Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.590
Filter
Add more filters

Publication year range
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 636-644, jul. 2024. graf, tab
Article in English | LILACS | ID: biblio-1538072

ABSTRACT

Thechemical composition, antioxidant and antimicrobial activities of the essential oil from aerial parts (leaves and flowers) of Chuquiraga arcuataHarling grown in the Ecuadorian Andes were studied. One hundred and twenty-six compounds were identified in the essential oil. Monoterpene hydrocarbons (45.8%) and oxygenated monoterpenes (44.1%) had the major percentages. The most abundant compounds were camphor (21.6%), myrcene (19.5%), and 1,8-cineole (13.4%). Antioxidant activity was examined using DPPH, ABTS,and FRAP assays. The essential oil had a moderate scavenging effect and reduction of ferric ion capacity through FRAP assay. Antimicrobial activity of the essential oil was observed against four pathogenic bacteria and a fungus. The essential oil exhibited activity against all microorganism strains under test, particularly against Candida albicansand Staphylococcus aureuswith MICs of 2.43-12.10 µg/mL.


Se estudió la composición química, actividades antioxidantes y antimicrobianas del aceite esencial procedente de las partes aérea (hojas y flores) de Chuquiraga arcuataHarling cultivadas en los Andes ecuatorianos. Se identificaron 126 compuestos en el aceite esencial. Los hidrocarburos monoterpénicos (45,8%) y los monoterpenos oxigenados (44,1%) tuvieron el mayor porcentaje. Los compuestos más abundantes fueron alcanfor (21,6%), mirceno (19,5%) y 1,8-cineol (13,4%). La actividadantioxidante se examinó mediante ensayos DPPH, ABTS y FRAP. El aceite esencial tuvo un efecto eliminador moderado y una reducción de la capacidad de iones férricos mediante el ensayo FRAP. Se observó actividad antimicrobiana del aceite esencial contra cuatro bacterias y un hongo patógenos. El aceite esencial mostró actividad contra todas las cepas de microorganismos bajo prueba, particularmente contra Candida albicansy Staphylococcus aureuscon CMI de 2,43-12,10 µg/mL.


Subject(s)
Oils, Volatile/chemistry , Plant Extracts/chemistry , Antioxidants/chemistry , Oils, Volatile/pharmacology , Plant Extracts/pharmacology , Plant Leaves/chemistry , Flowers/chemistry , Ecuador , Antioxidants/pharmacology
2.
Pestic Biochem Physiol ; 200: 105809, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38582581

ABSTRACT

Culex quinquefasciatus is the main vector of lymphatic filariasis in Brazil, which present resistance to commercial insecticides. Nowadays, essential oils (EOs) exhibiting larvicidal activity, such as those derived from Piper alatipetiolatum, provide a promising alternative for vector control, including Culex species. This study aimed to investigate the larvicidal activity and the oxidative stress indicators of the EO from P. alatipetiolatum in Cx. quinquefasciatus larvae. The EO was extracted from P. alatipetiolatum leaves using the hydrodistillation method, resulting in a yield of 7.2 ± 0.1%, analysed by gas chromatography coupled with spectrometry and gas chromatography coupled with flame ionization detector (GC-MS and GC-FID), and evaluated against Cx. quinquefasciatus larvae. Reactive Oxygen and Nitrogen Species (RONS), Catalase (CAT), glutathione-S-transferase (GST), acetylcholinesterase (AChE), and Thiol levels were used as oxidative stress indicators. Analysis by CG-MS and CG-FID revealed that the main compound in the EO was the oxygenated sesquiterpene ishwarone, constituting 78.6% of the composition. Furthermore, the EO exhibited larvicidal activity, ranging from 26 to 100%, with an LC50 of 4.53 µg/mL and LC90 of 15.37 µg/mL. This activity was accompanied by a significant increase in RONS production, alterations in CAT, GST, AChE activity, and thiol levels compared to the control groups (p < 0.05). To the best of our knowledge, this is the first report describing the larvicidal activity and oxidative stress induced by the EO from P. alatipetiolatum against Cx. quinquefasciatus larvae. Therefore, we propose that this EO shows promise as larvicidal agent for the effective control of Cx. quinquefasciatus larvae.


Subject(s)
Aedes , Culex , Culicidae , Insecticides , Oils, Volatile , Piper , Animals , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Larva , Acetylcholinesterase , Mosquito Vectors , Insecticides/pharmacology , Insecticides/chemistry , Sulfhydryl Compounds/pharmacology , Plant Extracts/pharmacology , Plant Leaves
3.
Sci Rep ; 14(1): 9195, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38649707

ABSTRACT

The development of novel antioxidant compounds with high efficacy and low toxicity is of utmost importance in the medicine and food industries. Moreover, with increasing concerns about the safety of synthetic components, scientists are beginning to search for natural sources of antioxidants, especially essential oils (EOs). The combination of EOs may produce a higher scavenging profile than a single oil due to better chemical diversity in the mixture. Therefore, this exploratory study aims to assess the antioxidant activity of three EOs extracted from Cymbopogon flexuosus, Carum carvi, and Acorus calamus in individual and combined forms using the augmented-simplex design methodology. The in vitro antioxidant assays were performed using DPPH and ABTS radical scavenging approaches. The results of the Chromatography Gas-Mass spectrometry (CG-MS) characterization showed that citral (29.62%) and niral (27.32%) are the main components for C. flexuosus, while D-carvone (62.09%) and D-limonene (29.58%) are the most dominant substances in C. carvi. By contrast, ß-asarone (69.11%) was identified as the principal component of A. calamus (30.2%). The individual EO exhibits variable scavenging activities against ABTS and DPPH radicals. These effects were enhanced through the mixture of the three EOs. The optimal antioxidant formulation consisted of 20% C. flexuosus, 53% C. carvi, and 27% A. calamus for DPPHIC50. Whereas 17% C. flexuosus, 43% C. carvi, and 40% A. calamus is the best combination leading to the highest scavenging activity against ABTS radical. These findings suggest a new research avenue for EOs combinations to be developed as novel natural formulations useful in food and biopharmaceutical products.


Subject(s)
Acorus , Antioxidants , Carum , Cymbopogon , Oils, Volatile , Plant Extracts , Cymbopogon/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Acorus/chemistry , Carum/chemistry , Gas Chromatography-Mass Spectrometry , Biphenyl Compounds/antagonists & inhibitors , Biphenyl Compounds/chemistry , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology
4.
PLoS One ; 19(4): e0302329, 2024.
Article in English | MEDLINE | ID: mdl-38662667

ABSTRACT

Seriphidium herba-alba (Asso), a plant celebrated for its therapeutic qualities, is widely used in traditional medicinal practices throughout the Middle East and North Africa. In a detailed study of Seriphidium herba-alba (Asso), essential oils and extracts were analyzed for their chemical composition and antimicrobial properties. The essential oil, characterized using mass spectrometry and retention index methods, revealed a complex blend of 52 compounds, with santolina alcohol, α-thujone, ß-thujone, and chrysanthenone as major constituents. Extraction yields varied significantly, depending on the plant part and method used; notably, methanol soaking of aerial parts yielded the most extract at 17.75%. The antimicrobial analysis showed that the extracts had selective antibacterial activity, particularly against Staphylococcus aureus, and broad-spectrum antifungal activity against organisms such as Candida albicans and Aspergillus spp. The methanol-soaked extract demonstrated the strongest antimicrobial properties, indicating its potential as a natural antimicrobial source. This study not only underscores the therapeutic potential of Seriphidium herba-alba (Asso) in pharmaceutical applications but also sets a foundation for future research focused on isolating specific bioactive compounds and in vivo testing.


Subject(s)
Anti-Infective Agents , Microbial Sensitivity Tests , Oils, Volatile , Plant Extracts , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Candida albicans/drug effects , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Burseraceae/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry
5.
Vet Med Sci ; 10(3): e1445, 2024 05.
Article in English | MEDLINE | ID: mdl-38652025

ABSTRACT

BACKGROUND: This study aimed to evaluate the antimicrobial effects of zahter extract, zahter essential oil, laurel extract, and laurel essential oil on Salmonella Typhimurium inoculated on chicken wings. METHODS: A total of 10 groups, including eight study groups and two control groups were formed, consisting of zahter extract and zahter essential oil and laurel extract and laurel essential oil in different proportions. In the study, laurel extract at 6.4% and 12.8% concentrations, laurel essential oil at 0.2% and 0.4% concentrations, zahter extract at 0.2% and 0.4% concentrations, and zahter essential oil at 0.2% and 0.4% concentrations were used. RESULTS: The broth microdilution method was used to evaluate the antimicrobial activity of the extract and essential oils on the S. Typhimurium. Minimum inhibitory concentrations of the extracts and essential oils used in the study against S. Typhimurium were determined. The highest inhibitory effect on S. Typhimurium was observed in the 0.4% laurel essential oil group. It was determined that the inhibitory effect increased as the concentration of laurel essential oil increased. In addition, the antimicrobial activity of zahter essential oil is less inhibitory than the laurel extract, laurel essential oil, and zahter extract. CONCLUSION: According to the results of this study, it has been revealed that extracts and essential oils obtained from zahter and laurel plants, which have been shown to be natural antimicrobial, can be used in foods as an alternative to chemical additives. To develop research results, the applicability of these extracts and essential oils in different foodstuffs should be examined using different ingredients and concentrations.


Subject(s)
Chickens , Oils, Volatile , Plant Extracts , Salmonella typhimurium , Wings, Animal , Animals , Salmonella typhimurium/drug effects , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Wings, Animal/drug effects , Poultry Diseases/microbiology , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Laurus/chemistry , Plant Oils/pharmacology , Plant Oils/chemistry , Anti-Infective Agents/pharmacology
6.
Fitoterapia ; 175: 105937, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38565381

ABSTRACT

Misuse of synthetic pesticides and antimicrobials in agriculture and the food industry has resulted in food contamination, promoting resistant pests and pathogen strains and hazards for humanity and the environment. Therefore, ever-increasing concern about synthetic chemicals has stimulated interest in eco-friendly compounds. Ferulago angulata (Schltdl.) Boiss. and Ferula assa-foetida L., as medicinal species with restricted natural distribution and unknown biological potential, aimed at investigation of their essential oil (EO) biological properties, were subjected. Z-ß-Ocimene and Z-1-Propenyl-sec-butyl disulfide molecules were identified as the major composition of the essential oil of the fruits of F. angulata and F. assa-foetida, respectively. In vitro antimicrobial activity and membrane destruction investigation by scanning electron microscopy imaging illustrated that F. angulata EO had potent antibacterial activity. Besides, the EOs of both plants exhibited significant anti-yeast activity against Candida albicans. In relation to insecticidal activity, both EOs indicated appropriate potential against Ephestia kuehniella; however, the F. assa-foetida EO had more toxicity on the studied pest. Among several insecticidal-related targets, acetylcholinesterase was identified as the main target of EO based on the molecular docking approach. Hence, in line with in vitro results, in silico evaluation determined that F. assa-foetida has a higher potential for inhibiting acetylcholinesterase and, consequently, better insecticide properties. Overall, in addition to the antioxidant properties of both EO, F. angulata EO could serve as an effective prevention against microbial spoilage and foodborne pathogens, and F. assa-foetida EO holds promise as a multi-purpose and natural biocide for yeast contamination and pest management particularly against E. kuehniella.


Subject(s)
Ferula , Insecticides , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Ferula/chemistry , Insecticides/pharmacology , Insecticides/isolation & purification , Insecticides/chemistry , Animals , Candida albicans/drug effects , Fruit/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/isolation & purification , Molecular Docking Simulation , Food Microbiology , Microbial Sensitivity Tests , Plant Oils/pharmacology , Plant Oils/chemistry , Plant Oils/isolation & purification , Computer Simulation , Antifungal Agents/pharmacology , Antifungal Agents/isolation & purification , Antifungal Agents/chemistry
7.
Fitoterapia ; 175: 105962, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641195

ABSTRACT

Glycosmis pentaphylla, a member of the Rutaceae family, has been extensively studied for its pharmacological activities, focusing mainly on the cytotoxic properties of its roots and stems. Conversely, limited researched has been done in terms of the phytochemical composition of the fruits. The objective of this study is to isolate and identify the bioactive compounds found in the fruits of G. pentaphylla and then evaluate their potential for anti-cancer activity in oral cancer CAL 27 cell lines. The extraction of bioactive compounds from fruits was done by maceration, and the isolation of alkaloids and volatile oil fractions (F1-F5) was performed by column chromatography. The alkaloids, such as 3-O-methoxyglycocitrine II, noracronycine, 1-hydroxy-3-methoxy-10-methyl-9-acridone and kokusaginine, were first isolated from the fruits of G. pentaphylla. Additionally, GC-MS analysis identified 78 metabolites. The isolated compounds and identified volatile oil fractions were explored for their anti-cancer activity by cell viability assay. Results demonstrated that isolated compounds were found inactive, while the volatile fraction F1 was found active in CAL 27 cell line. Fraction F1 impeded wound healing in CAL 27 cells by scratch assay, and significantly inhibited colony formation in colony formation assay. In cell cycle analysis, treatment with fraction F1 redistributed cells to the S and G2 phases of the cell cycle. α-elemol (2) is the major metabolite identified from the F1 fraction by GC-MS, which could be responsible for the anti-cancer activity. There is potential for future work to further isolate volatile oil metabolites and evaluate their anti-cancer activity through in-vivo techniques.


Subject(s)
Alkaloids , Antineoplastic Agents, Phytogenic , Fruit , Gas Chromatography-Mass Spectrometry , Oils, Volatile , Phytochemicals , Rutaceae , Fruit/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Rutaceae/chemistry , Cell Line, Tumor , Alkaloids/pharmacology , Alkaloids/isolation & purification , Humans , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Molecular Structure
8.
An Acad Bras Cienc ; 96(1): e20230539, 2024.
Article in English | MEDLINE | ID: mdl-38597500

ABSTRACT

Green manure (GM) may reduce the use of chemical fertilizers, been an ecologically appropriate strategy to cultivation of medicinal plants. Crotalaria juncea, is one of the most used because it adapts to different climatic and high nitrogen content. Origanum vulgare. is widely used in cooking, pharmaceutical, cosmetic industries and food products. The objectives of this study were to evaluate the GM on biomass, essential oil (EO), phenolic and antioxidant. The experiment consisted: control; 150, 300, 450, and 600 g (Sh= leaves+steam) more 200 g roots (R); 600 g aerial part; 200 g roots; and soil with 300 g cattle manure per pot. The highest dry weights were observed in the presence of GM and cattle manure (90 days). The control had an EO production 75% lower in relation to the dose of 450 g GM (Sh+R). Principal component analysis showed that GM and cattle manure positively influenced the dry weight, content, yield, and EO constituents, and total flavonoids. The GM contributed to the accumulation of the major EO compounds (trans-sabinene hydrate, thymol, terpinen-4-ol). The GM management may be beneficial for cultivating, because it can increase the production of biomass and the active components, in addition to being an inexpensive resource.


Subject(s)
Crotalaria , Oils, Volatile , Origanum , Cattle , Animals , Oils, Volatile/chemistry , Origanum/chemistry , Manure , Biomass , Phytochemicals
9.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1217-1224, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621968

ABSTRACT

To investigate the quality differences between the seeds and husks of Amomum villosum and explore the rationality of using the seeds without husks, this study determined the content of protocatechuic acid, vanillic acid, epicatechin, quercitrin, volatile oil, water extract, and ethanol extract. The 2,2-diphenyl-1-picrylhydrazyl(DPPH), 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)(ABTS), and hydroxyl radical scavenging activities were determined to evaluate the antioxidant activities of seeds and husks. The quality differences between the seeds and husks were assessed through orthogonal partial least squares-discriminant analysis(OPLS-DA) and analytic hierarchy process(AHP) combined with the entropy weight method(EWM). Significant differences(P<0.05) were observed in all 10 indicators between the seeds and husks. The levels of epicatechin, quercetin, and volatile oil were higher in the seeds, whereas those of protocatechuic acid, vanillic acid, water extract, and ethanol extract were higher in the husks. The seeds showed stronger scavenging ability against DPPH and ABTS radicals, while the husks showed a stronger scavenging effect on hydroxyl radicals. OPLS-DA significantly discriminated between the seeds and husks. Furthermore, volatile oil, water extract, DPPH radical scavenging rate, quercitrin, ABTS radical scavenging rate, hydroxyl radical scavenging rate, and vanillic acid were selected as the main differential indicators by variable importance in projection(VIP). Comprehensive scores calculated by AHP combined with EWM indicated that the seeds were superior to husks in terms of overall quality. However, there are still some dominant components and a certain antioxidant effect in the husks. Therefore, it is suggested to using Amomi Fructus with a certain amount of husks or utilizing the husks for other purposes.


Subject(s)
Amomum , Benzothiazoles , Catechin , Hydroxybenzoates , Oils, Volatile , Sulfonic Acids , Hydroxyl Radical , Vanillic Acid , Antioxidants/chemistry , Water , Ethanol , Oils, Volatile/chemistry
10.
J Ethnopharmacol ; 330: 118206, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38636572

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Croton argyrophyllus Kunth., commonly known as "marmeleiro" or "cassetinga," is widely distributed in the Brazilian Northeast region. Its leaves and flowers are used in traditional medicine as tranquilizers to treat flu and headaches. AIM OF THE STUDY: This study was conducted to determine the chemical composition and toxicological safety of essential oil from C. argyrophyllus leaves using in vitro and in vivo models. MATERIALS AND METHODS: The chemical composition of the essential oil was determined using a gas chromatograph coupled to a mass spectrometer. Cytotoxicity was tested in the HeLa, HT-29, and MCF-7 cell lines derived from human cells (Homo sapiens) and Vero cell lines derived from monkeys (Cercopithecus aethiops) using the MTT method. Acute toxicity, genotoxicity. Mutagenicity tests were performed in Swiss mice (Mus musculus), which were administered essential oil orally in a single dose of 2000 mg/kg by gavage. RESULTS: The main components of the essential oil were p-mentha-2-en-1-ol, α-terpineol, ß-caryophyllene, and ß-elemene. The essential oil exhibited more than 90% cytotoxicity in all cell lines tested. No deaths or behavioral, hematological, or biochemical changes were observed in mice, revealing no acute toxicity. In genotoxic and mutagenic analyses, there was no increase in micronuclei in polychromatic erythrocytes or in the damage and index in the comet assay. CONCLUSIONS: The essential oil was cytotoxic towards the tested cell lines but did not exert toxic effects or promote DNA damage when administered orally at a single dose of 2000 mg/kg in mice.


Subject(s)
Croton , Oils, Volatile , Plant Leaves , Animals , Croton/chemistry , Oils, Volatile/toxicity , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Humans , Chlorocebus aethiops , Mice , Vero Cells , Mutagenicity Tests , Administration, Oral , HeLa Cells , HT29 Cells , MCF-7 Cells , Male , Female , Cell Survival/drug effects , Toxicity Tests, Acute , DNA Damage/drug effects
11.
J Ethnopharmacol ; 330: 118202, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38641078

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Members of Plectranthus genus such as Plectranthus amboinicus (Lour.) Spreng is a well-known folkloric medicine around the globe in treating several human ailments such as cardiovascular, respiratory, digestive, urinary tract, skin and infective diseases. Its therapeutic value is primarily attributed to its essential oil. Although several properties of Plectranthus amboinicus essential oil have been documented, its mechanism of action and safety has not been completely elucidated. AIM OF THE STUDY: To investigate the anti-infective potential of Plectranthus amboinicus essential oil against Klebsiella pneumoniae using in vitro and in vivo bioassays and identify its mode of action. The study was conducted to scientifically validate the traditional usage of Plectranthus amboinicus oil and propose it as a complementary and alternative medication to combat Klebsiella pneumoniae infections due to emerging antibiotic resistance problem. MATERIALS AND METHODS: Plectranthus amboinicus essential oil was extracted through steam distillation and was chemically characterized using Gas Chromatography Mass Spectrometry (GC-MS). The antibacterial activity was assessed using microbroth dilution assay, metabolic viability assay and growth curve analysis. The mode of action was elucidated by the proteomics approach using Nano-LC-MS/MS followed by in silico analysis. The results of proteomic analysis were further validated through several in vitro assays. The cytotoxic nature of the essential oil was also confirmed using adenocarcinomic human alveolar basal epithelial (A549) cells. Furthermore, the safety and in vivo anti-infective efficacy of Plectranthus amboinicus essential oil was evaluated through survival assay, CFU assay and histopathological analysis of vital organs using zebrafish as a model organism. RESULTS: The chemical characterization of Plectranthus amboinicus essential oil revealed that it is predominantly composed of thymol. Thymol rich P. amboinicus essential oil demonstrated potent inhibitory effects on Klebsiella pneumoniae growth, achieving a significant reduction at a concentration of 400 µg/mL within 4 h of treatment The nano-LC-MS/MS approach unveiled that the essential oil exerted its impact by disrupting the antioxidant defense system and efflux pump system of the bacterium, resulting in elevated cellular oxidative stress and affect the biosynthesis of biofilm. The same was validated through several in vitro assays. Furthermore, the toxicity of Plectranthus amboinicus essential oil determined using A549 cells and zebrafish survival assay established a non-toxic concentration of 400 µg/mL and 12.5 µg/mL respectively. The results of anti-infective potential of the essential oil using Zebrafish as a model organism demonstrated significantly improved survival rates, reduced bacterial load, alleviated visible signs of inflammation and mitigated the adverse effects of infection on various organs, as evidenced by histopathological analysis ensuring its safety for potential therapeutic application. CONCLUSION: The executed in vitro and in vivo assays established the effectiveness of essential oil in inhibiting bacterial growth by targeting key proteins associated with the bacterial antioxidant defense system and disrupted the integrity of the cell membrane, highlighting its critical role in addressing the challenge posed by antibiotic-resistant Klebsiella pneumoniae.


Subject(s)
Klebsiella pneumoniae , Oils, Volatile , Plant Leaves , Plectranthus , Proteomics , Klebsiella pneumoniae/drug effects , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Animals , Plectranthus/chemistry , Humans , Plant Leaves/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/isolation & purification , Microbial Sensitivity Tests , Zebrafish , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology
12.
Molecules ; 29(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38542843

ABSTRACT

The genus Cinnamomum encompasses diverse species with various applications, particularly in traditional medicine and spice production. This study focuses on Cinnamomum burmanni, specifically on a high-D-borneol-content chemotype, known as the Meipian Tree, in Guangdong Province, South China. This research explores essential oil diversity, chemotypes, and chloroplast genomic diversity among 28 C. burmanni samples collected from botanical gardens. Essential oils were analyzed, and chemotypes classified using GC-MS and statistical methods. Plastome assembly and phylogenetic analysis were conducted to reveal genetic relationships. Results showed distinct chemotypes, including eucalyptol and borneol types, with notable variations in essential oil composition. The chloroplast genome exhibited conserved features, with phylogenetic analysis revealing three major clades. Borneol-rich individuals in clade II suggested a potential maternal inheritance pattern. However, phylogenetic signals revealed that the composition of essential oils is weakly correlated with plastome phylogeny. The study underscores the importance of botanical gardens in preserving genetic and chemical diversity, offering insights for sustainable resource utilization and selective breeding of high-yield mother plants of C. burmanni.


Subject(s)
Camphanes , Cinnamomum , Lauraceae , Oils, Volatile , Humans , Oils, Volatile/chemistry , Cinnamomum/genetics , Phylogeny , Maternal Inheritance
13.
Molecules ; 29(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38542995

ABSTRACT

Nigella sativa L. (black cumin) is one of the most investigated medicinal plants in recent years. Volatile compounds like thymoquinone and unsaponifiable lipid compounds are crucial functional components of this oil. Unfortunately, the composition of oils and their quality indicators are ambiguous both in terms of identified compounds and value ranges. Thirteen oils were extracted with hexane from black cumin seeds grown in India, Syria, Egypt, and Poland and analyzed for their fatty acid composition, unsaponifiable compound content and volatile compounds. Oils were also subjected to quality tests according to standard methods. The fatty acid composition and sterol content/composition were relatively stable among the tested oils. Tocol content varied in the range of 140-631 mg/kg, and among them, ß-tocotrienol and γ-tocopherol prevailed. Oils' volatile compounds were dominated by seven terpenes (p-cymene, α-thujene, α-pinene, ß-pinene, thymoquinone, γ-terpinene, and sabinene). The highest contents of these volatiles were determined in samples from Poland and in two of six samples from India. High acid and peroxide values were typical features of N. sativa L. oils. To sum up, future research on the medicinal properties of black cumin oil should always be combined with the analysis of its chemical composition.


Subject(s)
Benzoquinones , Nigella sativa , Oils, Volatile , Nigella sativa/chemistry , Plant Oils/chemistry , Seeds/chemistry , Fatty Acids/analysis , Oils, Volatile/chemistry
14.
Molecules ; 29(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38542997

ABSTRACT

The current study aimed to evaluate the presence of chemical variations in essential oils (EOs) extracted from Artemisia scoparia growing at different altitudes and to reveal their antibacterial, mosquito larvicidal, and repellent activity. The gas chromatographic-mass spectrometric analysis of A. scoparia EOs revealed that the major compounds were capillene (9.6-31.8%), methyleugenol (0.2-26.6%), ß-myrcene (1.9-21.4%), γ-terpinene (1.5-19.4%), trans-ß-caryophyllene (0.8-12.4%), and eugenol (0.1-9.1%). The EO of A. scoparia collected from the city of Attock at low elevation was the most active against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa bacteria (minimum inhibitory concentration of 156-1250 µg/mL) and showed the best mosquito larvicidal activity (LC50, 55.3 mg/L). The EOs of A. scoparia collected from the high-altitude areas of Abbottabad and Swat were the most repellent for females of Ae. aegypti and exhibited repellency for 120 min and 165 min, respectively. The results of the study reveal that different climatic conditions and altitudes have significant effects on the chemical compositions and the biological activity of essential oils extracted from the same species.


Subject(s)
Aedes , Artemisia , Insect Repellents , Insecticides , Oils, Volatile , Polycyclic Sesquiterpenes , Scoparia , Female , Animals , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Insect Repellents/pharmacology , Insect Repellents/chemistry , Altitude , Insecticides/chemistry , Anti-Bacterial Agents/pharmacology , Larva , Plant Oils/chemistry
15.
Molecules ; 29(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38543021

ABSTRACT

As part of our interest in the volatile phytoconstituents of aromatic plants of the Great Basin, we have obtained essential oils of Ambrosia acanthicarpa (three samples), Artemisia ludoviciana (12 samples), and Gutierrezia sarothrae (six samples) from the Owyhee Mountains of southwestern Idaho. Gas chromatographic analyses (GC-MS, GC-FID, and chiral GC-MS) were carried out on each essential oil sample. The essential oils of A. acanthicarpa were dominated by monoterpene hydrocarbons, including α-pinene (36.7-45.1%), myrcene (21.6-25.5%), and ß-phellandrene (4.9-7.0%). Monoterpene hydrocarbons also dominated the essential oils of G. sarothrae, with ß-pinene (0.5-18.4%), α-phellandrene (2.2-11.8%), limonene (1.4-25.4%), and (Z)-ß-ocimene (18.8-39.4%) as major components. The essential oils of A. ludoviciana showed wide variation in composition, but the relatively abundant compounds were camphor (0.1-61.9%, average 14.1%), 1,8-cineole (0.1-50.8%, average 11.1%), (E)-nerolidol (0.0-41.0%, average 6.8%), and artemisia ketone (0.0-46.1%, average 5.1%). This is the first report on the essential oil composition of A. acanthicarpa and the first report on the enantiomeric distribution in an Ambrosia species. The essential oil compositions of A. ludoviciana and G. sarothrae showed wide variation in composition in this study and compared with previous studies, likely due to subspecies variation.


Subject(s)
Artemisia , Oils, Volatile , Oils, Volatile/chemistry , Artemisia/chemistry , Ambrosia , Idaho , Monoterpenes/analysis
16.
J Ethnopharmacol ; 327: 118055, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38484951

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Trachyspermum roxburghianum (DC.) H. Wolff, commonly known as 'Ajamoda,' is a neglected Indian spice highly used in Ayurveda and folklore remedies as an antimicrobial for chronic wounds and discharges, along with many other disease conditions. AIM OF THE STUDY: The objective of the study was to explore chemical composition and to investigate the antioxidant, antimicrobial, analgesic, and wound healing activities of T. roxburghianum fruit essential oil from India. MATERIALS AND METHODS: The phytochemical characterization of the oil was determined through standard qualitative procedures and the gas chromatography-mass spectrometry (GC-MS) technique. The in vitro antioxidant aptitude was assessed by scavenging DPPH and ABTS radicals. The antimicrobial potential of the oil was investigated using the disc diffusion method, followed by the determination of minimum inhibitory concentration against Gram-positive and Gram-negative bacterial and fungal strains. The analgesic potential was evaluated using thermal and chemically induced pain models in Swiss albino mice. Wound healing was assessed in vivo, including determining wound contraction rates, histopathology, and hydroxyproline estimation, using the excision wound model in Swiss albino mice. RESULTS: GC-MS analysis identified 55 compounds with major terpenoids, including thymol (13.8%), limonene (11.5%), and others. Substantial radical-scavenging activity was exhibited by T. roxburghianum fruit essential oil (TREO) (IC50 94.41 ± 2.00 µg/mL in DPPH assay and 91.28 ± 1.94 µg/mL in ABTS assay). Microorganisms were inhibited with low MIC (2 µL/mL for the inhibition of Staphylococcus aureus and Bacillus subtilis; 4 µL/mL against Salmonella typhi and 16 µL/mL against Candida albicans). In the cytotoxicity study, no cytotoxicity was observed on the Monkey Normal Kidney Cell line (Vero). Significant antinociceptive effects were observed (25.47 ± 1.10 % of inhibition at 100 mg/kg and 44.31 ± 1.69 % at 200 mg/kg). A remarkable rate of wound closure and epithelization, along with a marked increase in hydroxyproline content, were observed for the oil during wound healing in mice. CONCLUSIONS: The results suggested that oil could be utilized as a potential source of wound healing therapeutics.


Subject(s)
Anti-Infective Agents , Benzothiazoles , Oils, Volatile , Sulfonic Acids , Mice , Animals , Oils, Volatile/pharmacology , Oils, Volatile/therapeutic use , Oils, Volatile/chemistry , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/chemistry , Hydroxyproline , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Anti-Infective Agents/chemistry , Wound Healing , Analgesics/pharmacology , Analgesics/therapeutic use , Microbial Sensitivity Tests
17.
Biomed Pharmacother ; 173: 116389, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38461682

ABSTRACT

Staphylococcus aureus is one of the most common bacterial isolates found in wounds. Thus, innovative dressings, such as hydrogels, are interesting vehicles for incorporating bioactive compounds like those from Melaleuca alternifolia essential oil (MaEO). In this study, we evaluated the antimicrobial and anti-inflammatory potential of MaEO incorporated into an alginate and chitosan hydrogel for treating wounds infected by S. aureus. The hydrogel incorporated with MaEO 1% (HMa 1%) was homogeneous with a bright pale-yellow color and the characteristic smell of Melaleuca. The incorporation of MaEO 1% does not affect the stability of the hydrogel, which was stable up to 90 days of storage. The Scanning electron microscopy analysis revealed that hydrogels showed irregular surfaces and interconnected porous structures with accumulations of oil crystals distributed throughout the formulation. HMa 1% has a high moisture content (95.1%) and can absorb simulated wound fluid. Regarding the antimicrobial effects, HMa 1% reduced the growth of S. aureus ATCC 6538 in both in vitro conditions and in an ex vivo model of wounds using porcine skin. In addition, the dairy topical treatment of murine skin lesions with HMa 1% induced a significant reduction of the wound area, inflammation score, and bacterial load, as well as tissue re-epithelialization and modulation of inflammatory mediators. Therefore, hydrogel incorporated with MaEO 1% has excellent potential to be used in the pharmacotherapy of infected wounds.


Subject(s)
Anti-Infective Agents , Melaleuca , Oils, Volatile , Staphylococcal Infections , Tea Tree Oil , Swine , Animals , Mice , Staphylococcus aureus , Oils, Volatile/pharmacology , Oils, Volatile/therapeutic use , Oils, Volatile/chemistry , Melaleuca/chemistry , Hydrogels/pharmacology , Hydrogels/therapeutic use , Anti-Infective Agents/pharmacology , Staphylococcal Infections/drug therapy , Tea Tree Oil/pharmacology , Tea Tree Oil/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
18.
Fitoterapia ; 174: 105871, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428618

ABSTRACT

The essential oils of Thymus vulgaris (TVEO) and Thymus serpyllum (TSEO) show different biological activities. The aim of the study was to evaluate the biological activities of TVEO and TSEO from Montenegro. The main components of TVEO were p-cymene (29.52%), thymol (22.8%) and linalool (4.73%) while the main components of TSEO were p-cymene (19.04%), geraniol (11,09%), linalool (9.16%), geranyl acetate (6.49%) and borneol (5.24%). Antioxidant activity determined via DPPH for TVEO was 4.49 and FRAP 1130.27, while for TSEO it was estimated that DPPH was 4.88 µL/mL and FRAP was 701.25 µmol FRAP/L. Both essential oils were active against all tested bacteria, with the highest level of sensitivity of E. coli with MIC of 1.5625 µL/mL. Essential oils showed strong cytotoxic effects on human cancer cell lines, with IC50 values ranging from 0.20 to 0.24 µL/mL for TVEO and from 0.32 to 0.49 µL/mL for TSEO. TVEO caused apoptosis in cervical adenocarcinoma HeLa cells through activation of caspase-3 and caspase-8, while TSEO caused apoptosis through caspase-3. EOs decreased levels of oxidative stress in normal MRC-5 cells. HeLa cells treated with TVEO had reduced MMP2 expression levels, while cells treated with TSEO had lowered MMP2 and MMP9 levels. The treatment of HeLa cells with TVEO increased the levels of miR-16 and miR-34a, indicating potential tumor-suppressive properties. Our findings suggest that Thymus essential oils may be considered as good candidates for further investigation as cancer-chemopreventive and cancer-therapeutic agents.


Subject(s)
Acyclic Monoterpenes , Cymenes , MicroRNAs , Oils, Volatile , Thymus Plant , Humans , Oils, Volatile/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Caspase 3 , Matrix Metalloproteinase 2/pharmacology , Escherichia coli , Thymus Plant/chemistry , HeLa Cells , Montenegro , Molecular Structure , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Oils/pharmacology , Plant Oils/chemistry
19.
Molecules ; 29(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38474459

ABSTRACT

The essential oils and aroma derived from the leaves (L), stems (St), and spikes (s) of Piper nigrum L. cv. Guajarina were extracted; the essential oils were extracted using hydrodistillation (HD), and steam distillation (SD), and the aroma was obtained by simultaneous distillation and extraction (SDE). Chemical constituents were identified and quantified using GC/MS and GC-FID. Preliminary biological activity was assessed by determining the toxicity against Artemia salina Leach larvae, calculating mortality rates, and determining lethal concentration values (LC50). The predominant compounds in essential oil samples included α-pinene (0-5.6%), ß-pinene (0-22.7%), limonene (0-19.3%), 35 linalool (0-5.3%), δ-elemene (0-10.1%), ß-caryophyllene (0.5-21.9%), γ-elemene (7.5-33.9%), and curzerene (6.9-31.7%). Multivariate analysis, employing principal component analysis (PCA) and hierarchical cluster analysis (HCA), revealed three groups among the identified classes and two groups among individual compounds. The highest antioxidant activity was found for essential oils derived from the leaves (167.9 41 mg TE mL-1). Larvicidal potential against A. salina was observed in essential oils obtained from the leaves (LC50 6.40 µg mL-1) and spikes (LC50 6.44 µg mL-1). The in silico studies demonstrated that the main compounds can interact with acetylcholinesterase, thus showing the potential molecular interaction responsible for the toxicity of the essential oil in A. salina.


Subject(s)
Arthropods , Oils, Volatile , Piper nigrum , Piper , Sesquiterpenes , Animals , Oils, Volatile/chemistry , Acetylcholinesterase , Gas Chromatography-Mass Spectrometry , Piper/chemistry , Plant Oils/chemistry
20.
Sci Rep ; 14(1): 5789, 2024 03 09.
Article in English | MEDLINE | ID: mdl-38461344

ABSTRACT

The production of surface compounds coated with active substances has gained significant attention in recent years. This study investigated the physical, mechanical, antioxidant, and antimicrobial properties of a composite made of starch and zinc oxide nanoparticles (ZnO NPs) containing various concentrations of Ferula gummosa essential oil (0.5%, 1%, and 1.5%). The addition of ZnO NPs improved the thickness, mechanical and microbial properties, and reduced the water vapor permeability of the starch active film. The addition of F. gummosa essential oil to the starch nanocomposite decreased the water vapor permeability from 6.25 to 5.63 g mm-2 d-1 kPa-1, but this decrease was significant only at the concentration of 1.5% of essential oils (p < 0.05). Adding 1.5% of F. gummosa essential oil to starch nanocomposite led to a decrease in Tensile Strength value, while an increase in Elongation at Break values was observed. The results of the antimicrobial activity of the nanocomposite revealed that the pure starch film did not show any lack of growth zone. The addition of ZnO NPs to the starch matrix resulted in antimicrobial activity on both studied bacteria (Staphylococcus aureus and Escherichia coli). The highest antimicrobial activity was observed in the starch/ZnO NPs film containing 1.5% essential oil with an inhibition zone of 340 mm2 on S. aureus. Antioxidant activity increased significantly with increasing concentration of F. gummosa essential oil (P < 0.05). The film containing 1.5% essential oil had the highest (50.5%) antioxidant activity. Coating also improved the chemical characteristics of fish fillet. In conclusion, the starch nanocomposite containing ZnO NPs and F. gummosa essential oil has the potential to be used in the aquatic packaging industry.


Subject(s)
Anti-Infective Agents , Ferula , Nanoparticles , Oils, Volatile , Zinc Oxide , Animals , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Staphylococcus aureus , Steam , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Starch/chemistry , Escherichia coli , Nanoparticles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL