Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Complementary Medicines
Database
Country/Region as subject
Publication year range
1.
J Econ Entomol ; 112(1): 49-59, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30395245

ABSTRACT

Bee-collected pollen is an essential protein source for honey bee and bumblebee colonies. Its quality directly affects bee health. We estimated the quality of pollen samples using bumblebee microcolonies and high-throughput sequencing for the presence of microorganisms. The tested samples of bee-collected pollen were of different quality, as estimated from their effect on the development of bumblebee microcolonies. Based on the pollen quality, we selected a subset of high-quality and low-quality pollen samples to further analyze them for the presence of microorganisms and pathogens. High-throughput sequencing revealed that the most common microorganisms in the bee-collected pollen were Acinetobacter spp. and bacteria of the genera Lactobacillus and Lactococcus. No pathogenic bacteria infectious for honey bees (e.g., those causing American and European foulbrood) or bumblebees have been identified in the analyzed pollen samples. Among potentially harmful microorganisms, there were bacteria from the Enterobacteriaceae family. The fungal pathogens Nosema apis and Nosema ceranae were detected in four samples; Ascosphaera sp. was found in six samples. Several viruses were found in the pollen samples, such as chronic bee paralysis virus, Israeli acute paralysis virus, deformed wing virus, sacbrood virus, and Kashmir bee virus. No correlation between the presence of these microorganisms or viruses and the impact of low-quality pollen samples on the bumblebee development was found. It is possible that factors affecting pollen quality are the absence of certain biologically active compounds or the presence of pesticides.


Subject(s)
Bees/physiology , Pollen/virology , Animals , Bees/virology , Female , High-Throughput Nucleotide Sequencing , Host-Pathogen Interactions , Male , Nosema/isolation & purification
2.
BMC Genomics ; 19(1): 628, 2018 Aug 22.
Article in English | MEDLINE | ID: mdl-30134827

ABSTRACT

BACKGROUND: Bees are confronting several environmental challenges, including the intermingled effects of malnutrition and disease. Intuitively, pollen is the healthiest nutritional choice, however, commercial substitutes, such as Bee-Pro and MegaBee, are widely used. Herein we examined how feeding natural and artificial diets shapes transcription in the abdomen of the honey bee, and how transcription shifts in combination with Nosema parasitism. RESULTS: Gene ontology enrichment revealed that, compared with poor diet (carbohydrates [C]), bees fed pollen (P > C), Bee-Pro (B > C), and MegaBee (M > C) showed a broad upregulation of metabolic processes, especially lipids; however, pollen feeding promoted more functions, and superior proteolysis. The superiority of the pollen diet was also evident through the remarkable overexpression of vitellogenin in bees fed pollen instead of MegaBee or Bee-Pro. Upregulation of bioprocesses under carbohydrates feeding compared to pollen (C > P) provided a clear poor nutritional status, uncovering stark expression changes that were slight or absent relatively to Bee-Pro (C > B) or MegaBee (C > M). Poor diet feeding (C > P) induced starvation response genes and hippo signaling pathway, while it repressed growth through different mechanisms. Carbohydrate feeding (C > P) also elicited 'adult behavior', and developmental processes suggesting transition to foraging. Finally, it altered the 'circadian rhythm', reflecting the role of this mechanism in the adaptation to nutritional stress in mammals. Nosema-infected bees fed pollen compared to carbohydrates (PN > CN) upheld certain bioprocesses of uninfected bees (P > C). Poor nutritional status was more apparent against pollen (CN > PN) than Bee-Pro (CN > BN) or MegaBee (CN > MN). Nosema accentuated the effects of malnutrition since more starvation-response genes and stress response mechanisms were upregulated in CN > PN compared to C > P. The bioprocess 'Macromolecular complex assembly' was also enriched in CN > PN, and involved genes associated with human HIV and/or influenza, thus providing potential candidates for bee-Nosema interactions. Finally, the enzyme Duox emerged as essential for guts defense in bees, similarly to Drosophila. CONCLUSIONS: These results provide evidence of the superior nutritional status of bees fed pollen instead of artificial substitutes in terms of overall health, even in the presence of a pathogen.


Subject(s)
Animal Nutritional Physiological Phenomena/genetics , Bees/genetics , Bees/microbiology , Microsporidiosis/genetics , Nosema , Transcriptome/physiology , Animals , Bees/physiology , Diet , Host-Pathogen Interactions/genetics , Microsporidiosis/physiopathology , Nosema/isolation & purification , Nosema/pathogenicity , Pollen
3.
Sci Rep ; 7(1): 14988, 2017 11 08.
Article in English | MEDLINE | ID: mdl-29118416

ABSTRACT

Multiple infections are common in honey bees, Apis mellifera, but the possible role of nutrition in this regard is poorly understood. Microsporidian infections, which are promoted by protein-fed, can negatively correlate with virus infections, but the role of protein nutrition for the microsporidian-virus interface is unknown. Here, we challenged naturally deformed wing virus - B (DWV-B) infected adult honey bee workers fed with or without pollen ( = protein) in hoarding cages, with the microsporidian Nosema ceranae. Bee mortality was recorded for 14 days and N. ceranae spore loads and DWV-B titers were quantified. Amongst the groups inoculated with N. ceranae, more spores were counted in protein-fed bees. However, N. ceranae infected bees without protein-diet had reduced longevity compared to all other groups. N. ceranae infection had no effect on protein-fed bee's longevity, whereas bees supplied only with sugar-water showed reduced survival. Our data also support that protein-feeding can have a significant negative impact on virus infections in insects. The negative correlation between N. ceranae spore loads and DWV-B titers was stronger expressed in protein-fed hosts. Proteins not only enhance survival of infected hosts, but also significantly shape the microsporidian-virus interface, probably due to increased spore production and enhanced host immunity.


Subject(s)
Animal Diseases/immunology , Bees/immunology , Host-Pathogen Interactions/immunology , Nosema/immunology , Nutritional Status/immunology , RNA Viruses/immunology , Animal Diseases/microbiology , Animal Diseases/mortality , Animals , Bees/microbiology , Coinfection/immunology , Coinfection/microbiology , Coinfection/mortality , Coinfection/veterinary , Dietary Proteins/immunology , Dietary Sugars/immunology , Microsporidiosis/immunology , Microsporidiosis/microbiology , Microsporidiosis/mortality , Microsporidiosis/veterinary , Nosema/isolation & purification , Pollen/chemistry , RNA Viruses/isolation & purification , Spores, Fungal/immunology , Spores, Fungal/isolation & purification
4.
BMC Res Notes ; 7: 649, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25223634

ABSTRACT

BACKGROUND: Here we present a holistic screening of collapsing colonies from three professional apiaries in Spain. Colonies with typical honey bee depopulation symptoms were selected for multiple possible factors to reveal the causes of collapse. RESULTS: Omnipresent were Nosema ceranae and Lake Sinai Virus. Moderate prevalences were found for Black Queen Cell Virus and trypanosomatids, whereas Deformed Wing Virus, Aphid Lethal Paralysis Virus strain Brookings and neogregarines were rarely detected. Other viruses, Nosema apis, Acarapis woodi and Varroa destructor were not detected. Palinologic study of pollen demonstrated that all colonies were foraging on wild vegetation. Consequently, the pesticide residue analysis was negative for neonicotinoids. The genetic analysis of trypanosomatids GAPDH gene, showed that there is a large genetic distance between Crithidia mellificae ATCC30254, an authenticated cell strain since 1974, and the rest of the presumed C. mellificae sequences obtained in our study or published. This means that the latter group corresponds to a highly differentiated taxon that should be renamed accordingly. CONCLUSION: The results of this study demonstrate that the drivers of colony collapse may differ between geographic regions with different environmental conditions, or with different beekeeping and agricultural practices. The role of other pathogens in colony collapse has to bee studied in future, especially trypanosomatids and neogregarines. Beside their pathological effect on honey bees, classification and taxonomy of these protozoan parasites should also be clarified.


Subject(s)
Beekeeping/methods , Bees , Colony Collapse , Insect Viruses/pathogenicity , Nosema/pathogenicity , Trypanosomatina/pathogenicity , Animals , Bees/microbiology , Bees/parasitology , Bees/virology , Colony Collapse/microbiology , Colony Collapse/parasitology , Colony Collapse/virology , Ecosystem , Feeding Behavior , Host-Parasite Interactions , Host-Pathogen Interactions , Insect Viruses/genetics , Insect Viruses/isolation & purification , Nosema/genetics , Nosema/isolation & purification , Phylogeny , Pollen , Population Dynamics , Ribotyping , Spain , Trypanosomatina/genetics , Trypanosomatina/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL