Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Nature ; 575(7781): 180-184, 2019 11.
Article in English | MEDLINE | ID: mdl-31695210

ABSTRACT

Methane is a powerful greenhouse gas and is targeted for emissions mitigation by the US state of California and other jurisdictions worldwide1,2. Unique opportunities for mitigation are presented by point-source emitters-surface features or infrastructure components that are typically less than 10 metres in diameter and emit plumes of highly concentrated methane3. However, data on point-source emissions are sparse and typically lack sufficient spatial and temporal resolution to guide their mitigation and to accurately assess their magnitude4. Here we survey more than 272,000 infrastructure elements in California using an airborne imaging spectrometer that can rapidly map methane plumes5-7. We conduct five campaigns over several months from 2016 to 2018, spanning the oil and gas, manure-management and waste-management sectors, resulting in the detection, geolocation and quantification of emissions from 564 strong methane point sources. Our remote sensing approach enables the rapid and repeated assessment of large areas at high spatial resolution for a poorly characterized population of methane emitters that often appear intermittently and stochastically. We estimate net methane point-source emissions in California to be 0.618 teragrams per year (95 per cent confidence interval 0.523-0.725), equivalent to 34-46 per cent of the state's methane inventory8 for 2016. Methane 'super-emitter' activity occurs in every sector surveyed, with 10 per cent of point sources contributing roughly 60 per cent of point-source emissions-consistent with a study of the US Four Corners region that had a different sectoral mix9. The largest methane emitters in California are a subset of landfills, which exhibit persistent anomalous activity. Methane point-source emissions in California are dominated by landfills (41 per cent), followed by dairies (26 per cent) and the oil and gas sector (26 per cent). Our data have enabled the identification of the 0.2 per cent of California's infrastructure that is responsible for these emissions. Sharing these data with collaborating infrastructure operators has led to the mitigation of anomalous methane-emission activity10.


Subject(s)
Environmental Monitoring , Methane/analysis , Waste Management , California , Greenhouse Effect , Manure , Methane/chemistry , Methane/metabolism , Natural Gas , Oil and Gas Industry/methods , Petroleum , Wastewater
2.
J Biosci Bioeng ; 128(1): 72-79, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30765135

ABSTRACT

The anaerobic degradation of petroleum is an important process in natural environments. So far, few studies have considered the response of the microbial community to nanomaterials during this process. This study explored the potential effects of graphene oxide and biochar on the anaerobic degradation of petroleum hydrocarbons in long-term experiments. Cyclic voltammetry and electrochemical impedance spectroscopy indicated that the addition of carbon-based materials promoted the electrochemical activity of anaerobic cultures that degrade petroleum hydrocarbons. The maximum degradation rates for benzene, toluene, ethylbenzene, and xylene (BTEXs) in the cultures incubated for 10 weeks with graphene oxide (0.02 mg/L) and biochar (20 mg/L) were 76.5% and 77.6%, respectively. The maximum degradation rates of n-alkanes in the cultures incubated for 10 weeks with graphene oxide (2 mg/L) and biochar (100 mg/L) were 70.0% and 77.8%, respectively. The 16S rDNA copy numbers in the treatments with 0.02 mg/L graphene oxide and 20 mg/L biochar were significantly higher than others during the process (P < 0.05). In the 2nd week, the maximum copy numbers of the masD and bamA genes in the treatments with biochar were 349 copies/mL (20 mg/L) and 422 copies/mL (20 mg/L), respectively, and in the treatments with graphene oxide were 289 copies/mL (0 mg/L) and 366 copies/mL (0.02 mg/L). The contents of carbon-based materials had slight effects on the microbial community structure, whereas the culture time had obvious effects. Paracoccus denitrificans, Pseudomonas aeruginosa, and Hydrogenophaga caeni were the dominant microorganisms in the culture systems under all treatments.


Subject(s)
Charcoal/pharmacology , Environmental Restoration and Remediation/methods , Graphite/pharmacology , Hydrocarbons/metabolism , Petroleum/metabolism , Anaerobiosis/drug effects , Biodegradation, Environmental/drug effects , Charcoal/chemistry , Graphite/chemistry , Humans , Microbiota , Oil and Gas Industry/methods , Petroleum/microbiology , Petroleum Pollution , Sewage/chemistry , Sewage/microbiology
3.
FEMS Microbiol Ecol ; 94(10)2018 10 01.
Article in English | MEDLINE | ID: mdl-30101289

ABSTRACT

Injecting CO2 into depleted oil reservoirs to extract additional crude oil is a common enhanced oil recovery (CO2-EOR) technique. However, little is known about how in situ microbial communities may be impacted by CO2 flooding, or if any permanent microbiological changes occur after flooding has ceased. Formation water was collected from an oil field that was flooded for CO2-EOR in the 1980s, including samples from areas affected by or outside of the flood region, to determine the impacts of CO2-EOR on reservoir microbial communities. Archaea, specifically methanogens, were more abundant than bacteria in all samples, while identified bacteria exhibited much greater diversity than the archaea. Microbial communities in CO2-impacted and non-impacted samples did not significantly differ (ANOSIM: Statistic R = -0.2597, significance = 0.769). However, several low abundance bacteria were found to be significantly associated with the CO2-affected group; very few of these species are known to metabolize CO2 or are associated with CO2-rich habitats. Although this study had limitations, on a broad scale, either the CO2 flood did not impact the microbial community composition of the target formation, or microbial communities in affected wells may have reverted back to pre-injection conditions over the ca. 40 years since the CO2-EOR.


Subject(s)
Carbon Dioxide/analysis , Microbiota , Oil and Gas Fields/microbiology , Oil and Gas Industry/methods , Petroleum/microbiology , Archaea/classification , Archaea/genetics , Archaea/growth & development , Archaea/isolation & purification , Bacteria/classification , Bacteria/genetics , Bacteria/growth & development , Bacteria/isolation & purification , Biodiversity , Microbiota/genetics , Oil and Gas Fields/chemistry
4.
PLoS One ; 13(6): e0199709, 2018.
Article in English | MEDLINE | ID: mdl-29933409

ABSTRACT

There are many heavy oil reservoirs in offshore oilfields in China. Steam and multiple thermal fluid stimulation technologies are of increasing interest and have been applied to an increasing number of projects. During the stimulation or displacement of heavy oil reservoirs during thermal recovery, several factors, such as reservoir heterogeneity, are prone to cause channeling phenomena and affect the thermal recovery effect of steam stimulation. According to the unique requirements for the stimulation of multiple thermal fluids for offshore heavy oil, this study used transmission, blocking and relieving, heat resistance and a comprehensive evaluation of parallel sand tube experiments to conduct a screening evaluation of plugging systems for the stimulation of multiple thermal fluids, screen out a commonly used plugging agent in the current stage and propose corresponding guidance for the selection basis. The results show that foam, gel, foam gel and temperature-sensitive gel systems have a good transmission performance, whereas the oil sludge exhibits a poorer performance. The phenolic resin system exhibits great plugging properties, followed by oily sludge, temperature-sensitive gel, gel, foam gel and foam. Considering about washing resistance properties, phenolic resin system shows the best quality, followed by oily sludge and temperature-sensitive gel. The oily sludge system brings the best performance in plugging a high-permeability channel than phenolic resin gel and temperature-sensitive gel.


Subject(s)
Oil and Gas Industry/instrumentation , Oil and Gas Industry/methods , Petroleum , China
5.
PLoS One ; 13(6): e0199027, 2018.
Article in English | MEDLINE | ID: mdl-29924836

ABSTRACT

Oil shale is an unconventional energy source, and it is also a potential petroleum substitute. Nowadays, the energy shortage is becoming more and more prominent, oil shale has attracted the attention of energy researchers all over the world. Borehole hydraulic mining is an effective method to exploit the underground oil shale which has more prominent advantages than other conventional mining methods. Jet devices are the key component of borehole hydraulic mining, which include the straight cone nozzle, organ pipe nozzle and self-excited oscillation pulsed jet nozzle. Also, the reasonable mining parameters are also crucial in mining underground oil shale efficiency. The jet characteristics of the non-submerged water jet, submerged water jet, direct water jet, cavitating water jet, and pulsed water jet are also explained and compared based on theoretical analysis. The jet performance of the non-submerged water jet is better than the submerged water jet. Each type of jet devices has its own basic principles and optimal structural parameters. The best operating scheme of borehole hydraulic mining for underground oil shale is to use the pulsed water jet which is produced by the self-excited oscillation pulsed jet nozzle to break underground oil shale under the non-submerged condition. Moreover, the pulsed water jet should be placed parallel to the oil shale bedding. In addition, under the preconditions of ensuring the safety and reliability of the hydraulic mining equipment and pipelines connection, the jet pressure and jet flow should be raised as much as possible, so as to obtain the much higher mining efficiency. These results and conclusions can provide very valuable guidance for borehole hydraulic mining of underground oil shale.


Subject(s)
Mining/instrumentation , Oil and Gas Industry/instrumentation , Equipment Design , Minerals , Oil and Gas Fields , Oil and Gas Industry/methods , Pressure , Water
6.
Article in English | MEDLINE | ID: mdl-29775124

ABSTRACT

The present study aims to develop an eco-friendly methodology for the recovery of nickel (Ni), molybdenum (Mo), and vanadium (V) from the refinery waste spent hydroprocessing catalyst. The proposed process has two stages: the first stage is to separate alumina, while the second stage involves the separation of metal compounds. The effectiveness of leaching agents, such as NH4OH, (NH4)2CO3, and (NH4)2S2O8, for the extraction of Mo, V, Ni, and Al from the refinery spent catalyst has been reported as a function of reagent concentration (0.5 to 2.0 molar), leaching time (1 to 6 h), and temperature (35 to 60°C). The optimal leaching conditions were achieved to obtain the maximum recovery of Mo, Ni, and V metals. The effect of the mixture of multi-ammonium salts on the metal extraction was also studied, which showed an adverse effect for Ni and V, while marginal improvement was observed for Mo leaching. The ammonium salts can form soluble metal complexes, in which stability or solubility depends on the nature of ammonium salt and the reaction conditions. The extracted metals and support can be reused to synthesize a fresh hydroprocessing catalyst. The process will reduce the refinery waste and recover the expensive metals. Therefore, the process is not only important from an environmental point of view but also vital from an economic perspective.


Subject(s)
Industrial Waste , Metals/analysis , Oil and Gas Industry , Refuse Disposal , Water Pollutants, Chemical/analysis , Aluminum Oxide/analysis , Catalysis , Hydrolysis , Industrial Waste/adverse effects , Kuwait , Molybdenum/analysis , Nickel/analysis , Oil and Gas Industry/instrumentation , Oil and Gas Industry/methods , Refuse Disposal/instrumentation , Refuse Disposal/methods , Refuse Disposal/standards , Vanadium/analysis
7.
J Biosci Bioeng ; 126(2): 235-240, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29572090

ABSTRACT

To investigate weak gel-assisted microbial flooding in Block Wang Long Zhuang in the Jiangsu Oilfield, the compatibility of weak gel and microbe was evaluated using laboratory experiments. Bacillus sp. W5 was isolated from the formation water in Block Wang Long Zhuang. The rate of oil degradation reached 178 mg/day, and the rate of viscosity reduction reached 75.3%. Strain W5 could produce lipopeptide with a yield of 1254 mg/L. Emulsified crude oil was dispersed in the microbial degradation system, and the average diameter of the emulsified oil particles was 18.54 µm. Bacillus sp. W5 did not affect the rheological properties of the weak gel, and the presence of the weak gel did not significantly affect bacterial reproduction (as indicated by an unchanged microbial biomass), emulsification (surface tension is 35.56 mN/m and average oil particles size is 21.38 µm), oil degradation (162 mg/day) and oil viscosity reduction (72.7%). Core-flooding experiments indicated oil recovery of 23.6% when both weak gel and Bacillus sp. W5 were injected into the system, 14.76% when only the weak gel was injected, and 9.78% with strain W5 was injected without the weak gel. The results demonstrate good compatibility between strains W5 and the weak gel and highlight the application potential of weak gel-assisted microbial flooding.


Subject(s)
Bacillus/metabolism , Biodegradation, Environmental , Gels/chemistry , Petroleum , Materials Testing , Oil and Gas Fields , Oil and Gas Industry/methods , Petroleum/metabolism , Petroleum/microbiology , Petroleum Pollution , Surface Tension , Surface-Active Agents/metabolism , Viscosity , Water/metabolism
8.
Endocrinology ; 159(3): 1277-1289, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29425295

ABSTRACT

Unconventional oil and gas (UOG) operations, which combine hydraulic fracturing (fracking) and directional drilling, involve the use of hundreds of chemicals, including many with endocrine-disrupting properties. Two previous studies examined mice exposed during early development to a 23-chemical mixture of UOG compounds (UOG-MIX) commonly used or produced in the process. Both male and female offspring exposed prenatally to one or more doses of UOG-MIX displayed alterations to endocrine organ function and serum hormone concentrations. We hypothesized that prenatal UOG-MIX exposure would similarly disrupt development of the mouse mammary gland. Female C57Bl/6 mice were exposed to ~3, ~30, ~ 300, or ~3000 µg/kg/d UOG-MIX from gestational day 11 to birth. Although no effects were observed on the mammary glands of these females before puberty, in early adulthood, females exposed to 300 or 3000 µg/kg/d UOG-MIX developed more dense mammary epithelial ducts; females exposed to 3 µg/kg/d UOG-MIX had an altered ratio of apoptosis to proliferation in the mammary epithelium. Furthermore, adult females from all UOG-MIX-treated groups developed intraductal hyperplasia that resembled terminal end buds (i.e., highly proliferative structures typically seen at puberty). These results suggest that the mammary gland is sensitive to mixtures of chemicals used in UOG production at exposure levels that are environmentally relevant. The effect of these findings on the long-term health of the mammary gland, including its lactational capacity and its risk of cancer, should be evaluated in future studies.


Subject(s)
Endocrine Disruptors/toxicity , Hydraulic Fracking/methods , Mammary Glands, Animal/growth & development , Oil and Gas Industry/methods , Prenatal Exposure Delayed Effects/chemically induced , Animals , Apoptosis , Environmental Exposure , Female , Gestational Age , Immunohistochemistry , In Situ Nick-End Labeling , Lactation , Mammary Glands, Animal/pathology , Mice , Mice, Inbred C57BL , Pregnancy , Sexual Maturation
9.
Article in English | MEDLINE | ID: mdl-29206081

ABSTRACT

Direct (UV) and hydrogen peroxide-assisted (UV/H2O2) photolysis were investigated in bench-scale for removing the organic compounds present in the electrodialysis reversal (EDR) brine from a refinery wastewater reclamation plant. In the UV/H2O2 experiments, a COD:H2O2 molar ratios of 1:1, 1:2 and 1:3 were tested by recirculating the brine in the UV reactor for 120 min. Results showed a significant reduction in UVA254, whereas no reduction was observed for chemical oxygen demand (COD), in the UV process, suggesting great cleavage but limited mineralization of the organic matter. UV/H2O2 with C:H2O2 ratio of 1:3 exhibited high efficiency in removing the organic matter (COD removal of 92% with an electrical energy per removal order (EEO) value of 22 kW h m-3). Although the EDR brine has high salinity, no strong scavenging effect of •OH was found in the water matrix due to the high concentration of anions, especially chloride and bicarbonate. Finally, UV/H2O2 with C:H2O2 ratio of 1:3 and residence time of 120 min is an efficient alternative for organic matter removal of EDR brine from refinery wastewater reclamation plant showing total capital cost (CapEx) estimated at US$ 369,653.00 and total operational cost (OpEx), at US$ 1.772 per cubic meter of effluent.


Subject(s)
Hydrogen Peroxide/chemistry , Organic Chemicals/isolation & purification , Petroleum , Salts/isolation & purification , Ultraviolet Rays , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Biological Oxygen Demand Analysis , Conservation of Water Resources/methods , Filtration/methods , Humans , Hydrogen Peroxide/pharmacology , Oil and Gas Industry/methods , Oxidation-Reduction , Petroleum/analysis , Photolysis , Salinity , Waste Disposal Facilities , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/radiation effects
10.
Angew Chem Int Ed Engl ; 54(31): 8975-9, 2015 Jul 27.
Article in English | MEDLINE | ID: mdl-26083324

ABSTRACT

Solid deposition, such as the formation of ice on outdoor facilities, the deposition of scale in water reservoirs, the sedimentation of fat, oil, and grease (FOG) in sewer systems, and the precipitation of wax in petroleum pipelines, cause a serious waste of resources and irreversible environmental pollution. Inspired by fish and pitcher plants, we present a self-replenishable organogel material which shows ultra-low adhesion to solidified paraffin wax and crude oil by absorption of low-molar-mass oil from its crude-oil environment. Adhesion of wax on the organogel surface was over 500 times lower than adhesion to conventional material surfaces and the wax was found to slide off under the force of gravity. This design concept of a gel with decreased adhesion to wax and oil can be extended to deal with other solid deposition problems.


Subject(s)
Biomimetic Materials/chemistry , Dimethylpolysiloxanes/chemistry , Gels/chemistry , Environmental Pollutants/chemistry , Molecular Structure , Oil and Gas Industry/methods , Petroleum
11.
Appl Biochem Biotechnol ; 176(4): 1012-28, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25894951

ABSTRACT

Anaerobic incubations using crude oil and brine from a North Sea reservoir were conducted to gain increased understanding of indigenous microbial community development, metabolite production, and the effects on the oil-brine system after addition of a complex carbon source, molasses, with or without nitrate to boost microbial growth. Growth of the indigenous microbes was stimulated by addition of molasses. Pyrosequencing showed that specifically Anaerobaculum, Petrotoga, and Methanothermococcus were enriched. Addition of nitrate favored the growth of Petrotoga over Anaerobaculum. The microbial growth caused changes in the crude oil-brine system: formation of oil emulsions, and reduction of interfacial tension (IFT). Reduction in IFT was associated with microbes being present at the oil-brine interphase. These findings suggest that stimulation of indigenous microbial growth by addition of molasses has potential as microbial enhanced oil recovery (MEOR) strategy in North Sea oil reservoirs.


Subject(s)
Methanococcaceae/metabolism , Oil and Gas Fields/microbiology , Petroleum/supply & distribution , Saline Waters/chemistry , Thermotoga maritima/metabolism , Denmark , Methanococcaceae/drug effects , Methanococcaceae/growth & development , Microbial Consortia/drug effects , Microbial Consortia/physiology , Molasses/analysis , Nitrates/pharmacology , North Sea , Oil and Gas Industry/methods , Surface Tension , Surface-Active Agents/pharmacology , Thermotoga maritima/drug effects , Thermotoga maritima/growth & development
12.
J Microbiol Biotechnol ; 25(6): 918-29, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25649982

ABSTRACT

Microbial enhanced oil recovery (MEOR) is being used more widely, and the biological contributions involved in MEOR need to be identified and quantified for the improvement of field applications. Owing to the excellent interfacial activity and the wide distribution of producing strains in oil reservoirs, lipopeptides have proved to be an essential part of the complex mechanisms in MEOR. In this study, crude lipopeptides were produced by a strain isolated from an indigenous community in an oil reservoir. It was found that crude lipopeptides can effectively reduce the IFT (interfacial tension) to 10(-1)~10(-2) mN/m under high salinity without forming stable emulsions, and the wettability of natural sandstone can be enhanced (Amott index, from 0.36 to 0.48). The results of core flooding experiments indicate that an additional 5.2% of original oil in place can be recovered with a 9.5% reduction of injection pressure. After the shut-in period, the wettability of the core, the reduction of injection pressure, and the oil recovery can be improved to 0.63, 16.2% and 9.6%, respectively. In the microscopic flooding experiments, the crude oil in membrane, cluster, and throat states contribute nearly 90% in total of the additional oil recovery, and the recovery of membranestate oil was significantly enhanced by 93.3% after shut in. Based on the results in macro and pore scale, the IFT reduction and the wettability alteration are considered primary contributors to oil recovery, while the latter was more dominant after one shut-in period.


Subject(s)
Bacteria/chemistry , Lipopeptides/metabolism , Petroleum/microbiology , Surface-Active Agents/metabolism , Oil and Gas Industry/methods
SELECTION OF CITATIONS
SEARCH DETAIL