Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 538
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Sci Rep ; 14(1): 4058, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38374275

ABSTRACT

The effect of hydrodynamic mixing on controlling Microcystis blooms or changing the algal community to diatom dominance has been widely studied; however, the effects of colonial Microcystis biomass on the development of the algal community are poorly known. Here, in order to study the changes in Microcystis blooms under continuous aeration mixing, an experiment was carried out in a greenhouse with factors of varying biomass of Microcystis and inorganic nitrogen and phosphorus enrichment in summer. There were three chlorophyll a (Chl-a) levels in six treatments: low Chl-a level of 68.4 µg L-1 (treatments L, L-E), medium Chl-a level of 468.7 µg L-1 (treatments M, M-E), and high Chl-a level of 924.1 µg L-1 (treatments H, H-E). Treatments L-E, M-E and H-E were enriched with the same inorganic nitrogen and phosphorus nutrients. During the experiment of 30 days, the concentration of Microcystis and Chl-a decreased, and diatom Nitzschia palea cells appeared in all the treatments, which became dominant in treatments M, M-E, H and H-E, with the highest biomass of 9.41 ± 1.96 mg L-1 Nitzschia in treatment H-E on day 30. The rank order of the biomass of Nitzschia from low to high was (L = L-E) < (M = M-E) < H < H-E (P < 0.05). In addition, Nitzschia cells were aggregates attached to Microcystis colonies in all the treatments. The results showed that the initial biomass of colonial Microcystis affected the algal shift from Microcystis dominance to Nitzschia dominance. However, the enriched inorganic nitrogen and phosphorus was beneficial for the Nitzschia increase in the high biomass treatment alone. The shift from Microcystis dominance to diatom dominance under continuous aeration mixing may be caused by low light conditions as well as the nutrients released from Microcystis decay. Moreover, the aerobic condition caused by aeration mixing maintained the colonial mucilaginous sheath to support the growth of Nitzschia cells in aggregation. This study found for the first time that Microcystis blooms could shift to diatom Nitzschia dominance in aggregates. It provided a method to control and manipulate Microcystis blooms to diatom dominance through continuous aeration mixing to proper biomass of Microcystis colonies. The shift to diatoms dominance would provide more high quality food organisms for aquaculture and be beneficial to the material cycling and energy flowing in food web dynamics.


Subject(s)
Diatoms , Microcystis , Biomass , Chlorophyll A , Phosphorus/pharmacology , Nitrogen/pharmacology
2.
Physiol Plant ; 176(2): e14230, 2024.
Article in English | MEDLINE | ID: mdl-38413388

ABSTRACT

The grain yield is closely associated with spikelet fertility in rice (Oryza sativa L.) under high temperatures, and nitrogen (N) plays a crucial role in yield formation. To investigate the effect of panicle N application on yield formation under high temperatures at the panicle initiation stage, two rice varieties [Liangyoupeijiu (LYPJ, heat susceptible) and Shanyou63 (SY63, heat tolerant)] were grown and exposed to high daytime temperature (HT) and control temperature (Control) during the panicle initiation stage. Low (LPN) and high (HPN) panicle N applications were conducted. HT markedly decreased the yields by 87% at LPN and 48% at HPN in LYPJ and 31% at LPN and 36% at HPN in SY63. The decrease in grain yield under HT was primarily attributed to the decline in spikelet fertility, HPN increased spikelet fertility. HT resulted in the abnormal development of anthers, which included disordered, enlarged, and broken anther wall layers, degraded and irregularly shaped microspores, delayed tapetum degradation, less vacuolated microspores per locule, abnormal and aborted pollen grains; however, HPN improved the development of anthers under HT, particularly in LYPJ. A high rate of evapotranspiration resulted in an approximately 1°C decrease in panicle temperatures at HPN compared with that at LPN in both varieties under HT. Overall, these results demonstrate that the increased panicle N application favors normal anther development in LYPJ by decreasing the panicle temperature, which results in high pollen viability and spikelet fertility, and consequently less yield loss under HT.


Subject(s)
Oryza , Temperature , Nitrogen/pharmacology , Hot Temperature , Pollen
3.
Sci Rep ; 14(1): 2725, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38302601

ABSTRACT

Microalgal lipids are precursors to the production of biodiesel, as well as a source of valuable dietary components in the biotechnological industries. So, this study aimed to assess the effects of nutritional (nitrogen, and phosphorus) starvations and salinity stress (NaCl) on the biomass, lipid content, fatty acids profile, and predicted biodiesel properties of green microalga Monoraphidium braunii. The results showed that biomass, biomass productivity, and photosynthetic pigment contents (Chl. a, b, and carotenoids) of M. braunii were markedly decreased by nitrogen and phosphorus depletion and recorded the maximum values in cultures treated with full of N and P concentrations (control, 100%). These parameters were considerably increased at the low salinity level (up to 150 mM NaCl), while an increasing salinity level (up to 250 mM NaCl) reduces the biomass, its productivity, and pigment contents. Nutritional limitations and salt stress (NaCl) resulted in significantly enhanced accumulation of lipid and productivity of M. braunii, which represented more than twofold of the control. Furthermore, these conditions have enhanced the profile of fatty acid and biodiesel quality-related parameters. The current study exposed strategies to improve M. braunii lipid productivity for biodiesel production on a small scale in vitro in terms of fuel quality under low nutrients and salinity stress.


Subject(s)
Chlorophyceae , Microalgae , Biofuels , Biomass , Sodium Chloride/pharmacology , Fatty Acids/chemistry , Nutrients , Salinity , Nitrogen/pharmacology , Phosphorus/pharmacology , Salt Stress
4.
J Plant Physiol ; 294: 154183, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38295651

ABSTRACT

Because its impact in plant development and growth and its interaction with Na+ and Cl-, the supply of different N-forms to crops can be an easy-to-use tool with effective results on salinity tolerance. Here the effect of four N-NO3-/N-NH4+ ratios (mM; 2/0, 1.6/0.4, 0.4/1.6, 0/2) on adaptation to salt conditions (15 mM NaCl in a first experiment and 40 mM NaCl in a second experiment) was studied in young lettuce (cv "Summer wonder") plants. The experiments were carried out in greenhouse and under hydroponics conditions. The results show that this cultivar tolerates and adapts to moderate salinity by deploying several structural and physiological mechanisms; (i) increasing allocation of biomass to the root, (ii) increasing root Na+ uptake and storing it in the shoot and root tissues, (iii) increasing intrinsic water use efficiency and (iv) increasing root N and P uptake. The beneficial effect of salt exposure on growth was greater when the predominant N-form was N-NO3-. These plants with higher tissue N-NO3- concentration, decreased Cl- uptake and shoot and root Cl- concentration. Regardless of salt conditions, plants with a high proportion of N-NH4+ (1.6 mM) and a low proportion of N-NO3- (0.4 mM) had a greater growth and nitrogen use efficiency, that was associated with the improved uptake of nutrients, and the maintenance of water status.


Subject(s)
Ammonium Compounds , Nitrates , Nitrates/pharmacology , Lactuca , Sodium Chloride/pharmacology , Salinity , Water , Plant Roots , Nitrogen/pharmacology
5.
Chemosphere ; 351: 141265, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38246497

ABSTRACT

Plant enrichment and tolerance to heavy metals are crucial for the phytoremediation of coal gangue mountain. However, understanding of how plants mobilize and tolerate heavy metals in coal gangue is limited. This study conducted potted experiments using Setaria viridis as a pioneer remediation plant to evaluate its tolerance to coal gangue, its mobilization and enrichment of metals, and its impact on the soil environment. Results showed that the addition of 40% gangue enhanced plant metal and oxidative stress resistance, thereby promoting plant growth. However, over 80% of the gangue inhibited the chlorophyll content, photoelectron conduction rate, and biomass of S. viridis, leading to cellular peroxidative stress. An analysis of metal resistance showed that endogenous S in coal gangue promoted the accumulation of glutathione, plant metal chelators, and non-protein thiols, thereby enhancing its resistance to metal stress. Setaria viridis cultivation affected soil properties by decreasing nitrogen, phosphorus, conductivity, and urease and increasing sucrase and acid phosphatase in the rhizosphere soil. In addition, S. viridis planting increased V, Cr, Ni, As, and Zn in the exchangeable and carbonate-bound states within the gangue, effectively enriching Cd, Cr, Fe, S, U, Cu, and V. The increased mobility of Cd and Pb was correlated with a higher abundance of Proteobacteria and Acidobacteria. Heavy metals, such as As, Fe, V, Mn, Ni, and Cu, along with environmental factors, including total nitrogen, total phosphorus, urease, and acid phosphatase, were the primary regulatory factors for Sphingomonas, Gemmatimonas, and Bryobacter. In summary, S. viridis adapted to gangue stress by modulating antioxidant and elemental enrichment systems and regulating the release and uptake of heavy metals through enhanced bacterial abundance and the recruitment of gangue-tolerant bacteria. These findings highlight the potential of S. viridis for plant enrichment in coal gangue areas and will aid the restoration and remediation of these environments.


Subject(s)
Metals, Heavy , Setaria Plant , Soil Pollutants , Cadmium/pharmacology , Setaria Plant/metabolism , Coal , Urease , Metals, Heavy/analysis , Plants/metabolism , Phosphorus/pharmacology , Bacteria/metabolism , Sulfur/pharmacology , Soil , Acid Phosphatase , Nitrogen/pharmacology , Soil Pollutants/analysis
6.
Chemosphere ; 349: 140503, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37939923

ABSTRACT

The natural rubber industry consumes large volumes of water and annually releases wastewater with rich organic and inorganic loads. This wastewater is allowed for soil irrigation in developing countries. However, the pollutant composition in wastewater and its environmental effects remain unclear. Therefore, we aimed to assess the wastewater's physicochemical parameters, toxic organic pollutants, heavy metals, and phytotoxic and cytogenotoxic. The result revealed that values of comprehensive wastewater parameters were recorded as chemical oxygen demand (187432.1 mg/L), pH (4.23), total nitrogen (1157.1 mg/L), ammonia nitrogen (1113.0 mg/L), total phosphorus (1181.2 mg/L), Zn (593.3 mg/L), Cr (0.6127 mg/L), and Ni (0.2986 mg/L). The organic compounds detected by LC-MS were salbostatin, sirolimus, Gibberellin A34-catabolite, 1-(sn-glycero-3-phospho)-1D-myo-inositol, and methyldiphenylsilane. The toxicity of the identified toxic chemicals and heavy metals was confirmed by onion and mung bean phytotoxicity characterization tests. The wastewater affected the germination of mung bean seeds, reduced or inhibited the growth of onions, and induced various chromosomal aberrations in root apical meristems. Our study shows that the treatment of natural rubber wastewater needs to be improved, and the feasibility of irrigating soil with wastewater needs to be reconsidered.


Subject(s)
Environmental Pollutants , Fabaceae , Metals, Heavy , Vigna , Wastewater , Environmental Pollutants/pharmacology , Rubber , Metals, Heavy/analysis , Soil , Nitrogen/pharmacology , Onions
7.
PeerJ ; 11: e16386, 2023.
Article in English | MEDLINE | ID: mdl-38025755

ABSTRACT

This study aimed to examine the impact of nitrogen (N) fertilization on phyllosphere microorganisms in silage maize (Zea mays) to enhance the production of high-quality silage. The effects of different N application rates (160, 240, and 320 kg ha-1) and maturity stages (flowering and dough stages) on microbial diversity, abundance and physiochemical properties of the leaf surfaces were evaluated in a field experiment. The results showed that N application rates did not significantly impact the abundance of lactic acid bacteria (LAB), aerobic bacteria (AB), yeasts, or molds on the leaf surfaces. However, these microbes were more abundant during the flowering stage compared to the dough stage. Furthermore, the N application rate had no significant impact on inorganic phosphorus, soluble sugar, free amino acids, total phenolic content, and soluble protein concentrations, or pH levels on the leaf surfaces. Notably, these chemical indices were lower during the dough stage. The abundance of Pantoea decreased with higher N application rates, while that of other microorganisms did not changes significantly. The abundance of AB, LAB, yeasts, and molds were positively correlated with soluble sugar, soluble protein, inorganic phosphorus, free amino acids, and total phenolic concentrations on leaf surfaces. Moreover, water loss was negatively correlated with the abundance of AB, LAB, yeasts, and molds, whereas water retention capacity and stomatal density were positively correlated with microbial abundance. We recommend applying an optimal N rate of 160 kg ha-1 to silage maize and harvesting at the flowering stage is recommended.


Subject(s)
Microbiota , Silage , Silage/analysis , Zea mays/metabolism , Nitrogen/pharmacology , Plant Leaves , Carbohydrates , Fungi , Yeasts , Sugars/metabolism , Amino Acids/metabolism , Phosphorus/metabolism , Water/metabolism
8.
Environ Sci Pollut Res Int ; 30(51): 111369-111381, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37814047

ABSTRACT

More stringent discharge standards have led to the development of an alternative nutrient recovery system from wastewater. Microalgae cultivation in wastewater treatment works has presented considerable promise from the perspective of sustainable resource management. Growth kinetics models are useful tools to optimize nutrient recovery from wastewater by algal uptake. Therefore, this research aims to identify the growth kinetics of Chlamydomonas reinhardtii under both heterotrophic and phototrophic conditions with different nutrient concentrations that typify those found in wastewater treatment works. In addition, the effects of macronutrients (C, N, and P) on heterotrophic and phototrophic microalgae growth and nutrient recovery were studied. Greater specific growth rates were achieved under heterotrophic conditions than in phototrophic cultivation. The maximum specific growth rates and nutrient recovery efficiencies were achieved at 5 mg P L-1 under both heterotrophic and phototrophic growth conditions. Nitrate was the preferred form of nitrogen source under heterotrophic conditions, while nitrogen sources did not present any significant influences in the phototrophic cultivation. Specific growth rates reported for both heterotrophic and phototrophic microalgae at lower carbon concentrations (3.10 d-1 and 0.46 d-1, sequentially) were higher than those at higher carbon concentrations (1.95 d-1 and 0.22 d-1, respectively). C. reinhardtii presented an extreme capacity to adapt and grow at all experimental conditions tested in heterotrophic and phototrophic cultivations.


Subject(s)
Chlamydomonas reinhardtii , Microalgae , Wastewater , Nitrogen/pharmacology , Phosphorus/pharmacology , Carbon/pharmacology , Nutrients , Biomass
9.
Br Poult Sci ; 64(6): 745-750, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37610329

ABSTRACT

1. A study was conducted to assess the impact of supplementing-graded concentrations of emulsifier on the production performance, gut microbial count, and digestibility of nitrogen and energy in broiler chicken fed diets without AGP.2. Male broiler chicks (n = 1500; Vencobb-430), aged one-day-old, were randomly allocated into six dietary groups each with 10 replicates of 25 birds each. A maize-soybean and meat and bone meal-based basal diet without antibiotic (AGP) growth promoter served as negative control (NC). The basal diet was supplemented with BMD (AGP, bacitracin methylene disalicylate-BMD 100 g/T), which served as the positive control (PC). Emulsifier was added to the NC diets at either 250 g/ton in all phases (250-All), 250 g in starter and grower phases, and 500 g in the finisher phase (250:250:500), 250 g in starter and 500 g in both grower and finisher phases (250:500:500) and 500 g in all phases (500 g-All).3. Two broilers per replicate were slaughtered to record carcase traits and gut microbial count on day 43. There was significant improvement in body weight gain (BWG) and reduced FCR in broilers fed 250:250:500 and 250:500:500 g emulsifiers compared to other treatment groups. Carcase traits and faecal microbial count did not differ among treatments. The inclusion of BMD significantly improved nitrogen (N) digestibility compared to the NC group. The digestibility of emulsifier-supplemented groups was similar to those fed by the BMD group except for the 500-All group, which was an intermediary between NC and other emulsifier-fed groups.4. It was concluded that supplementation with emulsifier (250:250:500 or 250:500:500) without antibiotic growth promoter significantly improved FCR and body weight gain similar to broilers receiving antibiotic growth promoter, which was associated with increased ileal digestibility of N and energy.


Subject(s)
Anti-Bacterial Agents , Chickens , Animals , Male , Anti-Bacterial Agents/pharmacology , Diet/veterinary , Dietary Supplements , Nutrients , Nitrogen/pharmacology , Body Weight , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Digestion
10.
Int J Food Microbiol ; 404: 110320, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37490784

ABSTRACT

The Gram-positive bacteria lactic acid bacteria (LAB) are used in the food industry but are also known for inhibiting certain food spoilage microorganisms, especially fungi. Sources of nitrogen (N) for culture media are generally organic and expensive. Many attempts have been made to formulate economical culture media with alternative N sources obtained from agricultural and industrial byproducts. This study describes the design and optimization of an inexpensive culture medium for Lactiplantibacillus plantarum (formerly Lactobacillus plantarum) MZ809351 strain B31. The culture medium was optimized using statistical experimental designs to identify the factors with the most significant effects on biomass concentration to reduce the overall cost, aiming to obtain a biomass concentration similar to that obtained with the reference LAB culture medium (de Man, Rogosa and Sharpe; MRS). Sodium acetate and magnesium sulfate were the most significant factors (p < 0.005), and their contents were reduced by 22 % and 40 %, respectively, without affecting biomass concentration. Malt germ extract (MGE) was used as an alternative nitrogen source to replace meat extract (ME) and proteose peptone (PP). Through these experiments, the composition of a culture medium that is less expensive than MRS broth was defined, which produced a biomass concentration (3.8 g/L) similar to that obtained with MRS medium. The inhibitory effects of two LAB strains isolated from the Ivory Coast and Mexico on the growth and production of ochratoxin A (OTA) in an ochratoxigenic fungus was tested. The minimum cellular concentration of the LAB to prevent the development of Aspergillus carbonarius Ac 089 and the production of OTA was determined in a model assay in Petri dishes. The conditions to inhibit the germination of A. carbonarius Ac 089 and the production of OTA were found. Using the optimized medium and a ratio of 2 × 104 LAB/spore (1 × 108 CFU/mL) strain B7 (L. plantarum MZ809351) and 2 × 103 LAB/spore (1 × 107 CFU/mL) strain B31 (L. plantarum MN922335) completely inhibited the growth of the fungus. A ratio of 2 × 105 LAB/spore (1 × 109 CFU/mL) was required to inhibit OTA production with strains B7 and B31. This study indicates the potential of cultivating LAB in an optimized and inexpensive culture medium for use as a biological control agent against ochratoxigenic fungi in food.


Subject(s)
Lactobacillales , Ochratoxins , Humans , Culture Media , Nitrogen/pharmacology , Plant Extracts
11.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37402612

ABSTRACT

Our objective was to evaluate the effects of feeding 3-nitrooxypropanol (3-NOP; Bovaer, DSM Nutritional Products) at two levels on methane emissions, nitrogen balance, and performance by feedlot cattle. In experiment 1, a total of 138 Nellore bulls (initial body weight, 360 ± 37.3 kg) were housed in pens (27 pens with either 4 or 5 bulls per pen) and fed a high-concentrate diet for 96 d, containing 1) no addition of 3-NOP (control), 2) inclusion of 3-NOP at 100 mg/kg dry matter (DM), and 3) inclusion of 3-NOP at 150 mg/kg DM. No adverse effects of 3-NOP were observed on DM intake (DMI), animal performance, and gain:feed (P > 0.05). In addition, there was no effect (P > 0.05) of 3-NOP on carcass characteristics (subcutaneous fat thickness and rib eye area). In experiment 2, 24 bulls (initial BW, 366 ± 39.6 kg) housed in 12 pens (2 bulls/pen) from experiment 1 were used for CH4 measurements and nitrogen balance. Irrespective of the level, 3-NOP consistently decreased (P < 0.001) animals' CH4 emissions (g/d; ~49.3%), CH4 yield (CH4/DMI; ~40.7%) and CH4 intensity (CH4/average daily gain; ~38.6%). Moreover, 3-NOP significantly reduced the gross energy intake lost as CH4 by 42.5% (P < 0.001). The N retention: N intake ratio was not affected by 3-NOP (P = 0.19). We conclude that feeding 3-NOP is an effective strategy to reduce methane emissions, with no impairment on feedlot cattle performance.


During fiber digestion in the rumen, enteric methane is produced. Methane is a potent greenhouse gas. Recently several studies have focused on developing synthetic compounds and their utilization as specific inhibitors of methanogenesis. 3-Nitrooxypropanol is a structural compound that can help to mitigate CH4 emissions. The objective of this study was to evaluate the effects of feeding 3-nitrooxypropanol (3-NOP; Bovaer, DSM Nutritional Products) at two levels on methane emissions, nitrogen balance, and performance by feedlot cattle. No effect of 3-NOP on animal performance and N balance was found. However, regarding CH4 production 3-NOP consistently decreased (P < 0.001) animals' CH4 emissions (g/d; ~49.3%), methane yield (CH4/dry matter intake; ~40.7%), and CH4 intensity (CH4/average daily gain; ~38.6%). This study provides information on the potential role of 3-NOP on reducing CH4 emissions from feedlot cattle without reducing animal performance.


Subject(s)
Dietary Supplements , Methane , Cattle , Animals , Male , Dietary Supplements/analysis , Tropical Climate , Animal Feed/analysis , Diet/veterinary , Nitrogen/pharmacology , Rumen
12.
Sci Total Environ ; 896: 165096, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37355123

ABSTRACT

Sustained nitrate accumulation in surface water ecosystem was continuously grabbing public attention. Autotrophic denitrification by electron supplement has been applied to overcome the requirement of carbon source, thus the new problem that how to improve the efficiency of extracellular electrons transfer to denitrifiers comes to us. The addition of exogenous electron mediators has been considered as an important strategy to promote extracellular electrons transfer in reductive metabolism. To date, knowledge is lacking about the promoting effects and pathways in nitrate removal by electron mediators. Here, we fully investigated the performance of nitrogen removal as well as quantified the characteristics of biofilms with six electron mediators (riboflavin, flavin mononucleotide, AQS, AQDS, biochar and Nano-Fe3O4) treating in microbial electrolytic cell system. The six electron mediators promoted nitrate removal rate by 76.03-90.43 % with electron supplement. The growth and activity of cathodic biofilm, conductive nanowires generation and electrochemically active substance synthesis of extracellular polymeric substances were facilitated by electron mediator addition. Electrochemical analysis revealed that conductivity and redox capacity of cathodic biofilm was increased for accelerating electron transfer. Moreover, they upregulated the abundance of denitrifying communities and denitrifying genes accordingly. Their denitrification efficiency varied due to their promotion ability in the above different strategies and conductive characteristics, and the efficiency could be concluded as: Nano-Fe3O4 > riboflavin > flavin mononucleotide > AQS ≈ AQDS > biochar. This study revealed how addition of electron mediators promoted denitrification with electron supplement, and compared their promoting efficiency in several main aspects.


Subject(s)
Electrons , Nitrates , Nitrates/metabolism , Denitrification , Flavin Mononucleotide/metabolism , Flavin Mononucleotide/pharmacology , Ecosystem , Bioreactors , Nitrogen/pharmacology
13.
Sci Rep ; 13(1): 5660, 2023 04 06.
Article in English | MEDLINE | ID: mdl-37024558

ABSTRACT

Phosphorus (P) deficiencies are widespread in calcareous soils. The poor availability of nitrogen (N) and P in soils often restricts crop growth. However, the effects of P addition on plant growth and plant nutrient transport changes during the establishment of Leymus chinensis fields in Xinjiang are not clear. We investigated the responses of Leymus chinensis biomass and nutrient absorption and utilization to changes in soil N and P by adding P (0, 15.3, 30.6, and 45.9 kg P ha-1 year-1) with basally applied N fertilizer (150 kg N ha-1 year-1). The results showed that (a) Principal component analysis (PCA) of biomass, nutrient accumulation, soil available P, and soil available N during the different periods of Leymus chinensis growth showed that their cumulative contributions during the jointing and harvest periods reached 95.4% and 88%, respectively. (b) Phosphorus use efficiency (PUE) increased with the increase of P fertilizer gradient and then decreased and the maximum PUE was 13.14% under moderate P addition. The accumulation of biomass and nutrients in Leymus chinensis can be effectively improved by the addition of P fertilizer at 30.6 kg ha-1. Different P additions either moderately promoted or excessively inhibited Leymus chinensis growth and nutrient utilization.


Subject(s)
Fertilizers , Phosphorus , Biomass , Phosphorus/pharmacology , Poaceae , Nutrients , Nitrogen/pharmacology , Soil
14.
Ecotoxicol Environ Saf ; 254: 114756, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36924595

ABSTRACT

Salinity stress hampers the growth of most crop plants and reduces yield considerably. In addition to its role in metabolism, γ-aminobutyric acid (GABA) plays a special role in the regulation of salinity stress tolerance in plants, though the underlying physiological mechanism remains poorly understood. In order to study the physiological mechanism of GABA pathway regulated carbon and nitrogen metabolism and tis relationship with salt resistance of maize seedlings, we supplemented seedlings with exogenous GABA under salt stress. In this study, we showed that supplementation with 0.5 mmol·L-1 (0.052 mg·g-1) GABA alleviated salt toxicity in maize seedling leaves, ameliorated salt-induced oxidative stress, and increased antioxidant enzyme activity. Applying exogenous GABA maintained chloroplast structure and relieved chlorophyll degradation, thus improving the photosynthetic performance of the leaves. Due to the improvement in photosynthesis, sugar accumulation also increased. Endogenous GABA content and GABA transaminase (GABA-T) and succinate semialdehyde dehydrogenase (SSADH) activity were increased, while glutamate decarboxylase (GAD) activity was decreased, via the exogenous application of GABA under salt stress. Meanwhile, nitrogen metabolism and the tricarboxylic acid (TCA) cycle were activated by the supply of GABA. In general, through the regulation of GABA-shunt metabolism, GABA activated enzymes related to nitrogen metabolism and replenished the key substrates of the TCA cycle, thereby improving the balance of carbon and nitrogen metabolism of maize and improving salt tolerance.


Subject(s)
Citric Acid Cycle , Seedlings , Seedlings/metabolism , Zea mays/metabolism , gamma-Aminobutyric Acid/pharmacology , gamma-Aminobutyric Acid/metabolism , Antioxidants/metabolism , Carbon/metabolism , Nitrogen/pharmacology , Nitrogen/metabolism , Stress, Physiological
15.
Transgenic Res ; 32(1-2): 109-119, 2023 04.
Article in English | MEDLINE | ID: mdl-36809403

ABSTRACT

Novel transgenic (TG) pigs co-expressing three microbial enzymes, ß-glucanase, xylanase, and phytase, in their salivary glands were previously generated, which exhibited reduced phosphorus and nitrogen emissions and improved growth performances. In the present study, we attempted to explore the age-related change of the TG enzymic activity, the residual activity of the enzymes in the simulated gastrointestinal tract, and the effect of the transgenes on the digestion of nitrogen and phosphorus content in the fiber-rich, plant-based diets. Results showed that all the three enzymes were stably expressed over the growing and finishing periods in the F2 generation TG pigs. In simulated gastric juice, all the three enzymes exhibited excellent gastrointestinal environment adaptability. The apparent total tract digestibility of phosphorus was increased by 69.05% and 499.64%, while fecal phosphate outputs were decreased by 56.66% and 37.32%, in the TG pigs compared with the wild-type littermates fed with low non-starch polysaccharides diets and high fiber diets, respectively. Over half of available phosphorus and water-soluble phosphorus in fecal phosphorus were reduced. We also found the performance of phosphorus, calcium, and nitrogen retention rates were significantly improved, resulting in faster growth performance in TG pigs. The results indicate that TG pigs can effectively digest the high-fiber diets and exhibit good growth performance compared with wild type pigs.


Subject(s)
6-Phytase , Dietary Supplements , Animals , Swine/genetics , 6-Phytase/genetics , Digestion , Diet , Gastrointestinal Tract , Phosphorus/pharmacology , Salivary Glands , Animal Feed/analysis , Nitrogen/pharmacology , Diet, Vegetarian
16.
Environ Pollut ; 323: 121295, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36822311

ABSTRACT

Tropical forests, where the soils are nitrogen (N) rich but phosphorus (P) poor, have a disproportionate influence on global carbon (C) and N cycling. While N deposition substantially alters soil C and N retention in tropical forests, whether P input can alleviate these N-induced effects by regulating soil microbial functions remains unclear. We investigated soil microbial taxonomy and functional traits in response to 10-year independent and interactive effects of N and P additions in a primary and a secondary tropical forest in Hainan Island. In the primary forest, N addition boosted oligotrophic bacteria and phosphatase and enriched genes responsible for C-, P-mineralization, nitrification and denitrification, suggesting aggravated P limitation while N excess. This might stimulate P excavation via organic matter mineralization, and enhance N losses, thereby increasing soil CO2 and N2O emissions by 86% and 110%, respectively. Phosphorus and NP additions elevated C-mining enzymes activity mainly due to intensified C limitation, causing 82% increase in CO2 emission. In secondary forest, P and NP additions reduced phosphatase activity, enriched fungal copiotrophs and increased microbial biomass, suggesting removal of nutrient deficiencies and stimulation of fungal growth. Meanwhile, soil CO2 emission decreased by 25% and N2O emission declined by 52-82% due to alleviated P acquisition from organic matter decomposition and increased microbial C and N immobilization. Overall, N addition accelerates most microbial processes for C and N release in tropical forests. Long-term P addition increases C and N retention via reducing soil CO2 and N2O emissions in the secondary but not primary forest because of strong C limitation to microbial N immobilization. Further, the seasonal and annual variations in CO2 and N2O emissions should be considered in future studies to test the generalization of these findings and predict and model dynamics in greenhouse gas emissions and C and N cycling.


Subject(s)
Carbon Dioxide , Soil , Carbon Dioxide/pharmacology , Carbon Dioxide/analysis , Soil Microbiology , Phosphorus , Forests , Nitrogen/pharmacology , Nitrous Oxide/analysis
17.
Mar Pollut Bull ; 188: 114660, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36764145

ABSTRACT

This study investigated the influence of nitrogen and phosphorus on the bioremediation of crude oil by Gracilariopsis persica in littoral zone waters. In order to determine the role of nitrogen in bioremediation, urea, ammonium, and nitrate were used with and without phosphorus, with the result that nitrogen had no significant effect on the degradation of oil by Gracilariopsis persica in the littoral zone. Nearly 90 % of the crude oil used in this study was degraded by treatments with added phosphorus and nitrogen. A significant increase in the degradation of oil-contaminated water was observed after the application of phosphorus. Comparatively to the application of phosphorus alone, nitrogen and phosphorus together increased the rate of biodegradation by the algal species. Based on the results of the study, nitrogen and phosphorus have complementary effects on the bioremediation of oil by Gracilariopsis persica.


Subject(s)
Petroleum , Phosphorus , Biodegradation, Environmental , Phosphorus/pharmacology , Nitrogen/pharmacology , Petroleum/metabolism , Nutrients
18.
ACS Appl Mater Interfaces ; 15(2): 3253-3265, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36598330

ABSTRACT

Phototheranostics has attracted considerable attention in the fields of cancer diagnosis and treatment. However, the complete eradication of solid tumors using traditional phototheranostics is difficult because of the limited depth and range of laser irradiation. New phototheranostics enabling precise phototherapy and post-treatment imaging-guided programmed therapy for residual tumors is urgently required. Accordingly, this study developed a novel transformable phototheranostics by assembling hyaluronic acid (HA) with copper-nitrogen-coordinated carbon dots (CDs). In this transformable nanoplatform, named copper-nitrogen-CDs@HA, the HA component enables the specific targeting of cluster determinant (CD) 44-overexpressing tumor cells. In the tumor cells, redox glutathione converts Cu(II) (cupric ions) into Cu(I) (cuprous ions), which confers the novel transformable functionality to phototheranostics. Both in vitro and in vivo results reveal that the near-infrared-light-photoactivated CuII-N-CDs@HA could target CD44-overexpressing tumor cells for precise synergistic photothermal therapy and photodynamic therapy. This study is the first to observe that CuII-N-CDs@HA could escape from lysosomes and be transformed in situ into CuI-N-CDs@HA in tumor cells, with the d9 electronic configuration of Cu(II) changing to the d10 electronic configuration of Cu(I), which turns on their fluorescence and turns off their photothermal properties. This transformable phototheranostics could be used for post-treatment imaging-guided photodynamic therapy on residual tumor cells. Thus, the rationally designed copper-nitrogen-coordinated CDs offer a simple in situ transformation strategy for using multiple-stimulus-responsive precise phototheranostics in post-treatment monitoring of residual tumor cells and imaging-guided programmed therapy.


Subject(s)
Nanoparticles , Photochemotherapy , Humans , Carbon/chemistry , Carbon/pharmacology , Cell Line, Tumor , Copper/chemistry , Copper/pharmacology , Nanoparticles/therapeutic use , Neoplasm, Residual/drug therapy , Photochemotherapy/methods , Phototherapy , Nitrogen/chemistry , Nitrogen/pharmacology
19.
Environ Pollut ; 318: 120852, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36509346

ABSTRACT

Sediments are the long-term sinks of microplastics (MPs) and nutrients in freshwater ecosystems. Therefore, understanding the effect of MPs on sediment nutrients is crucial. However, few studies have discussed the effects of MPs on nitrogen and phosphorus cycles in freshwater sediments. Herein, 0.5% (w/w) polyvinyl chloride (PVC), polylactic acid (PLA), and polypropylene (PP) MPs were added to freshwater sediments to evaluate their effects on microbial communities and nitrogen and phosphorus release. The potential biochemical functions of the bacterial communities in the sediments were predicted and assessed via 16S rRNA gene sequencing. The results showed that MPs significantly affected the microbial community composition and nutrient cycling in the sediments. PVC and PP MPs can promote microbial nitrification and nitrite oxidation, while PP can significantly promote alkaline phosphatase (ALP) activity and the abundance of the phosphorus-regulation (phoR) gene. PLA MPs had the potential to promote the abundance of microbial phosphorus transporter (ugpB), nitrogen fixation (nifD, nifH, and nifX), and denitrification (nirS, napA, and norB) genes and inhibit nitrification, resulting in massive accumulation and release of ammonia nitrogen. Although PLA MPs inhibited the activity of ALP and the abundance of the organophosphorus mineralization (phoD) gene, it could enhance dissimilatory iron and sulfite reduction, which may promote the release of sedimentary phosphorus. Our findings may help understand the mechanisms of nitrogen and phosphorus cycles and microbial communities driven by MPs in sediments and provide a basis for future assessments of the environmental behavior of MPs in freshwater ecosystems.


Subject(s)
Microbiota , Microplastics , Plastics/pharmacology , Nitrogen/pharmacology , Phosphorus , RNA, Ribosomal, 16S , Geologic Sediments/chemistry , Polyesters
20.
Cryo Letters ; 44(6): 343-351, 2023.
Article in English | MEDLINE | ID: mdl-38311928

ABSTRACT

BACKGROUND: When sperm are cryopreserved, reactive oxygen species (ROS) are formed that are detrimental to the sperm. OBJECTIVE: To evaluate the effects of oleic acid and trehalose added to ram semen extender on sperm parameters, lipid peroxidation (MDA), and superoxide dismutase (SOD) enzyme levels of spermatozoa following the freeze/thawing processes. MATERIALS AND METHODS: Ejaculates were collected from four rams and pooled at 35 degree C. Pooled ejaculates were diluted with oleic acid at 0 mM and trehalose at 0 mM (O0 T0) as the control. The Tris-based extender was supplemented with either 0.5 (O0.5) or 1 (O1) mM of oleic acid or 25 (T25) or 50 (T50) mM of trehalose alone, and in combination [0.5 mM oleic acid + 25 mM trehalose (O0.5 T25), 0.5 mM oleic acid + 50 mM trehalose (O0.5 T50), 1 mM oleic acid + 25 mM trehalose (O1 T25) and 1 mM oleic acid + 50 mM trehalose (O1 T50)]. The semen was frozen by the traditional liquid nitrogen vapour method and stored at -196C in the liquid nitrogen tank. RESULTS: Semen extender containing O1T25 significantly improved the total motility, when compared with other treatment groups (P<0.05), except for O1 T50. O1 T50 had a higher viability rate than any other treatment. The addition of O1 T25 and O1 T50 increased DNA and membrane integrity of spermatozoa post-thawing compared to other treatments (P<0.05). The level of MDA was significantly (P<0.05) lower in extenders supplemented with O1, O0.5 T25, O0.5 T50, O1 T25 and O1T50 compared to the other treatment groups. In addition, SOD levels were higher in groups treated with O1 T25 and O1 T50 than the other treatment groups (P<0.05). CONCLUSION: The addition of a combination of oleic acid and trehalose concentrations to Tris-based extender improved the quality of ram semen post-thawing. Doi.org/10.54680/fr23610110712.


Subject(s)
Semen Preservation , Semen , Male , Sheep , Animals , Oleic Acid/pharmacology , Trehalose/pharmacology , Cryopreservation/veterinary , Cryopreservation/methods , Cryoprotective Agents/pharmacology , Sperm Motility , Spermatozoa , Semen Analysis , Superoxide Dismutase/pharmacology , Nitrogen/pharmacology , Semen Preservation/veterinary , Semen Preservation/methods
SELECTION OF CITATIONS
SEARCH DETAIL