Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 162
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Open Vet J ; 14(1): 398-406, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633149

ABSTRACT

Background: The use of traditional medicine against viral diseases in animal production has been practiced worldwide. Herbal extracts possess organic substances that would improve chicken body performance. Aim: The current study was designed to evaluate the effect of either thyme or ginseng oil in regard to their immune-modulatory, antiviral, and growth promoter properties. Methods: Two hundred and forty-one-day-old broiler chicks were allocated into eight equal groups as the following: group 1; nonvaccinated and nontreated and group 2; Newcastle disease virus (NDV) vaccinated and nontreated. Birds of groups 3 and 4 were treated with thyme oil (200 mg/l of drinking water for 12 hours/day) without or with NDV vaccination. Birds of groups 5 and 6 were treated with ginseng oil (200 mg/l of drinking water for 12 hours/day) without or with NDV vaccination. Birds of groups 7 and 8 were treated with a combination of ginseng oil (100 mg/l of drinking water) and thyme oil (100 mg/l of drinking water) for 12 hours/day. On the 35th day of life, birds in all the experimental groups were given 0.1 ml of a virulent genotype VIId NDV strain suspension containing 106.3 EID50/ml intramuscularly. Results: Administration of ginseng and thyme oils each alone or simultaneously to birds either vaccinated or nonvaccinated elicited a significant improvement in body performance parameters. Administration of thyme and ginseng each alone or concurrently to vaccinated birds (Gp 4, 6, and 8) induced a higher hemagglutination inhibition (HI) titer of 6, 7.3, and 6.3 log2 at 21 days of age, 6.7, 7.6, and 7 log2, at 28 days of age and 7, 8, and 6.8 log2 at 35 days of age, respectively. Challenge with vNDV genotype VII led to an increase in the NDV-specific HI-Ab titers 10 days post challenge in all the experimental groups. In addition, thyme, ginseng oils, or a combination of them improved the protection from mortality in vaccinated birds; by 100%, 100%, and 90%, respectively, compared with 80% protection from mortality in vaccinated-only birds post-NDV challenge. Moreover, NDV-vaccinated birds treated either with thyme; ginseng or their combination showed negative detection of the virus in both tracheal and cloacal swabs and nonvaccinated groups that received oils showed improvement in vNDV shedding in tracheal and cloacal swabs. Conclusion: It could be concluded that the administration of thyme and ginseng essential oils to broilers can improve productive performance parameters, stimulate humoral immunity against, and protect from vNDV infection.


Subject(s)
Drinking Water , Newcastle Disease , Panax , Plant Oils , Thymol , Thymus Plant , Animals , Newcastle disease virus/genetics , Chickens , Antibodies, Viral , Oils
2.
Hum Vaccin Immunother ; 20(1): 2315709, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38372198

ABSTRACT

NDV-HXP-S is a Newcastle disease virus (NDV) vectored vaccine candidate which expresses the S-antigen of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This vaccine candidate is under evaluation in human clinical studies with and without cytosine phosphate guanine (CpG) 1018® adjuvant. Existing potency methods for NDV-HXP-S do not allow for quantification of the S-antigen when the adjuvant is present. To support evaluation of NDV-HXP-S with CpG 1018® adjuvant, an inhibition enzyme-linked immunosorbent assay (ELISA) was developed to allow for quantification and stability assessments of the vaccine. A pilot 6-month stability study was conducted on NDV-HXP-S vaccine with and without CpG 1018® adjuvant under refrigerated conditions (2°C to 8°C) and accelerated stability testing conditions (40°C). The vaccine was mixed with and without CpG 1018® adjuvant in saline and maintained S-antigen content at 2°C to 8°C for the entire 6-month period. Additionally, a pilot controlled temperature chain (CTC) stability study was conducted at the completion of the 6-month study and demonstrated the possibility for this vaccine candidate to attain CTC stability labeling.


Subject(s)
COVID-19 , Newcastle disease virus , Animals , Humans , COVID-19 Vaccines , Phosphates , COVID-19/prevention & control , SARS-CoV-2 , Adjuvants, Immunologic , Enzyme-Linked Immunosorbent Assay
3.
Vet Med Sci ; 10(2): e31367, 2024 03.
Article in English | MEDLINE | ID: mdl-38356455

ABSTRACT

BACKGROUND: Alternatives to antibiotics have been suggested by banning their use in the poultry industry. Garlic and mushroom are two important phytobiotic compounds in poultry nutrition. OBJECTIVES: This study was conducted to evaluate the effects of supplementing diets with garlic and mushroom powder (MP) on growth performance, humoural and cellular immunity, and white blood cell counts of broiler chickens. METHODS: Five hundred and seventy-six 1-day-old male broiler chickens (Ross 308) were assigned to 8 treatments with 6 replications (12 birds per replication) based on a completely randomized design in a factorial arrangement of 4 × 2 with 4 levels of garlic powder (GP; 0.00%, 0.50%, 1.00%, and 1.50%) and two levels of MP (0.00% and 1.00%). RESULTS: No significant effects of GP and MP on the growth performance and cutaneous basophil hypersensitivity were observed (p > 0.05). According to the regression equation, with increasing levels of GP in the diets, the relative weight of the bursa of Fabricius and thymus increased (p < 0.05). The effect of increasing levels of GP on the Newcastle disease virus (NDV) titre was greater in the absence of MP (p < 0.05). With increasing levels of GP in the diets, the percentages of lymphocytes and heterophils to lymphocytes ratio increased and reduced, respectively (p < 0.05). CONCLUSIONS: This experiment has revealed that increasing the level of GP improved the immune response of broilers without affecting performance. The effect of increasing the level of GP on the NDV titre was more significant in the absence of MP.


Subject(s)
Agaricus , Garlic , Animals , Male , Chickens/physiology , Immunity, Cellular , Newcastle disease virus , Powders
4.
Sci Rep ; 12(1): 22552, 2022 12 29.
Article in English | MEDLINE | ID: mdl-36581658

ABSTRACT

Human respiratory syncytial virus (HRSV) is a major cause of severe lower respiratory tract disease in infants and the elderly, yet no safe, effective vaccine is commercially available. Closely related bovine RSV (BRSV) causes respiratory disease in young calves, with many similar features to those seen in HRSV. We previously showed that a Newcastle disease virus (NDV)-vectored vaccine expressing the F glycoprotein of HRSV reduced viral loads in lungs of mice and cotton rats and protected from HRSV. However, clinical signs and pathogenesis of disease in laboratory animals following HRSV infection differs from that observed in human infants. Thus, we examined whether a similar vaccine would protect neonatal calves from BRSV infection. Codon-optimized rNDV vaccine (rNDV-BRSV Fopt) was constructed and administered to colostrum-deprived calves. The rNDV-BRSV Fopt vaccine was well-tolerated and there was no evidence of vaccine-enhanced disease in the upper airways or lungs of these calves compared to the non-vaccinated calves. We found two intranasal doses reduces severity of gross and microscopic lesions and decreases viral load in the lungs. Furthermore, serum neutralizing antibodies were generated in vaccinated calves. Finally, reduced lung CXC chemokine levels were observed in vaccinated calves after BRSV challenge. In summary, we have shown that rNDV-BRSV Fopt vaccine is safe in colostrum-deprived calves, and is effective in reducing lung lesions, and decreasing viral load in upper respiratory tract and lungs after challenge.


Subject(s)
Cattle Diseases , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Bovine , Respiratory Syncytial Virus, Human , Female , Pregnancy , Animals , Cattle , Humans , Aged , Newcastle disease virus , Colostrum , Respiratory Syncytial Virus Vaccines/genetics , Antibodies, Viral , Cattle Diseases/prevention & control
5.
Trop Biomed ; 39(2): 257-264, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35838100

ABSTRACT

Newcastle Disease (ND) is a highly pathogenic disease of avian species which is caused by Newcastle Disease Virus (NDV). It is one of the major causes of mortality and morbidity to poultry industry in the third world countries. Currently, there is no treatment measures against ND; the only existing measure is vaccination, though it is incapable to offer 100% immunity. In Tanzania, the leaves of Synadenium glaucescens Pax. are traditionally used for treatment of various ailments including ND. Previously, its leaves extract has been scientifically confirmed to exhibit anti-NDV activity though bioactive compound(s) responsible for this activity is/are unknown. Therefore, this study was aimed to evaluate anti-NDV activity of 3ß-Friedelanol (1) and 3α-friedelanol (2) isolated from its leaves extract. Isolation of these compounds was achieved by column chromatography method whereas, their chemical structures were determined by Nuclear Magnetic Resonance (NMR) data and by comparing with the available literature NMR data. Anti-NDV activity study was done in embryonated chicken eggs (ECEs). Treatment of NDV inoculated ECEs with 3ß-Friedelanol (1) reduced the viral load to zero and maintained the survival of embryos, this was revealed by continuous organs formation and increase in embryo weights with no significant different (p > 0.05) from un-inoculated ECE. These effects suggest that, 3ß-Friedelanol (1) possesses anti-NDV activity. Therefore, existence of 3ß-Friedelanol (1) in the leaves of S. glaucescens may justify its earlier described anti-NDV activity and traditional use in the treatment of ND. Hence, its leaves extract may be considered for development of anti-NDV herbal formulation while 3ß-Friedelanol could either serve as a drug or lead compound for synthesis of anti-NDV drugs.


Subject(s)
Newcastle Disease , Poultry Diseases , Triterpenes , Animals , Chickens , Newcastle Disease/drug therapy , Newcastle disease virus , Oleanolic Acid/analogs & derivatives , Plant Extracts/pharmacology
6.
Vaccine ; 40(6): 886-896, 2022 02 07.
Article in English | MEDLINE | ID: mdl-34991927

ABSTRACT

Live and killed vaccines impart a significant role in preventing of Newcastle disease (ND) in China. Vaccine efficacy could be ameliorated by improving vaccine-induced cellular immunity and antibody persistency. Previous studies substantiated the potency of silicon dioxide (SiO2) in the control-release of drugs and as a vaccine adjuvant, and polyethylenimine (PEI) merits as a mucosal adjuvanticity with electro-positivity. The present study employed SiO2 and PEI to prepare biomimetic silicon mineralized nanoparticle G7M@SiO2-PEI and microparticle (SiO2 + PEI)@G7M vaccines of G7M, a candidate for live attenuated vaccine of genotype VII Newcastle disease virus (NDV). The zeta potential experiment confirmed the significant increase in the average zeta potential of the nanoparticle G7M@SiO2-PEI and microparticle (SiO2 + PEI)@G7M relative to G7M before mineralization. The results of RT-qPCR revealed more than 99% mineralization efficiency of the G7M@SiO2-PEI and (SiO2 + PEI)@G7M. The morphology detected by transmission electron microscopy reported that the diameters of G7M@SiO2-PEI were similar to those of G7M, while for (SiO2 + PEI)@G7M, it was about five times larger than that of G7M. Silicon was detected on the surface of both mineralization particles, except for G7M, as observed from the elemental distribution detected by elemental mapping and energy dispersive X-ray spectrogram. Indirect immunofluorescence assays validated that mineralization virus have replicated ability in BHK-21F cells. In vivo experiments revealed higher than 5.50 log2 of antibody in nanoparticles G7M@SiO2-PEI group until 10-week post-vaccination, and significant proliferation of antigen-specific CD3+CD4+ in nanoparticles G7M@SiO2-PEI immunized group corroborated improved cellular immune responses. Vaccines provided full protection to the immunized chickens, whereas all the chickens receiving mock immunizations succumbed to the disease. Overall, our study concluded the efficacy of biomimetic mineralization of live attenuated vaccine in nanoparticles to improve humoral and cellular immune responses.


Subject(s)
Newcastle Disease , Poultry Diseases , Viral Vaccines , Animals , Antibodies, Viral , Biomimetics , Chickens , Newcastle disease virus , Polyethyleneimine , Poultry Diseases/prevention & control , Silicon Dioxide , Vaccines, Attenuated
7.
Nat Prod Res ; 36(5): 1400-1404, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33527842

ABSTRACT

Current research is focused on the development of drug candidates from natural products. Rhein a Traditional Chinese Medicine (TCM) from Polygonaceae (rhubarb) has exhibited antioxidant, anti-inflammatory and anticancer activities, however no work has reported its antiviral potential, thus this study was performed to investigate the antiviral activities of rhein on new castle disease virus (NDV) in vitro.NDV infection of chicken embryo fibroblasts (CEFs) was prepared using 10-day-old specific pathogen free chicken embryos. Cytotoxicity and anti-viral activities of rhein were assessed using the MTT method. The interaction between NDV and cell membrane proteins were also detected using virus overlay protein binding assay (VOPBA). In addition NDV genes expressions in CEFs were measured using real-time fluorescent quantitative (RTFQ) PCR.The results showed that rhein effectively inhibit NDV activities maximal safe concentration of 0.125 mg/ml. This finding indicated that, rhein could be used as future antiviral drug against NDV.[Formula: see text].


Subject(s)
Newcastle Disease , Newcastle disease virus , Animals , Anthraquinones/pharmacology , Antiviral Agents/pharmacology , Chick Embryo , Newcastle Disease/drug therapy
8.
Food Funct ; 12(21): 10903-10916, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34647113

ABSTRACT

The aim of this study was to explore the molecular mechanism of enhancing the immune effect of the Newcastle disease virus (NDV) vaccine in broilers fed with Bacillus cereus PAS38. The results showed that the NDV antibody titer of broilers in the treatment group supplemented with B. cereus PAS38 was higher than that of the control group, and the difference was significant at 28 days of age (P < 0.05). The spleen, thymus and bursa of fabricius of 42-day-old broilers were quickly collected to construct a differentially expressed gene library of suppression subtractive hybridization (SSH). A total of 31 immune-related differentially expressed genes were screened from three immune organs, of which 15 were up-regulated and 16 were down-regulated. After silencing the up-regulated genes MIF, CD74, DOCK2 and KLHL6, the expression levels of cytokines (Akirin2, NF-κB, IL-2, IL-4, IL-6, IFN-γ and TNF-α) in lymphocytes were reduced to varying degrees. B. cereus PAS38 might be involved in the proliferation, differentiation, activation, migration of B lymphocytes and vaccine antigen presentation by up-regulating the expression of MIF, CD74, DOCK2, KLHL6 and other genes. Moreover, it also stimulated plasma cells to produce immunoglobulins and specific antibodies, thereby improving the humoral immune function of broilers and enhancing the immune effect of the NDV vaccine.


Subject(s)
Bacillus cereus/physiology , Chickens , Newcastle Disease/prevention & control , Newcastle disease virus/immunology , Probiotics/pharmacology , Viral Vaccines/immunology , Animal Feed/analysis , Animals , Dietary Supplements
9.
Poult Sci ; 100(2): 592-602, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33518112

ABSTRACT

Despite high global vaccination coverage, Newcastle disease (ND) remains a constant threat to poultry producers owing to low antibody levels. Given the respiratory mucosa is the important site for Newcastle disease virus (NDV) vaccination, enhancing respiratory mucosal immunity may help control ND. Our previous study showed that mulberry leaf polysaccharide (MLP) is very promising in delivering a robust balanced immune response, but the effects of it on respiratory immunity in chicks are unknown. In this study, we evaluated the potential of MLP to activate respiratory mucosal immunity and revealed the possible mechanism of MLP as an immunopotentiator for ND vaccines. Chicks were randomly divided into 5 groups: blank control, vaccination control (VC), and low-, middle-, and high-dose MLP (MLP-L, MLP-M, and MLP-H) (n = 30). The serum results of humoral and cell-mediated immune responses showed significant increases in NDV hemagglutination inhibition antibody titer, IgG and IgA antibody levels, and the T-lymphocyte population in the MLP-M group compared with the VC group. Validation of results also indicated remarkable increases in tracheal antibody-mediated immunity and a mucosal immune response in the MLP-M group. Furthermore, the upregulation of TLR7 revealed a possible mechanism. Our findings provided evidence to consider MLP as a potential mucosal vaccine adjuvant candidate against ND in chickens.


Subject(s)
Chickens , Morus/chemistry , Newcastle Disease/prevention & control , Newcastle disease virus/immunology , Poultry Diseases/prevention & control , Viral Vaccines , Animals , Antibodies, Viral/metabolism , Dietary Supplements , Immunity, Cellular , Immunity, Mucosal , Male , Plant Leaves/chemistry , Polysaccharides/immunology , Specific Pathogen-Free Organisms
10.
Ecotoxicol Environ Saf ; 210: 111825, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33412284

ABSTRACT

To explore the effect of florfenicol (FFC) combined with Salvia miltiorrhiza polysaccharide (SMPs) on immune function of Broilers. One hundred and twenty-one-day-old chicks were chosen and divided into 6 groups. The group A received standard basal diet only, the group B received a basal diet with FFC (0.15 g/L diet), and the group C, D, E received a basal diet with FFC (0.15 g/L diet) and SMPs (1.25 g/L, 2.5 g/L, 5 g/L diet),the group F received a basal diet with SMPs (5 g/L diet). FFC can significantly inhibit the growth performance of broilers, but has no significant damage to the immune function of broilers. The combination of FFC and SMPs can improve the growth performance of broilers, increase the number of leukocyte subtypes in blood (P < 0.05), increase the number of Newcastle disease (ND) and avian influenza (AI) antibodies in blood, the number of immunoglobulins, and the content of cytokines (P < 0.05). In addition, it significantly improve the lymphocyte conversion rate of broiler peripheral blood (P < 0.05). So that, synergistic use of FFC and SMPs can enhance immune responses in Broilers.


Subject(s)
Anti-Bacterial Agents/pharmacology , Chickens/immunology , Polysaccharides/pharmacology , Salvia miltiorrhiza , Thiamphenicol/analogs & derivatives , Animal Feed , Animals , Antibodies, Viral/blood , Chickens/blood , Chickens/growth & development , Cytokines/blood , Diet , Dietary Supplements , Humans , Immunity/drug effects , Immunoglobulins/blood , Influenza, Human/immunology , Leukocytes/drug effects , Newcastle disease virus/immunology , Thiamphenicol/pharmacology
11.
Arch Razi Inst ; 76(5): 1213-1220, 2021 11.
Article in English | MEDLINE | ID: mdl-35355760

ABSTRACT

Newcastle disease (ND) and Avian influenza (AI) are the major problems and the most economically important viral diseases in the poultry industry; therefore, vaccination against these diseases is considered one of the most effective ways of prevention. Extensive studies have been conducted to improve the performance of vaccines, and one of the major achievements of these studies is the preparation of adjuvants as stimulants of the immune system and one of the most important compounds in killed vaccines. An immunogenicity comparison of three adjuvants including, ISA70VG, Nano-Aluminum Hydroxide (Nano-Alum), and MF59 alone or with Nano-Selenium (Nano-Se), was performed using bivalent Newcastle plus Avian Influenza (ND+AI) killed vaccine. In this study, 105 specific-pathogen-free chicks (Ross-308) were divided into 7 treatments, including T1 (control group), T2 (ISA70VG), T3 (ISA70VG plus Nano-Se), T4 (Nano-Alum Hydroxide), T5 (Nano-Alum+Nano-Se), T6 (MF59), and T7 (MF59+Nano-Se). The vaccine was injected subcutaneously on day 21 in the back of the neck area. The blood samples were taken on days 14, 21, 28, 35, 42, and 49 post-vaccination. Serums of the samples were titrated by the haemagglutination inhibition (HI) test against Newcastle and Avian influenza. Based on the results, the highest HI test titers were observed for the T2 and T3 treatments, while the T6 and T7 treatments had the lowest titers. Moreover, regardless of the type of the adjuvants, adding Nano-Se increased the antibody titer in the vaccinated groups. In conclusion, a combination of the ISA70VG adjuvant and Nano-Se induced excellent antibody titers using bivalent ND+AI killed vaccine.


Subject(s)
Influenza Vaccines , Influenza in Birds , Selenium , Aluminum Hydroxide/pharmacology , Animals , Chickens , Immunity, Humoral , Influenza in Birds/prevention & control , Newcastle disease virus , Selenium/pharmacology
12.
Poult Sci ; 99(10): 4795-4803, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32988514

ABSTRACT

Vaccination is an effective method to prevent Newcastle disease (ND) in chickens. Marcol 52 and #10 white oil are mineral-based adjuvants and can be found in commercial inactivated ND virus vaccines. The present study demonstrated that a vegetable origin oil E515-D had lower polycyclic aromatic hydrocarbons and higher flash point than the commercial products Marcol 52 and #10 white oil. E515-D could be mixed with an aqueous phase containing ND virus antigen to form a stable water-in-oil vaccine emulsion and exhibited more potent adjuvant effects on the immune response than Marcol 52 and #10 white oil. Moreover, the absorption of E515-D-adjuvanted vaccine was faster than absorption of Marcol 52- and #10 white oil-adjuvanted vaccines when ND virus vaccines were injected in broilers. Therefore, E515-D was safe and could be a suitable adjuvant used in vaccines for food animals. In addition,E515-D is not easy to be flammable during shipping and storage owing to its higher flash point.


Subject(s)
Adjuvants, Immunologic , Newcastle Disease , Newcastle disease virus , Panax , Saponins , Sunflower Oil , Viral Vaccines , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/standards , Animals , Chickens/immunology , Newcastle Disease/prevention & control , Newcastle disease virus/immunology , Panax/chemistry , Plant Leaves/chemistry , Saponins/immunology , Saponins/pharmacology , Sunflower Oil/chemistry , Viral Vaccines/chemistry , Viral Vaccines/immunology , Viral Vaccines/standards
13.
Pak J Pharm Sci ; 33(2(Supplementary)): 839-845, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32863260

ABSTRACT

In the present study, we synthesized silver (Ag) nanoparticles using aqueous extracts of clove (Syzygium aromaticum) (SAE). This synthesis of green silver nanoparticles (AgNP) was a novel and effectual tool against the Newcastle Viral Disease (NDV). Syzygium aromaticum extract was used as reducing and stabilizing agent for synthesis of silver nanoparticles. AgNP were characterized using diversity of biophysical methods inclusive of Fourier transform infrared spectroscopy (FTIR), UV-VIS spectroscopy and Transmission electron microscopy (TEM) for morphology and size. Furthermore, XRD analysis confirmed the crystalline nature of the particles. In current investigations, the antiviral activity of clove buds silver nanoparticles was inspected in-vitro and in-ovo. Embryonated chicken eggs were used to perform the cytotoxicity assay of the clove extract silver nanoparticles (CESN). CESN showed in vitro antiviral activity against NDV in embryonated eggs.


Subject(s)
Antiviral Agents/pharmacology , Metal Nanoparticles/administration & dosage , Plant Extracts/pharmacology , Silver/pharmacology , Syzygium/chemistry , Animals , Chickens , Green Chemistry Technology/methods , Newcastle Disease/drug therapy , Newcastle disease virus/drug effects , Spectroscopy, Fourier Transform Infrared/methods , Water/chemistry
14.
Vaccine ; 38(33): 5343-5354, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32571723

ABSTRACT

The present study was to evaluate the adjuvant effect of sunflower seed oil containing saponins extracted from the stem and leaf of Panax ginseng C.A. Meyer (E515-D) on the immune response induced by an inactivated Newcastle disease virus (NDV) in chickens. The results showed that E515-D promoted significantly higher serum NDV-specific HI and neutralizing antibody responses, IFN-γ and IL-4 levels, and lymphocyte proliferative responses to Con A, LPS, and NDV antigen than the conventional adjuvant Marcol 52. Different adjuvant effect between E515-D and Marcol 52 may be attributed to different genes expressed in two groups. Transcriptome analysis of splenocytes showed that there were 1198 differentially expressed genes (DEGs) with 539 up and 659 down regulated in E515-D group while 1395 DEGs with 697 up and 698 down regulated in Marcol 52 group in comparison with the control group. Analysis of gene ontology (GO) term and kyoto encyclopedia of Genes and Genomes (KEGG) pathways showed that the predominant immune related pathways included "Toll-like receptor signaling pathway", "NOD-like receptor signaling pathway", "C-type lectin receptor signaling pathway", and "Phosphatidylinositol signaling system" in E515-D group while Marcol 52 were "NOD-like receptor signaling pathway", "Phagosome", and "Lysosome", and the most relevant DEGs in E515-D group were STAT1, STAT2, PI3K, and IL-6. Considering the excellent adjuvant activity and vegetable origin, E515-D deserves further study as an adjuvant for vaccines used in food animals.


Subject(s)
Newcastle Disease , Panax , Saponins , Viral Vaccines , Adjuvants, Immunologic , Animals , Chickens , Immunity , Newcastle Disease/prevention & control , Newcastle disease virus , Plant Leaves , Sunflower Oil
15.
Vet Immunol Immunopathol ; 225: 110061, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32422443

ABSTRACT

Our previous study demonstrated that ginseng stem-leaf saponins (GSLS) in combination with selenium (GSLS-Se) have adjuvant effect on the live vaccine of Newcastle disease virus (NDV) and infectious bronchitis virus (IBV) in intraocular-and-intranasal immunization in chickens. The present study was to investigate the potential molecular mechanisms involved in the immunomodulation of GSLS-Se on the Harderian gland (HG). It was found that the window allowing animals susceptible to infections due to low antibody titers became smaller or even completely closed because of increased NDV-specific HI titers when NDV vaccine and GSLS-Se were coadministered for immunization at early life in chickens. In addition, NDV-specific sIgA and the numbers of IgG+, IgA+, IgM+ plasma cells were significantly more in GSLS-Se group than the control in the HGs. Transcriptome analysis of HGs identified 1184 differentially expressed genes (DEGs) between GSLS-Se treated and non-treated groups. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses identified 42 significantly enriched GO terms and 13 canonical immune pathways. These findings indicated that GSLS-Se might exert immunomodulatory effects through influencing the antioxidant regulation and modulating the activity of immune related enzymes. Besides, Toll-like receptor (TLR) signaling pathway and mitogen-activated protein kinase (MAPK) signaling pathway might be involved primarily in the immunomodulation. Therefore, enhanced antibody responses in GSLS-Se group may be attributed to the immunomodulatory effects of GSLS-Se on the immune-related gene profile expressed in the immunocompetent cells of the HGs.


Subject(s)
Harderian Gland/drug effects , Immunologic Factors/administration & dosage , Newcastle Disease/prevention & control , Panax/chemistry , Saponins/administration & dosage , Selenium/administration & dosage , Viral Vaccines/immunology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/chemistry , Animals , Antibodies, Viral/blood , Chickens , Female , Gene Expression Profiling , Newcastle Disease/immunology , Newcastle disease virus , Plant Leaves/chemistry , Saponins/immunology , Selenium/immunology , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology , Viral Vaccines/administration & dosage
16.
Mol Biotechnol ; 62(6-7): 344-354, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32246385

ABSTRACT

Newcastle disease (ND) is considered as one of the most devastating infectious diseases targeting domestic birds and has considerable threat to the commercial poultry production. Two surface glycoproteins, hemagglutinin-neuraminidase (HN) and fusion (F), act as antigens in the virus structure and also play important roles in infecting host cells. In the current study, the expression of the chimeric HN-F protein in canola seeds and its immunogenicity in chickens were investigated. The HN-F gene was cloned downstream of the fatty acid elongase 1 (FAE1) promoter in the binary expression vector, pBI1400-HN-F, and introduced into rapeseed (Brassica napus L.) using Agrobacterium-mediated transformation. The amount of the HN-F glycoprotein was estimated up to 0.18% and 0.11% of the total soluble protein (TSP) in transgenic seeds and leaves of canola, respectively. Confirmatory analyses of 36 transgenic lines revealed that the HN-F gene was integrated into the genome. Subsequently, HN-F protein could be expressed and accumulated in the seed tissue. Specific pathogen-free (SPF) chickens immunized orally with recombinant HN-F showed a significant rise in specific and hemagglutination inhibition (HI) antibodies 35 to 42 days post the first administration. The results implied the potential of transgenic canola seed-based expression for oral delivery of NDV immunogenic glycoproteins.


Subject(s)
Brassica napus/chemistry , HN Protein/immunology , Newcastle disease virus/immunology , Plant Oils/chemistry , Plants, Genetically Modified/chemistry , Seeds/chemistry , Animals , Chickens , Fatty Acid Elongases/genetics , Fatty Acid Elongases/metabolism , Plant Leaves/chemistry
17.
Mol Biol Rep ; 47(3): 1691-1702, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31970625

ABSTRACT

Phytotherapy has been used to treat a different type of diseases including cancer for a long time, and it was a source for different active anti-tumor agents. Oncolytic Newcastle disease virus (AMHA1) are very promising anti-tumor therapy. Nevertheless, NDV-based monotherapeutics have not been very useful to some resistant tumors. Thus, the efficiency of oncolytic NDV must enhance by combining NDV with other novel therapies. The current study aimed to determine the possibility of improving the oncolytic effect induced by NDV through Rheum ribes rhizomes extract administration in vitro and in vivo. Methods, the in vitro study include exposure of the crude extract of Rheum ribes alone or NDV alone or combination of both agents for 72 h. The cancer cells tested were murine mammary adenocarcinoma AMN3, Human Rhabdomyosarcoma RD, and Human Glioblastoma AMGM5, and using rat embryo fibroblast REF as normal control cells. MTT cell viability assay was used and analyzed for possible synergism using the Chou-Talalay analysis method. In vivo experiment included study the combination and the monotherapeutic modalities in the transplanted murine mammary adenocarcinoma AM3 line and tumor sections analyzed by histopathology. Results, Combination therapy of NDV-R. ribes showed enhanced oncolytic activity on cancer cells. With no cytotoxicity on normal cells. In vivo study showed that monotherapeutic modalities had lower growth inhibitory effect on transplanted tumors in mice in compare to combination therapy. Histopathological examination revealed the broader area of necrosis in tumors treated by combination therapy. In conclusion, the novel combination recommended for clinical application for cancer therapy.


Subject(s)
Adenocarcinoma/therapy , Mammary Neoplasms, Experimental/therapy , Oncolytic Virotherapy/methods , Plant Extracts/pharmacology , Rheum/chemistry , Rhizome/chemistry , Adenocarcinoma/pathology , Animals , Antineoplastic Agents/pharmacology , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Combined Modality Therapy/methods , Female , Humans , Mammary Neoplasms, Experimental/pathology , Mice , Newcastle disease virus/physiology , Oncolytic Viruses/physiology , Rats , Treatment Outcome
18.
J Ethnopharmacol ; 248: 112279, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-31600562

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Synthetic antiviral drugs have several limitations including high cost. Thus research on antiviral property of medicinal plants is continuously gaining importance. Polyalthia longifolia possesses several medicinal properties and has been used in traditional ayurvedic medicine for treatment of dermatological ailments as kushta, visarpa/herpes virus infection and also to treat pyrexia of unknown origin as mentioned in Visarpa Chikitsa. AIM OF THE STUDY: Keeping in view the cytotoxic, anti-cancer activity and antiviral efficacy of Polyalthia longifolia against herpes, present study was undertaken to evaluate the in vitro antiviral activity of methanolic extract of Polyalthia longifolia leaves, if any, and to unravel the possible target(s)/mechanism of action. MATERIAL AND METHODS: Antiviral activity of Polyalthia longifolia methanolic extract was studied using Vero cell lines against paramyxoviruses, namely-peste des petits ruminants virus (PPRV) and Newcastle disease virus (NDV). Cytotoxicity of the test extract was evaluated employing MTT assay. Virucidal activity, and viral-attachment, virus entry and release assays were determined in Vero cells using standard experimental protocols. The viral RNA in the virus-infected cells was quantified by qRT-PCR. RESULTS: At non-cytotoxic concentration, methanolic extract of Polyalthia longifolia leaves was found to inhibit the replication of PPRV and NDV at viral entry and budding level, whereas other steps of viral life cycle such as attachment and RNA synthesis remained unaffected. CONCLUSIONS: Polyalthia longifolia leaves extract possesses promising antiviral activity against paramyxoviruses and acts by inhibiting the entry and budding of viruses; and this plant extract evidently possesses excellent and promising potential for development of effective herbal antiviral drug.


Subject(s)
Antiviral Agents/pharmacology , Newcastle disease virus/drug effects , Peste-des-petits-ruminants virus/drug effects , Plant Extracts/pharmacology , Polyalthia , Animals , Chlorocebus aethiops , Newcastle disease virus/physiology , Peste-des-petits-ruminants virus/physiology , Plant Leaves , Vero Cells , Virus Internalization/drug effects
19.
Article in English | MEDLINE | ID: mdl-31712184

ABSTRACT

This study was performed to evaluate the effects of omega-3 supplementation on growth performance, clinical signs, post-mortem lesions, haemagglutination inhibition (HI) antibody titres, gene expression and histopathology in quails (Coturnix coturnix japonica) infected with Newcastle disease virus (NDV) and avian influenza virus (AIV) H9N2. One hundred, 40-day-old male quails were divided into 5 groups: G1, fed a control basal diet; G2A, infected with NDV; G2B, infected with H9N2; G3A, infected with NDV and given omega-3, and G3B, infected with H9N2 and given omega-3. The dietary omega-3 supplementation was continued for 4 weeks: two weeks before infection and two weeks after intranasal infection with virulent NDV and AIV H9N2. Our results revealed significant differences (P < 0.05) in growth performance, HI antibody titres, clinical signs, post-mortem lesions, mortality, viral shedding rates, immunological parameters, and histopathological lesions between the treated (G3A and G3B) and untreated (G2A and G2B) groups. In conclusion, dietary omega-3 supplementation for 4 weeks can improve growth performance and alleviate the deleterious immunological and pathological effects of NDV and AIV H9N2 infection in quails.


Subject(s)
Coturnix/growth & development , Coturnix/virology , Dietary Supplements , Fatty Acids, Omega-3/administration & dosage , Influenza A Virus, H9N2 Subtype , Influenza in Birds/immunology , Newcastle Disease/immunology , Newcastle disease virus , Animals , Coturnix/immunology
20.
Microb Pathog ; 135: 103621, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31310831

ABSTRACT

Astragalus polysaccharides (APS) are a traditional Chinese medicine with a therapeutic effect by enhancing immune function; however, the underlying functional mechanism is still unclear. The aim of the present study was to determine the effect of oral administration of APS on jejunum mucosal immunity in chickens vaccinated against Newcastle disease (ND). One-day-old Hy-Line male chickens were divided into five groups of 20 chicks each: three APS groups, one vaccinated control (VC) group and one non-vaccinated negative control (NC) group. On d 10, the APS groups were orally administered 0.5 mL of APS at doses of 1 mg/mL (APSL), 2 mg/mL (APSM) and 4 mg/mL (APSH) daily for 4 consecutive days. The chicks in the control groups were administered 0.5 mL saline for those 4 days. All groups except NC were administered a ND virus (NDV) vaccine on day 14. The jejunum was removed from 4 randomly selected chickens of each group at 1, 7, 14 and 28 days after vaccination. The jejunal villus height (VH) and crypt depth (CD) were measured and the VH:CD ratio calculated. Immunohistochemistry was used to analyze the differences of IgA+ cells in the jejunum. NDV specific secretory IgA (sIgA) levels in jejunal contents were detected using an indirect ELISA. At most time points, VH:CD ratios, number of IgA+ cells, and sIgA levels were significantly higher in the APS groups than those in VC and NC groups, but there were little differences among the three doses of APS groups. These results indicate that oral administration of APS could enhance the intestinal mucosal immune function of chickens, and APS could be used as a vaccine enhancer.


Subject(s)
Astragalus Plant/chemistry , Chickens/immunology , Immunity, Mucosal/drug effects , Jejunum/drug effects , Newcastle Disease/immunology , Polysaccharides/administration & dosage , Vaccination/veterinary , Administration, Oral , Animals , Disease Models, Animal , Immunoglobulin A, Secretory , Jejunum/pathology , Male , Medicine, Chinese Traditional , Newcastle disease virus/immunology , Plant Extracts/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL