Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
High Blood Press Cardiovasc Prev ; 31(1): 65-76, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38308805

ABSTRACT

INTRODUCTION: Coffee is a complex brew that contains several bioactive compounds and some of them can influence blood pressure (BP) and endothelial function (EF), such as caffeine and chlorogenic acids (CGAs). AIM: This study aimed to evaluate the acute effects of coffee on BP and EF in individuals with hypertension on drug treatment who were habitual coffee consumers. METHODS: This randomized crossover trial assigned 16 adults with hypertension to receive three test beverages one week apart: caffeinated coffee (CC; 135 mg caffeine, 61 mg CGAs), decaffeinated coffee (DC; 5 mg caffeine, 68 mg CGAs), and water. BP was continuously evaluated from 15 min before to 90 min after test beverages by digital photoplethysmography. Reactive hyperemia index (RHI) assessed by peripheral arterial tonometry evaluated EF before and at 90 min after test beverages. At the same time points, microvascular reactivity was assessed by laser speckle contrast imaging. Repeated-measures-ANOVA evaluated the effect of time, the effect of beverage, and the interaction between time and beverage (treatment effect). RESULTS: Although the intake of CC produced a significant increase in BP and a significant decrease in RHI, these changes were also observed after the intake of DC and were not significantly different from the modifications observed after the consumption of DC and water. Microvascular reactivity did not present significant changes after the 3 beverages. CONCLUSION: CC in comparison with DC and water neither promoted an acute increase in BP nor produced an improvement or deleterious effect on EF in individuals with hypertension on drug treatment who were coffee consumers.


Subject(s)
Coffee , Hypertension , Adult , Humans , Coffee/adverse effects , Caffeine/adverse effects , Blood Pressure , Antihypertensive Agents/adverse effects , Cross-Over Studies , Hypertension/diagnosis , Hypertension/drug therapy , Water/pharmacology , Nucleotidyltransferases/pharmacology
2.
J Ethnopharmacol ; 325: 117820, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38286157

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Qingfei Xieding prescription was gradually refined and produced by Hangzhou Red Cross Hospital. The raw material includes Ephedra sinica Stapf, Morus alba L., Bombyx Batryticatus, Gypsum Fibrosum, Prunus armeniaca L. var. ansu Maxim., Houttuynia cordata Thunb. , Pueraria edulis Pamp. Paeonia L., Scutellaria baicalensis Georgi and Anemarrhena asphodeloides Bge. It is effective in clinical adjuvant treatment of patients with pulmonary diseases. AIM OF THE STUDY: To explore the efficacy and underlying mechanism of Qingfei Xieding (QF) in the treatment of bleomycin-induced mouse model. MATERIALS AND METHODS: TGF-ß induced fibrotic phenotype in vitro. Bleomycin injection induced lung tissue fibrosis mouse model in vivo. Flow cytometry was used to detect apoptosis, cellular ROS and lipid oxidation. Mitochondria substructure was observed by transmission electron microscopy. Autophagolysosome and nuclear entry of P65 were monitored by immunofluorescence. Quantitative real-time PCR was performed to detect the transcription of genes associated with mtDNA-cGAS-STING pathway and subsequent inflammatory signaling activation. RESULTS: TGF-ß induced the expression of α-SMA and Collagen I, inhibited cell viability in lung epithelial MLE-12 cells that was reversed by QF-containing serum. TGF-ß-mediated downregulation in autophagy, upregulation in lipid oxidation and ROS contents, and mitochondrial damage were rescued by QF-containing serum treatment, but CQ exposure, an autophagy inhibitor, prevented the protective role of QF. In addition to that, the decreased autophagolysosome in TGF-ß-exposed MLE-12 cells was reversed by QF and restored to low level in the combination treatment of QF and CQ. Mechanistically, QF-containing serum treatment significantly inhibited mtDNA-cGAS-STING pathway and subsequent inflammatory signaling in TGF-ß-challenged cells, which were abolished by CQ-mediated autophagy inhibition. In bleomycin-induced mouse model, QF ameliorated pulmonary fibrosis, reduced mortality, re-activated autophagy in lung tissues and restrained mtDNA-cGAS-STING inflammation pathway. However, the protective effects of QF in bleomycin-induced model mice were also abrogated by CQ. CONCLUSION: QF alleviated bleomycin-induced pulmonary fibrosis by activating autophagy, inhibiting mtDNA-cGAS-STING pathway-mediated inflammation. This research recognizes the protection role of QF on bleomycin-induced mouse model, and offers evidence for the potentiality of QF in clinical application for pulmonary fibrosis treatment.


Subject(s)
Pulmonary Fibrosis , Humans , Mice , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Bleomycin/toxicity , DNA, Mitochondrial/adverse effects , DNA, Mitochondrial/metabolism , Reactive Oxygen Species/metabolism , Lung , Transforming Growth Factor beta/metabolism , Mitochondria/metabolism , Inflammation/pathology , Disease Models, Animal , Autophagy , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/pharmacology , Nucleotidyltransferases/therapeutic use , Lipids/pharmacology , Transforming Growth Factor beta1/metabolism
3.
Phytomedicine ; 118: 154961, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37453191

ABSTRACT

BACKGROUND: Liver diseases have a negative impact on global health and are a leading cause of death worldwide. Chlorogenic acids (CGAs), a family of esters formed between certain trans-cinnamic acids and quinic acid, are natural polyphenols abundant in coffee, tea, and a variety of traditional Chinese medicines (TCMs). They are reported to have good hepatoprotective effects against various liver diseases. PURPOSE: This review aims to analyze the available literature on the hepatoprotective effect of CGAs, with particular emphasis on their mechanisms. METHODS: Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. PubMed and Web of Science databases were adopted to retrieve all relevant literature on CGAs for liver disease from 2013 to March 2023. RESULTS: Research has indicated that CGAs play a crucial role in improving different types of liver diseases, including drug-induced liver injury (DILI), alcoholic liver disease (ALD), metabolic (dysfunction)-associated fatty liver disease (MAFLD), cholestatic liver disease (CLD), liver fibrosis, and liver cancer. CGAs display remarkable antioxidant and anti-inflammatory effects by activating erythroid 2-related factor 2 (Nrf2) and inhibiting toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathways. Some important molecules such as AMP-activated protein kinase (AMPK) and extracellular signal-regulated kinases 1 and 2 (ERK1/2), and other key physiological processes like intestinal barrier and gut microbiota have also been discovered to participate in CGAs-provided amelioration on various liver diseases. CONCLUSION: In this review, different studies indicate that CGAs have an excellent protective effect against various liver diseases associated with various signaling pathways.


Subject(s)
Chlorogenic Acid , Liver Diseases, Alcoholic , Humans , Chlorogenic Acid/pharmacology , Polyphenols/pharmacology , Antioxidants/pharmacology , Antioxidants/metabolism , Liver Diseases, Alcoholic/metabolism , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/pharmacology , Liver
4.
J Control Release ; 358: 190-203, 2023 06.
Article in English | MEDLINE | ID: mdl-37116543

ABSTRACT

At present, the most widely used aluminum adjuvants have poor ability to induce effective Th1 type immune responses. Existing evidence suggests that manganese is a potential metal adjuvant by activating cyclic guanosine phospho-adenosine synthase (cGAS)-interferon gene stimulator protein (STING) signaling pathway to enhance humoral and cellular immune response. Hence, the effective modulation of metal components is expected to be a new strategy to improve the efficiency of vaccine immunization. Here, we constructed a manganese and aluminum dual-adjuvant antigen co-delivery system (MnO2-Al-OVA) to enhance the immune responses of subunit vaccines. Namely, the aluminum hydroxide was first fused on the surface of the pre-prepared MnO2 nanoparticles, which were synthesized by a simple redox reaction with potassium permanganate (KMnO4) and oleic acid (OA). The engineered MnO2-Al-OVA could remarkably promote cellular internalization and maturation of dendritic cells. After subcutaneous vaccination, MnO2-Al-OVA rapidly migrated into the lymph nodes (LNs) and efficiently activate the cGAS-STING pathway, greatly induced humoral and cellular immune responses. Of note, our findings underscore the importance of coordination manganese adjuvants in vaccine design by promoting the activation of the cGAS-STING-IFN-I pathway. With a good safety profile and facile preparation process, this dual-adjuvant antigen co-delivery nanovaccine has great potential for clinical translation prospects.


Subject(s)
Aluminum , Nanoparticles , Aluminum/pharmacology , Manganese , Manganese Compounds/pharmacology , Oxides , Adjuvants, Immunologic , Immunity, Cellular , Antigens , Vaccines, Subunit , Nucleotidyltransferases/pharmacology , Dendritic Cells , Immunity, Humoral
5.
J Ethnopharmacol ; 309: 116327, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-36889420

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Yi-Shen-Xie-Zhuo formula (YSXZF) is a traditional Chinese medicine prescription developed from the classic prescription Mulizexie powder documented in the book of Golden Chamber Synopsis and the Buyanghuanwu Decoction recorded in the book of Correction of Errors in Medical Classics. According to our years of clinical experience, YSXZF can effectively improve qi deficiency and blood stasis in kidney disease. However, its mechanisms need further clarification. AIM OF THE STUDY: Apoptosis and inflammation play key roles in acute kidney disease (AKI). The Yi-Shen-Xie-Zhuo formula, consisting of four herbs, is commonly used for treating renal disease. However, the underlying mechanism and bioactive components remain unexplored. This study aimed to investigate the protective effects of YSXZF against apoptosis and inflammation in a cisplatin-treated mouse model, and identify the main bioactive components of YSXZF. MATERIALS AND METHODS: C57BL/6 mice were administered cisplatin (15 mg/kg) with or without YSXZF (11.375 or 22.75 g/kg/d). HKC-8 cells were treated with cisplatin (20 µM) with or without YSXZF (5% or 10%) for 24 h. Renal function, morphology, and cell damage were evaluated. UHPLC-MS was used to analyze the herbal components and metabolites in the YSXZF-containing serum. RESULTS: Blood urea nitrogen (BUN), serum creatinine, serum and urine neutrophil gelatinase-associated lipocalin (NGAL) levels were clearly increased in the cisplatin-treated group. Administration of YSXZF reversed these changes; it improved renal histology, downregulated kidney injury molecule 1 (KIM-1) expression, and lowered the number of TdT-mediated dUTP-biotin nick end labeling (TUNEL)-positive cells. YSXZF significantly downregulated cleaved caspase-3 and BAX, and upregulated BCL-2 proteins in renal tissues. YSXZF suppressed increase in cGAS/STING activation and inflammation. In vitro treatment with YSXZF markedly reduced cisplatin-induced HKC-8 cell apoptosis, relieved cGAS/STING activation and inflammation, improved mitochondrial membrane potential (MMP), and lowered reactive oxygen species (ROS) overgeneration. Small RNA interference (siRNA)-mediated silencing of cGAS or STING inhibited the protective effects of YSXZF. Twenty-three bioactive constituents from the YSXZF-containing serum were identified as key components. CONCLUSION: This is the first study to demonstrate that YSXZF protects against AKI by suppressing inflammation and apoptosis via the cGAS/STING signaling pathway.


Subject(s)
Acute Kidney Injury , Cisplatin , Mice , Animals , Cisplatin/pharmacology , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control , Mice, Inbred C57BL , Apoptosis , Inflammation/chemically induced , Inflammation/drug therapy , Nucleotidyltransferases/pharmacology , Nucleotidyltransferases/therapeutic use
6.
Am J Chin Med ; 51(1): 91-105, 2023.
Article in English | MEDLINE | ID: mdl-36437551

ABSTRACT

Carbon tetrachloride (CCl4)-induced lipid peroxidation associated with hepatic oxidative stress and cell death is an important mechanism of acute liver injury (ALI). Ginsenoside Rd is considered an active ingredient of ginseng. Evidence suggests that ginsenoside Rd may improve ischaemic stroke, nerve damage, cancer and other diseases involving apoptosis, inflammation, oxidative stress, mitochondrial injury and autophagy. However, the effects of ginsenoside Rd on CCl4-induced ALI and its underlying mechanisms are still unclear. In this study, 0.25% CCl4 was injected intraperitoneally in mice to establish a CCl4-induced ALI model. In the Rd treatment group, Rd (10, 20[Formula: see text]mg/kg) doses were injected intraperitoneally 1[Formula: see text]h before and 23[Formula: see text]h after CCl4 administration. Ferroptosis inducer imidazole ketone erastin (IKE) was injected intraperitoneally 4[Formula: see text]h before CCl4 administration to explore the mechanism. The blood and liver were collected 24[Formula: see text]h after CCl4 administration to investigate the effect and mechanism of ginsenoside Rd on CCl4-induced ALI. Our results showed that ginsenoside Rd inhibited CCl4-induced ALI in mice. Ginsenoside Rd also downregulated CCl4-induced serum and liver iron, 4-hydroxynonenal, and 8-hydroxy-2 deoxyguanosine levels. Furthermore, it upregulated glutathione and glutathione peroxidase 4 levels. In addition, ginsenoside Rd downregulated the expression of cGAS and STING. Subsequently, the ferroptosis inducer imidazole ketone erastin significantly reversed the hepatoprotective effect and influence of ginsenoside Rd with regard to the indicators mentioned above. Our study confirmed that ginsenoside Rd ameliorated CCl4-induced ALI in mice, which was related to the reduction of ferroptosis. Simultaneously, the ginsenoside Rd-mediated inhibition of the cGAS/STING pathway contributed to its antiferroptosis effect. In conclusion, our results suggested that ginsenoside Rd inhibited ferroptosis via the cGAS/STING pathway, thereby protecting mice from CCl4-induced ALI. These results suggested ginsenoside Rd may be used as a potential intervention treatment against CCl4-induced ALI.


Subject(s)
Brain Ischemia , Chemical and Drug Induced Liver Injury , Ferroptosis , Stroke , Mice , Animals , Brain Ischemia/metabolism , Liver/metabolism , Oxidative Stress , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/pharmacology , Carbon Tetrachloride/adverse effects , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism
7.
J Biol Chem ; 261(34): 15995-9, 1986 Dec 05.
Article in English | MEDLINE | ID: mdl-2877983

ABSTRACT

Gentamicin nucleotidyltransferase-catalyzed reaction of (Sp)-[alpha-17O]dATP with tobramycin produced 2"-(2'-deoxyadenosine 5'-[17O]phosphoryl)tobramycin. The configuration at phosphorus in this product was shown to be Rp by chemical degradation to chiral [17O, 18O]dAMP using a stereochemically defined procedure, and determination of the configuration at phosphorus in this product. Periodate-base treatment of 2"-(2'-deoxyadenosine 5'-[17O]phosphoryl)tobramycin followed by NaBH4 reduction produced (2-glyceryl)-[17O]dAMP, which upon snake venom phosphodiesterase-catalyzed hydrolysis in H(2)18O produced [17O,18O] dAMP. The configuration at phosphorus in this product was shown to be S by enzymatic phosphorylation to [17O,18O]dATP, adenylylcyclase (Bordetella pertussis)-catalyzed cyclization to 3',5'-cyclic [17O,18O]dAMP, and 31P NMR analysis of the ethyl esters. Since snake venom phosphodiesterase-catalyzed hydrolyses proceed with retention of configuration at phosphorus, (Sp)-[17O,18O]dAMP must have been produced from (Rp)-(2-glyceryl)-[17O]dAMP; and since the chemical degradation to the latter compound did not involve cleavage of any bonds to phosphorus, the initial enzymatic product must have been (Rp)-2"-(2'-deoxyadenosine 5'-[17O]phosphoryl)tobramycin. Therefore, nucleotidyl transfer catalyzed by gentamicin nucleotidyl-transferase proceeds with inversion of configuration at phosphorus, and the reaction mechanism involves an uneven number of phosphotransfer steps. Inasmuch as this is an uncomplicated two-substrate group transfer reaction, the mechanism probably involves direct nucleotidyl transfer from the nucleoside triphosphate to the aminoglycoside. The B. pertussis adenylylcyclase reaction was shown to proceed with inversion at phosphorus, as has been established for other adenylylcyclases.


Subject(s)
Deoxyadenine Nucleotides/metabolism , Nucleotidyltransferases/pharmacology , Tobramycin/metabolism , Adenylyl Cyclases/pharmacology , Bordetella pertussis/enzymology , Molecular Conformation , Oxygen Isotopes , Phosphorus
SELECTION OF CITATIONS
SEARCH DETAIL