Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Exp Brain Res ; 235(10): 3081-3092, 2017 10.
Article in English | MEDLINE | ID: mdl-28744621

ABSTRACT

In this study, we explored the effects of a longer term application, up to 12 weeks, of photobiomodulation in normal, naïve macaque monkeys. Monkeys (n = 5) were implanted intracranially with an optical fibre device delivering photobiomodulation (red light, 670 nm) to a midline midbrain region. Animals were then aldehyde-fixed and their brains were processed for immunohistochemistry. In general, our results showed that longer term intracranial application of photobiomodulation had no adverse effects on the surrounding brain parenchyma or on the nearby dopaminergic cell system. We found no evidence for photobiomodulation generating an inflammatory glial response or neuronal degeneration near the implant site; further, photobiomodulation did not induce an abnormal activation or mitochondrial stress in nearby cells, nor did it cause an abnormal arrangement of the surrounding vasculature (endothelial basement membrane). Finally, because of our interest in Parkinson's disease, we noted that photobiomodulation had no impact on the number of midbrain dopaminergic cells and the density of their terminations in the striatum. In summary, we found no histological basis for any major biosafety concerns associated with photobiomodulation delivered by our intracranial approach and our findings set a key template for progress onto clinical trial on patients with Parkinson's disease.


Subject(s)
Corpus Striatum , Dopaminergic Neurons , Low-Level Light Therapy/adverse effects , Mesencephalon , Optical Fibers/adverse effects , Prostheses and Implants/adverse effects , Animals , Low-Level Light Therapy/instrumentation , Macaca fascicularis
2.
J Neurosurg ; 124(6): 1829-41, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26613166

ABSTRACT

OBJECT The authors of this study used a newly developed intracranial optical fiber device to deliver near-infrared light (NIr) to the midbrain of 6-hydroxydopamine (6-OHDA)-lesioned rats, a model of Parkinson's disease. The authors explored whether NIr had any impact on apomorphine-induced turning behavior and whether it was neuroprotective. METHODS Two NIr powers (333 nW and 0.16 mW), modes of delivery (pulse and continuous), and total doses (634 mJ and 304 J) were tested, together with the feasibility of a midbrain implant site, one considered for later use in primates. Following a striatal 6-OHDA injection, the NIr optical fiber device was implanted surgically into the midline midbrain area of Wistar rats. Animals were tested for apomorphine-induced rotations, and then, 23 days later, their brains were aldehyde fixed for routine immunohistochemical analysis. RESULTS The results showed that there was no evidence of tissue toxicity by NIr in the midbrain. After 6-OHDA lesion, regardless of mode of delivery or total dose, NIr reduced apomorphine-induced rotations at the stronger, but not at the weaker, power. The authors found that neuroprotection, as assessed by tyrosine hydroxylase expression in midbrain dopaminergic cells, could account for some, but not all, of the observed behavioral improvements; the groups that were associated with fewer rotations did not all necessarily have a greater number of surviving cells. There may have been other "symptomatic" elements contributing to behavioral improvements in these rats. CONCLUSIONS In summary, when delivered at the appropriate power, delivery mode, and dosage, NIr treatment provided both improved behavior and neuroprotection in 6-OHDA-lesioned rats.


Subject(s)
Mesencephalon/physiopathology , Mesencephalon/radiation effects , Parkinsonian Disorders/physiopathology , Parkinsonian Disorders/therapy , Phototherapy/methods , Animals , Apomorphine/pharmacology , Cell Survival/physiology , Cell Survival/radiation effects , Dopamine Agonists/pharmacology , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/pathology , Dopaminergic Neurons/physiology , Dopaminergic Neurons/radiation effects , Dose-Response Relationship, Radiation , Feasibility Studies , Immunohistochemistry , Low-Level Light Therapy , Male , Mesencephalon/drug effects , Mesencephalon/pathology , Movement/drug effects , Movement/radiation effects , Optical Fibers/adverse effects , Oxidopamine , Parkinsonian Disorders/pathology , Phototherapy/adverse effects , Phototherapy/instrumentation , Prostheses and Implants/adverse effects , Rats, Wistar , Tyrosine 3-Monooxygenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL