosine Triphosphate/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetic Neuropathies/metabolism , Glycolysis/physiology , Insulin-Like Growth Factor I/metabolism , Sensory Receptor Cells/metabolism , Animals , Axons , Ganglia, Spinal/metabolism , Male , Mitochondria/metabolism , Neurites/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction , Streptozocin/pharmacology
7.
Nanoscale ; 12(15): 8200-8215, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32255447

ABSTRACT

Despite an intuitive understanding of the role of APP in health and disease, there exist few attempts to dissect its molecular localization at excitatory synapses. Though the biochemistry involved in the enzymatic processing of APP is well understood, there is a void in understanding the nonuniformity of the product formation in vivo. Here, we employed multiple paradigms of single molecules and ensemble based nanoscopic imaging to reveal that APP molecules are organized into regulatory nanodomains that are differentially compartmentalized in the functional zones of an excitatory synapse. Furthermore, with the aid of high density single particle tracking, we show that the lateral diffusion of APP in live cells dictates an equilibrium between these nanodomains and their nano-environment, which is affected in a detrimental variant of APP. Additionally, we incorporate this spatio-temporal detail 'in silico' to generate a realistic nanoscale topography of APP in dendrites and synapses. This approach uncovers a nanoscale heterogeneity in the molecular organization of APP, depicting a locus for differential APP processing. This holistic paradigm, to decipher the real-time heterogeneity of the substrate molecules on the nanoscale, could enable us to better evaluate the molecular constraints overcoming the ensemble approaches used traditionally to understand the kinetics of product formation.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Synapses/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/chemistry , Animals , Cell Membrane/metabolism , Cells, Cultured , Computer Simulation , Hippocampus/metabolism , Kinetics , Mice , Neurites/metabolism , Neurons/metabolism , Rats , Single Molecule Imaging
8.
Carbohydr Polym ; 236: 116048, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32172862

ABSTRACT

Pectin is a family of heteropolysaccharides and highly valued for its various bioactivities. Here, a pectin, RP01-1, was purified from roots of Polygala tenuifolia with the molecular weight of 79.1 kDa. Its structure was characterized as alternate 1, 2, 4-linked α-Rhap and 1, 4-linked α-GalpA constituted the backbone, with branches of terminal (T) -, 1, 4- and 1, 3, 6-linked ß-Galp, T-, 1, 5- and 1, 3, 5-linked α-Araf substituted at C-4 of 1, 2, 4-linked α-Rhap. The fluorescence spectroscopic analysis indicated that RP01-1 induced neurite outgrowth in PC12 cells and primary cortex neurons in dose dependent manner with no significant cytotoxicity. To disclose the mechanism of this phenomenon, we found that RP01-1 might induce neuritogenesis in PC12 cells via increasing BDNF expression, and promoting the phosphorylation of AKT, ERK, CREB. The results suggest that AKT, ERK, CREB related signaling pathways might implicate in neuritogenesis-inducing activity of RP01-1.


Subject(s)
Neurites/metabolism , Neurons/metabolism , Pectins/pharmacology , Plant Roots/chemistry , Polygala/chemistry , Animals , Carbohydrate Sequence , Cell Differentiation/drug effects , Cerebral Cortex/metabolism , Mice, Inbred C57BL , PC12 Cells , Pectins/chemistry , Pectins/isolation & purification , Rats , Signal Transduction/drug effects
9.
Mol Med Rep ; 21(1): 320-328, 2020 01.
Article in English | MEDLINE | ID: mdl-31939614

ABSTRACT

Cortex Mori Radicis extract (CMR) has various pharmacological properties, such as anti­inflammatory, anti­allergic and anti­hyperglycemic effects. However, the effects and mechanisms of CMR in the neuroregeneration of diabetic peripheral neuropathy (DPN) are unclear. In the present study, the effects of CMR on neurite outgrowth of dorsal root ganglia (DRG) neurons in diabetic rats were investigated and its underlying mechanisms were explored. SD rats were subjected to a high­fat diet with low­dose streptozotocin to induce a Type II diabetes model with peripheral neuropathy. CMR was then applied for four weeks continuously with or without injection of small interfere (si)RNA targeting the transient receptor potential canonical channel 1 (TRPC1) via the tail vein. Blood glucose levels, the number of Nissl bodies, neurite outgrowth and growth cone turning in DRG neurons were evaluated. The expression of TRPC1 protein, Ca2+ influx and activation of the PI3K/AKT signaling pathway were also investigated. The results of the present study showed that CMR significantly lowered blood glucose levels, reversed the loss of Nissl bodies, induced neurite outgrowth and restored the response of the growth cone of DRG neurons in diabetic rats. CMR exerted neurite outgrowth­promoting effects by increasing TRPC1 expression, reducing Ca2+ influx and enhancing AKT phosphorylation. siRNA targeting TRPC1 in the CMR group abrogated its anti­diabetic and neuroregenerative effects, suggesting the involvement of TRPC1 in the biological effects of CMR on DPN.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetic Neuropathies/drug therapy , Morus , Neurites/metabolism , Neuronal Outgrowth/drug effects , Plant Extracts/pharmacology , Animals , Blood Glucose/drug effects , Calcium/metabolism , Cells, Cultured , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetic Neuropathies/blood , Diabetic Neuropathies/genetics , Diabetic Neuropathies/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Ganglia, Spinal/drug effects , Ganglia, Spinal/growth & development , Ganglia, Spinal/metabolism , Male , Neurites/drug effects , Neurites/pathology , Neurons/drug effects , Neurons/metabolism , Nissl Bodies/drug effects , Nissl Bodies/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Plant Extracts/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Signal Transduction/genetics , TRPC Cation Channels/genetics , TRPC Cation Channels/metabolism , Up-Regulation
10.
J Neurophysiol ; 123(2): 645-657, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31851560

ABSTRACT

Gain-of-function variants in voltage-gated sodium channel NaV1.7 that increase firing frequency and spontaneous firing of dorsal root ganglion (DRG) neurons have recently been identified in 5-10% of patients with idiopathic small fiber neuropathy (I-SFN). Our previous in vitro observations suggest that enhanced sodium channel activity can contribute to a decrease in length of peripheral sensory axons. We have hypothesized that sustained sodium influx due to the expression of SFN-associated sodium channel variants may trigger an energetic deficit in neurons that contributes to degeneration and loss of nerve fibers in SFN. Using an ATP FRET biosensor, we now demonstrate reduced steady-state levels of ATP and markedly faster ATP decay in response to membrane depolarization in cultured DRG neurons expressing an SFN-associated variant NaV1.7, I228M, compared with wild-type neurons. We also observed that I228M neurons show a significant reduction in mitochondrial density and size, indicating dysfunctional mitochondria and a reduced bioenergetic capacity. Finally, we report that exposure to dexpramipexole, a drug that improves mitochondrial energy metabolism, increases the neurite length of I228M-expressing neurons. Our data suggest that expression of gain-of-function variants of NaV1.7 can damage mitochondria and compromise cellular capacity for ATP production. The resulting bioenergetic crisis can consequently contribute to loss of axons in SFN. We suggest that, in addition to interventions that reduce ionic disturbance caused by mutant NaV1.7 channels, an alternative therapeutic strategy might target the bioenergetic burden and mitochondrial damage that occur in SFN associated with NaV1.7 gain-of-function mutations.NEW & NOTEWORTHY Sodium channel NaV1.7 mutations that increase dorsal root ganglion (DRG) neuron excitability have been identified in small fiber neuropathy (SFN). We demonstrate reduced steady-state ATP levels, faster depolarization-evoked ATP decay, and reduced mitochondrial density and size in cultured DRG neurons expressing SFN-associated variant NaV1.7 I228M. Dexpramipexole, which improves mitochondrial energy metabolism, has a protective effect. Because gain-of-function NaV1.7 variants can compromise bioenergetics, therapeutic strategies that target bioenergetic burden and mitochondrial damage merit study in SFN.


Subject(s)
Adenosine Triphosphate/metabolism , Ganglia, Spinal , Mitochondria , NAV1.7 Voltage-Gated Sodium Channel/genetics , Neurites , Neurons , Neuroprotective Agents/pharmacology , Pramipexole/pharmacology , Small Fiber Neuropathy/metabolism , Animals , Biosensing Techniques , Cells, Cultured , Gain of Function Mutation , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Humans , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Neurites/drug effects , Neurites/metabolism , Neurons/drug effects , Neurons/metabolism
11.
Arch Toxicol ; 94(2): 449-467, 2020 02.
Article in English | MEDLINE | ID: mdl-31828357

ABSTRACT

While there are many methods to quantify the synthesis, localization, and pool sizes of proteins and DNA during physiological responses and toxicological stress, only few approaches allow following the fate of carbohydrates. One of them is metabolic glycoengineering (MGE), which makes use of chemically modified sugars (CMS) that enter the cellular biosynthesis pathways leading to glycoproteins and glycolipids. The CMS can subsequently be coupled (via bio-orthogonal chemical reactions) to tags that are quantifiable by microscopic imaging. We asked here, whether MGE can be used in a quantitative and time-resolved way to study neuronal glycoprotein synthesis and its impairment. We focused on the detection of sialic acid (Sia), by feeding human neurons the biosynthetic precursor N-acetyl-mannosamine, modified by an azide tag. Using this system, we identified non-toxic conditions that allowed live cell labeling with high spatial and temporal resolution, as well as the quantification of cell surface Sia. Using combinations of immunostaining, chromatography, and western blotting, we quantified the percentage of cellular label incorporation and effects on glycoproteins such as polysialylated neural cell adhesion molecule. A specific imaging algorithm was used to quantify Sia incorporation into neuronal projections, as potential measure of complex cell function in toxicological studies. When various toxicants were studied, we identified a subgroup (mitochondrial respiration inhibitors) that affected neurite glycan levels several hours before any other viability parameter was affected. The MGE-based neurotoxicity assay, thus allowed the identification of subtle impairments of neurochemical function with very high sensitivity.


Subject(s)
Cell Membrane/metabolism , Drug Evaluation, Preclinical/methods , Molecular Biology/methods , N-Acetylneuraminic Acid/metabolism , Neurotoxicity Syndromes/pathology , Bortezomib/pharmacology , Cell Line , Glycoconjugates/chemistry , Glycoconjugates/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hexosamines/chemistry , Hexosamines/metabolism , Hexosamines/pharmacology , Humans , Neurites/chemistry , Neurites/metabolism , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Neurotoxicity Syndromes/metabolism , Tunicamycin/pharmacology
12.
J Nat Med ; 74(1): 212-218, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31707550

ABSTRACT

Blood-brain barrier (BBB)-permeable components in the methanolic extract of Nelumbo nucifera flowers showed accelerative effects on neurite outgrowth in PC-12 cells. Among the constituents isolated from N. nucifera flowers in our previous study, aporphine-type alkaloids, lirinidine, asimilobine, N-methylasimilobine, and pronuciferine, showed accelerative effects. Lirinidine, N-methylasimilobine, and an alkaloid-rich diethyl ether fraction at low concentrations increased the expression of mRNAs coding for TrkA, Vav3, and Rac1. In addition, good permeability of asimilobine and N-methylasimilobine was confirmed using an in vitro BBB model. Asimilobine and N-methylasimilobine are considered to be suitable as seed compounds of drugs for Alzheimer's disease, because of their activity and BBB permeability.


Subject(s)
Alkaloids/pharmacology , Aporphines/pharmacology , Blood-Brain Barrier/drug effects , Nelumbo/chemistry , Neurites/metabolism , Alzheimer Disease/drug therapy , Animals , Cell Line, Tumor , Flowers/chemistry , Methanol , Neuronal Outgrowth/drug effects , PC12 Cells , Plant Extracts/pharmacology , Rats , Spiro Compounds/pharmacology
13.
J Cell Sci ; 132(19)2019 10 10.
Article in English | MEDLINE | ID: mdl-31515278

ABSTRACT

Tumor stem cells and malignant multicellular networks have been separately implicated in the therapeutic resistance of glioblastoma multiforme (GBM), the most aggressive type of brain cancer in adults. Here, we show that small-molecule inhibition of RHO-associated serine/threonine kinase proteins (ROCKi) significantly promoted the outgrowth of neurite-like cell projections in cultures of heterogeneous patient-derived GBM stem-like cells. These projections formed de novo-induced cellular network (iNet) 'webs', which regressed after withdrawal of ROCKi. Connected cells within the iNet web exhibited long range Ca2+ signal transmission, and significant lysosomal and mitochondrial trafficking. In contrast to their less-connected vehicle control counterparts, iNet cells remained viable and proliferative after high-dose radiation. These findings demonstrate a link between ROCKi-regulated cell projection dynamics and the formation of radiation-resistant multicellular networks. Our study identifies means to reversibly induce iNet webs ex vivo, and may thereby accelerate future studies into the biology of GBM cellular networks.


Subject(s)
Glioblastoma/metabolism , Neoplastic Stem Cells/metabolism , Neurites/metabolism , Calcium Signaling/physiology , Cell Line, Tumor , Cell Movement/physiology , Humans , Immunoblotting , Lysosomes/metabolism , Mitochondria/metabolism , Neuronal Outgrowth/physiology , Phenotype , Protein Serine-Threonine Kinases/metabolism
14.
Int J Mol Sci ; 20(10)2019 May 18.
Article in English | MEDLINE | ID: mdl-31109056

ABSTRACT

Developmental actions of estradiol in the hypothalamus are well characterized. This hormone generates sex differences in the development of hypothalamic neuronal circuits controlling neuroendocrine events, feeding, growth, reproduction and behavior. In vitro, estradiol promotes sexually dimorphic effects on hypothalamic neuritogenesis. Previous studies have shown that developmental actions of the phytoestrogen genistein result in permanent sexually dimorphic effects in some behaviors and neural circuits in vivo. In the present study, we have explored if genistein, like estradiol, affects neuritogenesis in primary hypothalamic neurons and investigated the estrogen receptors implicated in this action. Hypothalamic neuronal cultures, obtained from male or female embryonic day 14 (E14) CD1 mice, were treated with genistein (0.1 µM, 0.5 µM or 1 µM) or vehicle. Under basal conditions, female neurons had longer primary neurites, higher number of secondary neurites and higher neuritic arborization compared to male neurons. The treatment with genistein increased neuritic arborization and the number of primary neurites and decreased the number of secondary neurites in female neurons, but not in male neurons. In contrast, genistein resulted in a significant increase in primary neuritic length in male neurons, but not in female neurons. The use of selective estrogen receptor antagonists suggests that estrogen receptor α, estrogen receptor ß and G-protein-coupled estrogen receptors are involved in the neuritogenic action of genistein. In summary, these findings indicate that genistein exerts sexually dimorphic actions on the development of hypothalamic neurons, altering the normal pattern of sex differences in neuritogenesis.


Subject(s)
Cell Differentiation/drug effects , Genistein/pharmacology , Phytoestrogens/pharmacology , Pyramidal Cells/cytology , Pyramidal Cells/drug effects , Sex Characteristics , Animals , Biomarkers , Female , Male , Mice , Neurites/drug effects , Neurites/metabolism , Neurogenesis/drug effects , Pyramidal Cells/metabolism , Receptors, Estrogen/antagonists & inhibitors , Receptors, Estrogen/metabolism
15.
Colloids Surf B Biointerfaces ; 178: 32-37, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30825776

ABSTRACT

We report about the response of N2a cells, a mouse neuroblastoma cell line, cultured on inert substrates with controlled porous nanostructure. The substrate surfaces were obtained by anodization and post-fabrication etching of thin aluminum films previously deposited onto glass. The morphology of the adherent cells was assessed by scanning electron microscopy. After fluorescent labelling, confocal microscopy was used to assess both the cell density, by cell nuclei counting, and their growth, by characterizing the neurite extensions in both number and length. By comparing with flat and smooth aluminum oxide, we can conclude that the nanoporous morphology of the anodized aluminum is favorable for cell development, which is probably correlated with the high density of regions with high local curvature. The intermediate pore size in the given range seems unfavorable for the number of cells, while the cell shape and the number of extensions point to a dominating differentiation of the N2a cells in correspondence with a characteristic pore size of 60 nm. These results are promising in view of the application of anodic alumina as a platform for the development of neuronal bioassays based on cell interconnectivity.


Subject(s)
Aluminum Oxide/chemistry , Nanopores , Neurons/cytology , Animals , Cell Differentiation/physiology , Cell Line, Tumor , Mice , Microscopy, Confocal , Microscopy, Fluorescence , Neurites/metabolism
16.
Neuroscience ; 400: 169-183, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30639394

ABSTRACT

Motor neuron damage caused by diseases, traumatic insults or de-afferentation of the spinal cord is often incurable due to the poor intrinsic regenerative capacity. Moreover, regenerated peripheral nerves often do not reach normal functionality. Here, we investigated cardiolipin in the process of neuro-differentiation, since cardiolipin is closely linked to the mitochondrial energy supply in cells. The NSC-34 hybrid cell line, produced by fusing neuroblastoma cells with primary spinal cord motor neurons, was used, since it shares several morphological and physiological characteristics with mature primary motor neurons. Their neuro-differentiation was supported by switching from normal to differentiation medium or by fatty acid supplementation. Differentiation was evaluated by measuring neurite-sprouting parameters and PPARα expression. Cellular fatty acid distribution was analyzed to indicate changes in lipid metabolism during differentiation. Cardiolipin was characterized by acyl-chain composition and the distribution of molecular cardiolipin species. Both, the switch from normal to differentiation medium as well as the administration of palmitic and oleic acid promoted neuro-differentiation. Stimulated differentiation was accompanied by changes in cardiolipin content and composition. The positive correlation between neuro-differentiation and concentration of those molecular cardiolipin species containing palmitic and oleic acid implied a link between differentiation of NSC-34 cells and cardiolipin metabolism. We further demonstrated the impact of cellular lipid metabolism, and particularly cardiolipin metabolism, during and NSC-34 neuritogenesis. Thus, cardiolipin may represent a new therapeutic target for axon regeneration after peripheral nerve injuries or when axon sprouting is required to compensate for motor neuron loss in response to aging and/or disease.


Subject(s)
Cardiolipins/metabolism , Cell Differentiation , Mitochondria/metabolism , Motor Neurons/metabolism , Spinal Cord/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , Cell Survival , Mice , Neurites/metabolism , Oleic Acid/administration & dosage , PPAR alpha/metabolism , Palmitic Acid/administration & dosage
17.
J Biomed Mater Res B Appl Biomater ; 107(6): 1792-1805, 2019 08.
Article in English | MEDLINE | ID: mdl-30419159

ABSTRACT

Stem cell strategies and the use of electrical stimulation (ES) represent promising new frontiers for peripheral nerve regeneration. Composite matrices were fabricated by coating electrospun polycaprolactone/cellulose acetate micro-nanofibers with chitosan and ionically conductive (IC) polymers including, sulfonated polyaniline, and lignin sulfonate. These composite matrices were characterized for surface morphology, coating uniformity, ionic conductivity, and mechanical strength to explore as scaffold materials for nerve regeneration in conjunction with ES. Composite matrices measured conductivity in the range of 0.0049-0.0068 mS/m due to the uniform coating of sulfonated polymers on the micro-nanofibers. Thin films (2D) and composite fiber matrices (3D) of IC polymers seeded with human mesenchymal stem cells (hMSCs) were electrically stimulated at 0.5 V, 20 Hz for 1 h daily for 14 days to study the changes in cell viability, morphology, and expression of the neuronal-like phenotype. In vitro ES lead to changes in hMSCs' fibroblast morphology into elongated neurite-like structures with cell bodies for ES-treated and positive control growth factor-treated groups. Immunofluorescent staining revealed the presence of neuronal markers including ß3-tubulin, microtubule-associated protein 2, and nestin in response to ES. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1792-1805, 2019.


Subject(s)
Electric Stimulation Therapy , Extracellular Matrix/chemistry , Mesenchymal Stem Cells/metabolism , Nerve Regeneration , Neurites/metabolism , Polymers/chemistry , Antigens, Differentiation/metabolism , Electric Conductivity , Humans
18.
Mol Neurobiol ; 56(6): 3882-3896, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30220058

ABSTRACT

Rett syndrome (RTT) is a postnatal neurodevelopmental disorder that primarily affects girls, with 95% of RTT cases resulting from mutations in the methyl-CpG-binding protein 2 (MECP2) gene. Choline, a dietary micronutrient found in most foods, has been shown to be important for brain development and function. However, the exact effects and mechanisms are still unknown. We found that 13 mg/day (1.7 × required daily intake) of postnatal choline treatment to Mecp2-conditional knockout mice rescued not only deficits in motor coordination, but also their anxiety-like behaviour and reduced social preference. Cortical neurons in the brains of Mecp2-conditional knockout mice supplemented with choline showed enhanced neuronal morphology and increased density of dendritic spines. Modelling RTT in vitro by knocking down the expression of the MeCP2 protein with shRNA, we found that choline supplementation to MeCP2-knockdown neurons increased their soma sizes and the complexity of their dendritic arbors. Rescue of the morphological defects could lead to enhanced neurotransmission, as suggested by an observed trend of increased expression of synaptic proteins and restored miniature excitatory postsynaptic current frequency in choline-supplemented MeCP2-knockdown neurons. Through the use of specific inhibitors targeting each of the known physiological pathways of choline, synthesis of phosphatidylcholine from choline was found to be essential in bringing about the changes seen in the choline-supplemented MeCP2-knockdown neurons. Taken together, these data reveal a role of choline in modulating neuronal plasticity, possibly leading to behavioural changes, and hence, a potential for using choline to treat RTT.


Subject(s)
Behavior, Animal/drug effects , Choline/pharmacology , Neuronal Plasticity/drug effects , Rett Syndrome/physiopathology , Animals , Cerebral Cortex/pathology , Dendritic Spines/drug effects , Dendritic Spines/pathology , Dietary Supplements , Disease Models, Animal , Female , Methyl-CpG-Binding Protein 2/metabolism , Mice, Knockout , Neurites/drug effects , Neurites/metabolism , Phosphatidylcholines/biosynthesis , Rats, Sprague-Dawley
19.
ACS Appl Mater Interfaces ; 11(1): 356-372, 2019 Jan 09.
Article in English | MEDLINE | ID: mdl-30516370

ABSTRACT

Magnetic electrospun fibers are of interest for minimally invasive biomaterial applications that also strive to provide cell guidance. Magnetic electrospun fibers can be injected and then magnetically positioned in situ, and the aligned fiber scaffolds provide consistent topographical guidance to cells. In this study, magnetically responsive aligned poly-l-lactic acid electrospun fiber scaffolds were developed and tested for neural applications. Incorporating oleic acid-coated iron oxide nanoparticles significantly increased neurite outgrowth, reduced the fiber alignment, and increased the surface nanotopography of the electrospun fibers. After verifying neuron viability on two-dimensional scaffolds, the system was tested as an injectable three-dimensional scaffold. Small conduits of aligned magnetic fibers were easily injected in a collagen or fibrinogen hydrogel solution and repositioned using an external magnetic field. The aligned magnetic fibers provided internal directional guidance to neurites within a three-dimensional collagen or fibrin model hydrogel, supplemented with Matrigel. Neurites growing from dorsal root ganglion explants extended 1.4-3× farther on the aligned fibers compared with neurites extending in the hydrogel alone. Overall, these results show that magnetic electrospun fiber scaffolds can be injected and manipulated with a magnetic field in situ to provide directional guidance to neurons inside an injectable hydrogel. Most importantly, this injectable guidance system increased both neurite alignment and neurite length within the hydrogel scaffold.


Subject(s)
Ganglia, Spinal/physiology , Hydrogels/chemistry , Nerve Regeneration , Neurites/metabolism , Tissue Scaffolds/chemistry , Animals , Ganglia, Spinal/cytology , Rats , Rats, Sprague-Dawley
20.
Redox Biol ; 21: 101078, 2019 02.
Article in English | MEDLINE | ID: mdl-30593978

ABSTRACT

Diabetes mellitus is one of the most common chronic diseases in the United States and peripheral neuropathy (PN) affects at least 50% of diabetic patients. Medications available for patients ameliorate symptoms (pain), but do not protect against cellular damage and come with severe side effects, leading to discontinued use. Our research group uses differentiated SH-SY5Y cells treated with advanced glycation end products (AGE) as a model to mimic diabetic conditions and to study the mechanisms of oxidative stress mediated cell damage and antioxidant protection. N-acetylcysteine (NAC), a common antioxidant supplement, was previously shown by our group to fully protect against AGE-induced damage. We have also shown that 3H-1,2-dithiole-3-thione (D3T), a cruciferous vegetable constituent and potent inducer of nuclear factor (erythroid-derived 2)- like 2 (Nrf2), can significantly increase cellular GSH concentrations and protect against oxidant species-induced cell death. Paradoxically, D3T conferred no protection against AGE-induced cell death or neurite degeneration. In the present study we establish a mechanism for this paradox by showing that D3T in combination with AGE increased oxidant species generation and depleted GSH via inhibition of glutathione reductase (GR) activity and increased expression of the NADPH generating enzyme glucose-6-phosphate dehydrogenase (G6PD). Blocking NADPH generation with the G6PD inhibitor dehydroepiandrosterone was found to protect against AGE-induced oxidant species generation, loss of viability, and neurite degeneration. It further reversed the D3T potentiation effect under AGE-treated conditions. Collectively, these results suggest that strategies aimed at combating oxidative stress that rely on upregulation of the endogenous antioxidant defense system via Nrf2 may backfire and promote further damage in diabetic PN.


Subject(s)
Antioxidants/metabolism , Antioxidants/pharmacology , Diabetic Neuropathies/metabolism , Thiones/pharmacology , Thiophenes/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Dehydroepiandrosterone/pharmacology , Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/etiology , Glutathione/metabolism , Glutathione Transferase/metabolism , Glycation End Products, Advanced/metabolism , Humans , Models, Biological , Neurites/drug effects , Neurites/metabolism , Oxidative Stress/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL