Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 298
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Ethnopharmacol ; 329: 118106, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38570146

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Opuntia ficus-indica (L.) Mill is frequently observed in the Moroccan traditional medicinal system, where these approaches are employed to mitigate the onset of diabetes and the subsequent complications it may entail. AIM OF THE STUDY: The aim of this research was to examine the effectiveness of Opuntia ficus-indica seed oil in preventing diabetic complications. Specifically, the study assessed its ability to counteract glycation at various stages, protected red blood cells from the harmful effects of glycated albumin, and inhibited pancreatic lipase digestive enzymes to understand its potential antihyperglycemic properties. Additionally, the study aimed to identify the chemical components responsible for these effects, evaluate antioxidant and anti-inflammatory properties, and conduct computational investigations such as molecular docking. MATERIALS AND METHODS: The assessement of Opuntia ficus-indica seed oil antiglycation properties involved co-incubating the extract oil with a bovine serum albumin-glucose glycation model. The study investigated various stages of glycation, incorporating fructosamine (inceptive stage), protein carbonyls (intermediate stage), and AGEs (late stage). Additionally, measurement of ß-amyloid aggregation of albumin was performed using Congo red, which is specific to amyloid structures. Additionally, the evaluation of oil's safeguarding effect on erythrocytes against toxicity induced by glycated albumin included the measurement of erythrocyte hemolysis, lipid peroxidation, reduced glutathione. The fatty acid of Opuntia ficus-indica seed oil were analyzed using Gas Chromatography-Mass Spectrometry (GC-MS). The in vitro evaluation of antihyperglycemic activity involved the use of pancreatic lipase enzyme, while the assessement of antioxidant capability was carried out through the utilization of the ABTS and FRAP methods. The in vitro assessement of the denaturation of albumin activity was also conducted. In conjunction with the experimental outcomes, computational investigations were undertaken, specifically employing ADMET (absorption, distribution, metabolism, excretion, and toxicity) analysis. Furthermore, molecular docking was utilized to predict antioxidant and antiglycation mechanisms based on protein targets. RESULTS: In vitro glycation assays, Opuntia ficus-indica seed oil displayed targeted inhibitory effects at multiple distinct stages. Within erythrocytes, in addition to mitigating hemolysis and lipid peroxidation induced by glycated albumin. GC-MS investigation revealed a richness of fatty acids and the most abundant compounds are Linoleic acid (36.59%), Palmitic acid (20.84%) and Oleic acid (19.33%) respectively. The findings of antioxidant ability showed a remarkable activity on FRAP and ABTS radicals. This oil showed a pronounced inhibitory impact (p < 0.001) on pancreatic lipase enzyme. It also exerted a notibale inhibition of albumin denaturation, in vitro. CONCLUSION: The identified results were supported by the abundant compounds of fatty acids unveiled through GC-MS analysis, along with the computational investigation and molecular docking.


Subject(s)
Antioxidants , Erythrocytes , Fatty Acids , Gas Chromatography-Mass Spectrometry , Molecular Docking Simulation , Opuntia , Oxidative Stress , Plant Oils , Seeds , Opuntia/chemistry , Erythrocytes/drug effects , Erythrocytes/metabolism , Oxidative Stress/drug effects , Seeds/chemistry , Fatty Acids/chemistry , Morocco , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Oils/pharmacology , Plant Oils/chemistry , Gas Chromatography-Mass Spectrometry/methods , Glycation End Products, Advanced/metabolism , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Lipase/antagonists & inhibitors , Lipase/metabolism , Glycosylation/drug effects , Glycated Serum Albumin , Humans , Serum Albumin, Bovine , Serum Albumin/metabolism
2.
Nutrients ; 16(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38398824

ABSTRACT

Opuntia stricta var. dillenii fruit is a source of phytochemicals, such as betalains and phenolic compounds, which may play essential roles in health promotion. The aim of this research was to study the triglyceride-lowering effect of green extracts, obtained from Opuntia stricta var. dillenii fruit (whole fruit, pulp, peel, and industrial by-products (bagasse)) in 3T3-L1 mature adipocytes. The cells were treated on day 12, for 24 h, after the induction of differentiation with the extracts, at doses of 10, 25, 50, or 100 µg/mL. The expression of genes (PCR-RT) and proteins (Western blot) involved in fatty acid synthesis, fatty acid uptake, triglyceride assembly, and triglyceride mobilisation was determined. The fruit pulp extraction yielded the highest levels of betalains, whereas the peel displayed the greatest concentration of phenolic compounds. The extracts from whole fruit, peel and pulp were effective in reducing triglyceride accumulation at doses of 50 µg/mL or higher. Bagasse did not show this effect. The main mechanisms of action underpinning this outcome encompass a reduction in fatty acids synthesis (de novo lipogenesis), thus limiting their availability for triglyceride formation, alongside an increase in triglyceride mobilisation. However, their reliance is contingent upon the specific Opuntia extract.


Subject(s)
Opuntia , Mice , Animals , Opuntia/chemistry , 3T3-L1 Cells , Phenols/analysis , Betalains , Fruit/chemistry , Fatty Acids/metabolism , Triglycerides/metabolism , Adipocytes , Plant Extracts/chemistry
3.
Chem Biodivers ; 21(3): e202301890, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38252073

ABSTRACT

In this investigation, the study focused on the chemical constitution and the antioxidative as well as anti-inflammatory characteristics of oils and pulpy variants (Imatchan (IM), Harmocha (HA), and Aknari (AK)) sourced from O. dillenii. This inquiry encompassed both in vitro and in silico analyses. High-performance liquid chromatography (HPLC) was employed to ascertain the phenolic constituents, while gas chromatography-mass spectrometry (GC-MS) methodologies. were applied to discern the volatile makeup. The appraisal of antioxidant potential was conducted via the deployment of assays such as 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), and ferric ion chelating (FIC) techniques. The anti-inflammatory activity was examined using BSA and LOX. Molecular docking methods assessed the antioxidant and anti-inflammatory properties. According to HPLC findings, the most abundant compounds detected in AKO and IMO cultivars were quercetin 3-O-ß-D-glucoside followed by vanillic acid, ferulic acid and tyrolsol. Concerning headspace GC-MS analysis E-11-hexadecenal and (E)-2-undecenal contribute to the major compounds detected in Opuntia HA, IM, and AK pulp and oil. The DPPH IC50 for AK, HA and IM were 38.41±1.54, 42.24±0.29 and 15.17±1.28 mg/mL, respectively. The FRAP IC50 capacity of AK, HA and IM was determined to be 30.23±0.6, 55.96±0.08 and 23.41±1.83 mg/mL, respectively. AK, HA and IM displayed significant FIC activity, with IC50 values of 42.75±0.63, 39.54±0.59 and 35.31±1.38 mg/mL, respectively. The AK, HA and IM O. dillenii oils were effective in their anti-inflammatory activity. Molecular docking of O. dillenii oils phenolic compounds was conducted to determine the possible targeted proteins by the phenolic compounds in O. dillenii's compounds. Overall, these fruits demonstrated the potential for new ingredients for culinary or pharmaceutical applications, providing value to these natural species that can flourish in arid conditions.


Subject(s)
Antioxidants , Opuntia , Antioxidants/pharmacology , Antioxidants/chemistry , Opuntia/chemistry , Molecular Docking Simulation , Plant Extracts/chemistry , Anti-Inflammatory Agents/pharmacology , Phenols/pharmacology , Oils
4.
Int J Exp Pathol ; 105(1): 33-44, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37991201

ABSTRACT

This study aimed to investigate the anti-inflammatory and wound healing effects of the polysaccharide extract from Opuntia ficus-indica cladodes (TPL-Ofi) using a rat cutaneous wound model. After anaesthesia, four 7-mm-diameter dorsal wounds per animal (n = 6/group for each experimental day of evaluation) were created in female Wistar rats using a surgical punch. The animals were treated topically twice daily with TPL-Ofi (0.01-1%; treated group) or sterile saline (control group) for a period of 21 days. Ulcerated tissue was collected for analysis of histological parameters (inflammation score, number of polymorphonuclear, mononuclear, fibroblast/myofibroblasts and blood vessels), immunohistochemical (fibroblast growth factor 2 [FGF-2]) and oxidative stress markers (myeloperoxidase [MPO] and glutathione [GSH]). After 21 days of treatment, body weight, net organ weight and plasma biochemical levels were measured. TPL-Ofi, containing a total carbohydrate content of 65.5% and uronic acid at 2.8%, reduced oedema on the second day and increased the nociceptive threshold on the second and third days. TPL-Ofi reduced mononuclear infiltrate on the second and MPO activity on the fifth day. TPL-Ofi increased GSH levels on the second day, as well as fibroblast/myofibroblasts counts, neoangiogenesis and FGF-2 levels on the fifth and seventh days. No changes were observed in body weight, net organ weight or toxicology assessment. Topical application of TPL-Ofi exhibited anti-inflammatory and antinociceptive effects, ultimately improving wound healing in cutaneous wounds.


Subject(s)
Opuntia , Rats , Female , Animals , Rats, Wistar , Opuntia/chemistry , Fibroblast Growth Factor 2/pharmacology , Wound Healing , Anti-Inflammatory Agents/pharmacology , Body Weight , Plant Extracts/pharmacology
5.
Libyan J Med ; 18(1): 2275417, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37905304

ABSTRACT

This study aimed to evaluate the anti-inflammatory and analgesic properties of the methanolic extract of Opuntia ficus indica L. in small animal (rats and mice model). The current treatment for febrile conditions often involves the use of non-steroidal anti-inflammatory drugs (NSAIDs), which can have adverse effects, particularly gastrointestinal ulcers. Therefore, there is a growing need to explore natural alternatives with fewer side effects. The study utilized various experimental models to assess the effects of the extract. The results demonstrated a significant analgesic effect of the extract, as evidenced by a reduction in pain induced by acetic acid and hot plate tests. Additionally, the extract exhibited anti-inflammatory effects, as indicated by a decrease in carrageenan-induced paw edema and dextran-induced inflammation. To gain insights into the chemical composition of the extract, HPLC analysis was conducted. The analysis successfully identified and quantified 20 compounds, including luteolin, galangin, catechin, thymol, methylated quercetin, quercetin, rutin, acacetin, hesperidin, apigenin, kaempferol, pinocembrin, chrysin, gallic acid, caffeic acid, ascorbic acid, ferulic acid, m-coumaric acid, rosmarinic acid, and trans-cinnamic acid.The findings suggest that Opuntia ficus indica L. extract holds promise as an effective and reasonably priced natural remedy for pain and inflammation in rats and mice model. The comprehensive chemical composition analysis provided valuable insights into the presence of various bioactive compounds, which may contribute to the observed therapeutic effects. Further research and exploration of the extract's mechanisms of action are warranted to fully understand its potential in small animal healthcare.


Subject(s)
Opuntia , Mice , Rats , Animals , Opuntia/chemistry , Quercetin/adverse effects , Quercetin/analysis , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Anti-Inflammatory Agents/adverse effects , Analgesics/adverse effects , Inflammation/drug therapy , Pain/drug therapy , Pain/chemically induced
6.
Nutrients ; 15(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37447287

ABSTRACT

Opuntia dillenii (O. dillenii) is a plant belonging to the Cactaceae family that is abundant in tropical and subtropical regions worldwide. O. dillenii is consumed as a local delicacy and has no other current use. To understand the nutritional value of O. dillenii in human health and its application in the food, cosmetic, and drug industries, this review summarizes information on the chemical compounds (pure α-pyrone compounds, flavonoids, phenolic acids, polysaccharides, minerals, fatty acids, and betalains) and biological properties (anti-diabetic, anti-hyperglycemic, antihyperlipidemic, anti-atherosclerotic, anti-inflammatory, analgesic, antimicrobial, antifungal, antiviral, anti-spermatogenic, anticancer, antilarval, anti-angiogenic, and antioxidant) of extracts from each part of the plant (fruit juice, fruit peel, cladode, and seeds) (aqueous, ethanolic, and methanolic), and seed oil. In addition, data related to the recent applications of O. dillenii in various industries (e.g., edible coatings, food supplements, cosmetics, nanoparticles, and wastewater treatment) are provided.


Subject(s)
Anti-Infective Agents , Opuntia , Humans , Opuntia/chemistry , Antioxidants/pharmacology , Antioxidants/analysis , Plant Extracts/chemistry , Flavonoids/analysis , Anti-Infective Agents/pharmacology , Anti-Infective Agents/analysis , Fruit/chemistry
7.
Ultrason Sonochem ; 97: 106459, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37269692

ABSTRACT

Cactus is a tropical fruit with a high nutritional value; however, little information is available regarding the comprehensive utilization of its byproducts. This study aimed to explore the composition and nutritional value of cactus fruit seed oil (CFO) and reveal the effects of ultrasound-assisted extraction and traditional solvent extraction on oil quality. Foodomics analysis showed that CFO extracted using a traditional solvent is rich in linolenic acid (9c12cC18:2, 57.46 ± 0.84 %), α-tocopherol (20.01 ± 1.86 mg/100 g oil), and canolol (200.10 ± 1.21 µg/g). Compared to traditional solvent extraction, ultrasound-assisted extraction can significantly increase the content of lipid concomitants in CFO, whereas excessive ultrasound intensity may lead to the oxidation of oils and the formation of free radicals. Analysis of the thermal properties showed that ultrasound had no effect on the crystallization or melting behavior of CFO. To further demonstrate the nutritional value of CFO, a lipopolysaccharide (LPS)-induced lipid metabolism imbalance model was used. Lipidomics analysis showed that CFO significantly reduced the content of oxidized phospholipids stimulated by LPS and increased the content of highly bioactive metabolites such as ceramides, thus alleviating LPS-induced damage in C. elegans. Hence, CFO is a functional oil with high value, and ultrasound-assisted extraction is advocated. These findings provide new insights into the comprehensive utilization of cactus fruits.


Subject(s)
Fruit , Opuntia , Animals , Fruit/chemistry , Opuntia/chemistry , Lipopolysaccharides/analysis , Caenorhabditis elegans , Ultrasonics , Plant Oils/chemistry , Solvents
8.
Ultrason Sonochem ; 97: 106465, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37295128

ABSTRACT

With the steady increase in the consumption of ultra-processed foods, there is growing interest in sustainable diets that include more plant protein. However, little information is available regarding the structural and functional properties of cactus (Opuntia ficus-indica) seed protein (CSP), a by-product of the cactus seed food-processing chain. This study aimed to explore the composition and nutritional value of CSP and reveal the effects of ultrasound treatment on protein quality. Protein chemical structure analysis showed that an appropriate intensity of ultrasound treatment (450 W) could significantly increase protein solubility (96.46 ± 2.07%) and surface hydrophobicity (13.76 ± 0.85 µg), decrease the content of T-SH (50.25 ± 0.79 µmol/g) and free-SH (8.60 ± 0.30 µmol/g), and enhance emulsification characteristics. Circular dichroism analysis further confirmed that the ultrasonic treatment increased the α-helix and random coil content. Amino acid analysis also suggested that ultrasound treatment (450 W) increased the hydrophobic amino acid content. To evaluate the impact of changes in the chemical structure, its digestion behavior was studied. The results showed that ultrasound treatment increased the release rate of free amino acids. Furthermore, nutritional analysis showed that the digestive products of CSP by ultrasound treatment can significantly enhance the intestinal permeability, increase the expression of ZO-1, Occludin and Claudin-1, thus repairing LPS induced intestinal barrier disfunction. Hence, CSP is a functional protein with high value, and ultrasound treatment is recommended. These findings provide new insights into the comprehensive utilization of cactus fruits.


Subject(s)
Opuntia , Opuntia/chemistry , Opuntia/metabolism , Ultrasonics , Seeds , Fruit/chemistry , Amino Acids/analysis
9.
Anal Biochem ; 670: 115139, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37024003

ABSTRACT

In this research work, an optimization of an environment friendly extraction method of cactus (Opuntia ficus indica) cladode dietary fibers was conducted. For this purpose, a central composite experimental design with two factors (temperature and time) and five levels was established. The basic objective of this optimization was to maximize fiber yield using hot water as an extraction eco-solvent. The optimum extraction time (330 min) and temperature (100 °C) were determined with a constant medium agitation rate. Additionally, this study also aimed at establishing the validation of the statistical model to carry out the extrapolation of the extraction process at the pilot scale. The fibers extracted at the pilot scale showed yields (45.2 ± 0.01%) in agreement with those obtained through the optimization and validation lab-scale steps (44.97 ± 0.02). Fourier Transform Infrared (FTIR) spectroscopy, X-ray Diffraction (XRD) and Scanning electron microscopy (SEM) analysis were conducted to investigate the structure and microstructure of pilot scale-produced fibers. FTIR spectrum and XRD pattern were typical to lignocellulosic fibers results. Sharp and thin peaks characteristic of cellulose were detected. Pure and crystallized phases were recorded with a 45% crystallinity index. SEM analysis presented elongated and organized cells with a uniform structure comparable to cellulosic fibers microstructure.


Subject(s)
Opuntia , Opuntia/chemistry , Dietary Fiber/analysis , Cellulose , Plant Extracts/chemistry , Microscopy, Electron, Scanning
10.
J Ethnopharmacol ; 312: 116490, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37054824

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Opuntia speciesis used in traditional medicine to treat diabetes mellitus (DM). Polysaccharide is one of the main components of Opuntia. Opuntia polysaccharide (OPS) is a kind of natural active macromolecular substance, numerous animal experiments have been conducted to treat DM, however, its protective effect and mechanism in animal models of DM has not been clarified. AIM OF THE STUDY: The aim of this study is to evaluate the efficacy of OPS on DM through a stematic review and meta-analysis of animal models, and whether its improves blood glucose (BG) levels, body weight (BW), food intake, water intake, and lipid levels, and to summarize the potential mechanism of OPS in the treatment of DM. MATERIALS AND METHODS: We searched relevant Chinese and English databases from the date of construction to March 2022, including PubMed (MEDLINE), Embase, Cochrane Library, Scopus and Web of Science, China National Knowledge Infrastructure (CNKI), Chinese Biomedicine Literature Database (CBM), Chinese Science and Technology Periodicals Database (VIP), Wanfang Database. 16 studies were included for meta-analysis. RESULTS: The results showed that compared with the model group, the OPS significantly improved BG, BW, food intake, water intake, total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C). Meta-regression and subgroup analysis showed that intervention dose, animal species, duration and modeling method may be the source of the heterogeneity. There was no statistical difference between the positive control group and the OPS treatment group in improving BW, food intake, water intake, TC, TG, HDL-C, and LDL-C. CONCLUSIONS: OPS can effectively improve the symptoms of hyperglycemia, polydipsia, polyphagia, low body weight, and dyslipidemia in DM animals. The possible protective mechanisms of OPS on DM animals are immune regulation, repair of damaged pancreatic ß cells, and inhibition of oxidative stress and cell apoptosis.


Subject(s)
Diabetes Mellitus , Opuntia , Animals , Opuntia/chemistry , Cholesterol, LDL , Triglycerides , Cholesterol, HDL , Models, Animal
11.
Food Funct ; 14(7): 3107-3125, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36942614

ABSTRACT

Opuntia ficus-indica (L.) Miller (OFI), belonging to the family Cactaceae, is widely cultivated not only for its delicious fruits but also for its health-promoting effects, which enhance the role of OFI as a potential functional food. In this study, the in vitro collagenase and elastase enzyme inhibitory effects of extracts from different parts of OFI were evaluated. The most promising extracts were formulated as creams at two concentrations (3 and 5%) to investigate their effects on a D-galactose (D-gal)-induced skin-aging mouse model. The ethanolic extracts of the peel and cladodes exhibited the highest enzyme inhibitory effects. Cream made from the extract of OFI peel (OP) (5%) and cream from OFI cladodes extract (OC) (5%) significantly decreased the macroscopic aging of skin scores. Only a higher concentration (5%) of OC showed the normalization of superoxide dismutase (SOD) and malondialdehyde (MDA) skin levels and achieved significant improvements as compared to the vitamin E group. Both OC and OP (5%) showed complete restoration of the normal skin structure and nearly normal collagen fibres upon histopathological examination. The Ultra-Performance Liquid Chromatography High Resolution Mass Spectrometry (UHPLC-ESI-TOF-MS) metabolite profiles revealed the presence of organic acids, phenolic acids, flavonoids, betalains, and fatty acids. Flavonoids were the predominant phytochemical class (23 and 22 compounds), followed by phenolic acids (14 and 17 compounds) in the ethanolic extracts from the peel and cladodes, respectively. The anti-skin-aging effects could be attributed to the synergism of different phytochemicals in both extracts. From these findings, the OFI peel and cladodes as agro-waste products are good candidates for anti-skin-aging phytocosmetics.


Subject(s)
Opuntia , Plant Extracts , Skin Aging , Skin Cream , Opuntia/chemistry , Skin Aging/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology , Animals , Mice , Models, Animal , Skin Cream/chemistry , Skin Cream/pharmacology , Skin/drug effects , Skin/metabolism , Superoxide Dismutase/metabolism , Malondialdehyde/metabolism , Liquid Chromatography-Mass Spectrometry
12.
Biotechnol Appl Biochem ; 70(2): 593-602, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35789501

ABSTRACT

Desiccation tolerance in developing seeds occurs through several mechanisms among which, a common group of proteins named dehydrins has received considerable attention. So far, there is no information dealing with the accumulation of dehydrins in seeds of Opuntia ficus-indica. We have initiated here an extraction protocol based on two critical steps: heat and acid treatments, and the purity of this fraction was analyzed by FTIR spectroscopy. Western blot analysis of the heat-stable protein fraction (HSF) revealed two main bands of approximately 45 and 44 kDa, while three others of ∼40, 32, and 31 kDa were faintly visible, which were recognized by anti-dehydrin antibodies. This fraction exhibited a Cu2+ -dependent resistance to protease treatments. Next, we performed a series of assays to compare the functional properties of the HSF with those of the previously characterized wheat dehydrin (DHN-5). Antibacterial assays revealed that HSF exhibits only moderate antibacterial activities against gram-negative and gram-positive bacteria, with a minimum inhibition concentration ranging from 0.25 to 1 mg/ml. However, in vitro assays revealed that compared to DHN-5, HSF exhibits higher protective activities of the lactate dehydrogenase (LDH) when exposed to heat, freezing, and dehydration stresses. The protective role of HSF seems to be linked to its best ability to minimize protein aggregation.


Subject(s)
Opuntia , Opuntia/chemistry , Hot Temperature , Plant Proteins/pharmacology , Plant Proteins/chemistry , Seeds/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Plant Extracts/pharmacology , Plant Extracts/metabolism
13.
Food Chem ; 401: 134121, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36103737

ABSTRACT

Cactus mucilage (CMU) have been widely studied in various applications. This review addresses the sources, extraction methods, composition, biological properties and CMU applications with the help of bibliometric analysis to select scientific articles available in the Web of Science database and evaluated by VOSviewer (2001-2021). CMU are generally characterized as an arabinogalactan-type polysaccharide, a source of carbohydrates and proteins, minerals, fatty acids, essential amino acids and phenolic compounds. Such attributes contribute to its functionality as emulsifying, stabilizing, foaming and gelling agents. Therefore, it has been used in dairy, bakery, emulsified and powdered products, in addition, as microencapsulating substances, producing edible coatings and forming ecological films. Its main beneficial features consist of antioxidant, antimicrobial, prebiotic, healing, antiulcer, anti-inflammatory, anti-hyperlipidemic and slimming effects. Thus, this review provides the CMU main evidences in the literature, which reveal their scientific importance, what can boost new research for the food, pharmaceutical and cosmetic industries.


Subject(s)
Opuntia , Opuntia/chemistry , Antioxidants/analysis , Bioprospecting , Plant Extracts/chemistry , Polysaccharides , Anti-Inflammatory Agents , Carbohydrates , Minerals , Bibliometrics , Amino Acids, Essential
14.
J Food Sci ; 88(1): 161-174, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36524774

ABSTRACT

Betalains are plant pigments with biological properties and can be used instead of synthetic colorants to confer color and functional properties to foods. The objective of this work was to carry out the chemical characterization of two varieties of prickly pear of Opuntia ficus-indica, one of yellow-orange coloration (Mandarina) and the other of purple coloration (Vigor), through measurements of chemical parameters and color in pulp, antioxidant activity, total phenolic compounds, and betalain content. Considering the thermolability of betalains and their potential applications in food, the thermal stability and activation energy of betacyanins from Vigor variety and betaxanthins from the Mandarina variety were also evaluated and compared with those from beetroot, the main source of betalains. Results for chemical characterization agreed with previous prickly pear reports of other regions, while the thermal degradation kinetics of betalains showed a first-order degradation pattern with respect to time and temperature treatment. Betacyanins from Vigor prickly pear showed similar thermal stability to those from beetroot, which was reflected in similar values of activation energy, while betaxanthins from Mandarina prickly pear showed a higher stability, and therefore a higher activation energy, than those from beetroot. Based on the results, the prickly pear varieties used in this study can be considered as a good source of betalains with potential applications in food and, in addition, the methodology for the evaluation of thermostability can be used to compare the stability of betalains from different sources in a temperature range of 50-90°C. PRACTICAL APPLICATION: The varieties of prickly pear used in this study can be considered a good source of red-purple and yellow-orange easily extractable pigments. In addition, we report a methodology that can be used for the evaluation of the thermal stability of these pigments and to compare this stability between different plant sources. Gaining knowledge on betalain thermal stability will make it possible to propose specific applications, for example, in processed foods requiring different pigment stabilities.


Subject(s)
Betalains , Opuntia , Betalains/analysis , Betalains/chemistry , Fruit/chemistry , Betacyanins/analysis , Opuntia/chemistry , Betaxanthins/analysis , Pigments, Biological/analysis , Plant Extracts/chemistry , Vegetables
15.
Environ Sci Pollut Res Int ; 30(1): 798-810, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35906518

ABSTRACT

Extensive research to date has focused on the coagulation-flocculation and biosorption properties of the invasive Opuntia ficus-indica (L.) Mill. to remove metals from water. However, no studies have reported on the use of O. ficus-indica extract as a leaching agent to remove metals from contaminated soil. In the present work, a new environmentally friendly method for lead-contaminated soil remediation is evaluated. The method involves the use of cladode extract from O. ficus-indica as a soil washing agent. This new technique can serve to mitigate against the potential deterioration of soil quality and other secondary environmental impacts that result from the use of inorganic acids and/or chelating agents. Extractions from cladodes harvested during both day and night crassulacean acidic metabolism (CAM) phases were evaluated for treatment of lead contamination in three different soils including kaolinite, montmorillonite and a field-natural soil sample. Lead removal rates, which ranged from 44 to 100%, were significantly impacted by the intrinsic properties of the soils, the leachate dosage, the plant harvest phase, and the soil washing duration. Fourier-transform infrared spectroscopy (FTIR) characterization of the leachates indicated that functional groups present in the O. ficus-indica extracts played an essential role in the removal process. Results suggest that this species possesses promising potential to be used as a sustainable basis for the abatement of lead contaminated soil.


Subject(s)
Opuntia , Opuntia/chemistry , Soil , Lead , Plant Extracts , Environmental Pollution
16.
Appl Biochem Biotechnol ; 195(3): 1675-1698, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36367617

ABSTRACT

The sustainable development of the drylands, i.e., regions with limited availability of water, depends on the exploitation of the few biomass types that can thrive in such conditions, such as the Opuntia ficus-indica, a plant of the Cactaceae family. In the present study, the cladodes of O. ficus-indica were used as a substrate by the fungus Trichoderma reesei CCT-2768 for the production of cellulolytic enzymes through solid-state fermentation. Firstly, the extraction of the mucilage, soluble components of industrial interest, was evaluated. Temperature, water-to-biomass ratio, and time of mixture were varied using an experimental design and impacted, especially, the pectin removal. Then, the lignocellulosic residue was used for the production of enzymes; the effect of the water activity, biomass pretreatment, mineral supplementation, temperature, and inoculum size on the enzymatic production were investigated using two sets of experimental designs. The steam explosion pretreatment exposed the fiber to the microbial action and boosted the enzyme production, provided that the medium was supplemented with salts. This combination has improved the production of xylanase, CMCase, FPase, and polygalacturonase by 27, 62, 98, and 185%, respectively. The temperature of 35 °C was determined as the optimal for the production of FPase, xylanase, and polygalacturonase, while no effect was observed on the production of CMCase and ß-glucosidase. The optimization of the enzymatic production performed in this study can potentially provide a new application for the Opuntia biomass and improve the sustainable development of the drylands.


Subject(s)
Opuntia , Trichoderma , Fermentation , Steam , Opuntia/chemistry , Polygalacturonase , Pectins , Water
17.
Nat Prod Res ; 37(10): 1746-1765, 2023 May.
Article in English | MEDLINE | ID: mdl-35921318

ABSTRACT

In the last years, the use of natural phytochemical compounds as protective agents in the prevention and treatment of obesity and the related-metabolic syndrome has gained much attention worldwide. Different studies have shown health benefits for many vegetables such Opuntia ficus-indica and Beta vulgaris and their pigments collectively referred as betalains. Betalains exert antioxidative, anti-inflammation, lipid lowering, antidiabetic and anti-obesity effects. This review summarizes findings in the literature and highlights the therapeutic potential of betalains and their natural source as valid alternative for supplementation in obesity-related disorders treatment. Further research is needed to establish the mechanisms through which these natural pigments exert their beneficial effects and to translate the promising findings from animal models to humans.


Subject(s)
Betalains , Opuntia , Animals , Humans , Betalains/pharmacology , Betalains/therapeutic use , Betalains/analysis , Color , Plant Extracts/chemistry , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/analysis , Opuntia/chemistry , Fruit/chemistry
18.
Int J Mol Sci ; 23(19)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36232458

ABSTRACT

The chemical composition, investigated by gas chromatography-mass spectrometry, and antibacterial activity of lipophilic extractives of three varieties of Opuntia ficus-indica roots from Algeria are reported in this paper for the first time. The results obtained revealed a total of 55 compounds, including fatty acids, sterols, monoglycerides and long chain aliphatic alcohols that were identified and quantified. ß-Sitosterol was found as the major compound of the roots of the three varieties. Furthermore, considerable amounts of essential fatty acids (ω3, ω6, and ω9) such as oleic, linoleic, and linolenic acids were also identified. The green variety was the richest among the three studied varieties. The antibacterial activity, evaluated with disc diffusion method, revealed that lipophilic extracts were effective mainly against Gram-positive Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) (19~23 mm). Gram-negative strains mainly Pseudomonas aeruginosa gave an inhibition zone of 18 mm, which is considered high antibacterial activity. The minimal inhibitory concentrations of the tested bacteria revealed interesting values against the majority of bacteria tested: 75-100 µg mL-1 for Bacillus sp., 250-350 µg/mL for the two Staphylococcus strains, 550-600 µg mL-1 for E. coli, and 750-950 µg mL-1 obtained with Pseudomonas sp. This study allows us to conclude that the lipophilic fractions of cactus roots possess interesting phytochemicals such as steroids, some fatty acids and long chain alcohols that acted as antibiotic-like compounds countering pathogenic strains.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Opuntia , Phytosterols , Alcohols/pharmacology , Algeria , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli , Linolenic Acids/pharmacology , Microbial Sensitivity Tests , Monoglycerides/pharmacology , Opuntia/chemistry , Phytochemicals/analysis , Phytochemicals/pharmacology , Phytosterols/pharmacology , Plant Extracts/chemistry
19.
Molecules ; 27(17)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36080220

ABSTRACT

Opuntia ficus-indica (OFI) is a cactus that is widely cultivated in the Kingdom of Saudi Arabia especially in the Taif region due to its favorable weather for growing, and it has benefits as a food and traditional medicine. The aim of the current study was to chemically characterize Opuntia ficus-indica seed oil from Taif, Kingdom of Saudi Arabia, using GC-MS and HPLC analysis and evaluate its antioxidant, antiviral, antifungal, antibacterial and anticancer activities. Linolenic acid was the dominating fatty acid in OFI oil, followed by oleic acid, linoleic acid, palmitic acid and stearic acid. Total tocopherol (α-, ß-, Ɣ-tocopherol) was found to be 24.02 µg/mL. Campesterol was the main phytosterol, followed by γ- & ß -sitosterol, and Stigmasterol. The phenolic components scored 30.5 mg gallic acid equivalent per ml of oil with 89.2% antioxidant activity (% DPPH radical inhibition) at 200 µL/mL of OFI oil. OFI oil showed an inhibition efficacy against microbial strains especially Saccharomyces cervisiae with a diameter (28.3 ± 0.4), MBC (15 µg/mL) and MIC bacteriostatic (10 µg/mL). While OFI oil had no effect against Aspergillus niger, OFI oil showed weak inhibitory activity against A-2780 (Ovarian carcinoma) cell line, although it showed significant inhibitory activity against PC-3 (Prostate carcinoma) cell line. OFI oil exhibited an antiviral effect (22.67 ± 2.79%) at 300 µg/mL of Oil against herpes simplex type 2 (HSV-2) virus. The bioactive compounds of OFI oil, as well as its main biological activities, make it a promising candidate for the non-communicable disease management.


Subject(s)
Opuntia , Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Antioxidants/pharmacology , Antiviral Agents/pharmacology , Opuntia/chemistry , Plant Oils/chemistry , Plant Oils/pharmacology
20.
Molecules ; 27(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36144562

ABSTRACT

Pectin and mucilage are polysaccharides from the cactus Opuntia ficus-indica, which are also known as hydrocolloids, with useful properties in industries such as food, pharmaceuticals, and construction, among others. In the present work, cactus hydrocolloids were hydrolyzed characterized using two techniques: first, thin-layer chromatography, to identify the monosaccharides present in the sample, followed by the phenol-sulfuric acid method to determine the monosaccharide content. The hydrolyzing method allowed us to reduce the processing time to 180 min and, considering the identification and quantification procedures, the proposed methodology is much simpler and more cost-effective compared to other methods, such as high-performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR), and mass spectrometry. The analysis of the results revealed that the maximum concentration of monosaccharides was obtained after hydrolyzing for 90 min. Under such conditions, with pectin being the main component contained in the cactus hydrocolloids analyzed here, galacturonic acid was found in the largest quantities.


Subject(s)
Opuntia , Hydrolysis , Monosaccharides , Opuntia/chemistry , Pectins , Pharmaceutical Preparations , Phenols , Polysaccharides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL