Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Am J Clin Nutr ; 119(1): 117-126, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38176775

ABSTRACT

BACKGROUND: Choline is essential for healthy cognitive development. Single nucleotide polymorphisms (SNPs; rs3199966(G), rs2771040(G)) within the choline transporter SLC44A1 increase risk for choline deficiency. In a choline intervention trial of children who experienced prenatal alcohol exposure (PAE), these alleles are associated with improved cognition. OBJECTIVE: This study aimed to determine if SNPs within SLC44A1 are differentially associated with cognition in children with PAE compared with normotypic controls (genotype × exposure). A secondary objective tested for an association of these SNPs and cognition in controls (genotype-only). DESIGN: This is a secondary analysis of data from the Collaborative Initiative on Fetal Alcohol Spectrum Disorders. Participants (163 normotypic controls, 162 PAE) underwent psychological assessments and were genotyped within SLC44A1. Choline status was not assessed. Association analysis between genotype × exposure was performed using an additive genetic model and linear regression to identify the allelic effect. The primary outcome was the interaction between SLC44A1 genotype × exposure status with respect to cognition. The secondary outcome was the cognitive-genotype association in normotypic controls. RESULTS: Genotype × exposure analysis identified 7 SNPs in SLC44A1, including rs3199966(G) and rs2771040(G), and in strong linkage (D' ≥ 0.87), that were associated (adjusted P ≤ 0.05) with reduced performance in measures of general cognition, nonverbal and quantitative reasoning, memory, and executive function (ß, 1.92-3.91). In controls, carriers of rs3199966(GT or GG) had worsened cognitive performance than rs3199966(TT) carriers (ß, 0.46-0.83; P < 0.0001), whereas cognitive performance did not differ by rs3199966 genotype in those with PAE. CONCLUSIONS: Two functional alleles that increase vulnerability to choline deficiency, rs3199966(G) (Ser644Ala) and rs2771040(G) (3' untranslated region), are associated with worsened cognition in otherwise normotypic children. These alleles were previously associated with greater cognitive improvement in children with PAE who received supplemental choline. The findings endorse that choline benefits cognitive development in normotypic children and those with PAE.


Subject(s)
Choline Deficiency , Fetal Alcohol Spectrum Disorders , Prenatal Exposure Delayed Effects , Child , Humans , Pregnancy , Female , Prenatal Exposure Delayed Effects/genetics , Choline , Cognition , Antigens, CD , Organic Cation Transport Proteins
2.
Ann Noninvasive Electrocardiol ; 28(6): e13077, 2023 11.
Article in English | MEDLINE | ID: mdl-37658577

ABSTRACT

We report the case of a 13-year-old female patient presenting with presyncope and palpitations. Her electrocardiogram revealed an abbreviation of the rate-corrected QT interval with imaging showing significant left ventricular dysfunction. Carnitine levels were measured as part of her diagnostic workup, discovering a rare, reversible cause of short QT syndrome (SQTS) and associated cardiomyopathy-primary carnitine deficiency (PCD) caused by a homozygous mutation in the SLC22A5 gene, leading to an in-frame deletion mutation (NP_003051.1:p.Phe23del) affecting the organic cation transporter 2 (OCTN2) protein. Following the treatment with oral carnitine supplementation, her QT interval returned to within the normal range with significant improvement in left ventricular function.


Subject(s)
Arrhythmias, Cardiac , Cardiomyopathies , Carnitine/deficiency , Hyperammonemia , Muscular Diseases , Organic Cation Transport Proteins , Female , Humans , Adolescent , Organic Cation Transport Proteins/genetics , Solute Carrier Family 22 Member 5/genetics , Electrocardiography , Cardiomyopathies/complications , Cardiomyopathies/diagnostic imaging , Cardiomyopathies/genetics , Mutation , Carnitine/therapeutic use , Carnitine/genetics , Syndrome
3.
J Appl Toxicol ; 43(10): 1421-1435, 2023 10.
Article in English | MEDLINE | ID: mdl-37057715

ABSTRACT

Organic cation transporter 2 (OCT2) is mainly responsible for the renal secretion of various cationic drugs, closely associated with drug-induced acute kidney injury (AKI). Screening and identifying potent OCT2 inhibitors with little toxicity in natural products in reducing OCT2-mediated AKI is of great value. Flavonoids are enriched in various vegetables, fruits, and herbal products, and some were reported to produce transporter-mediated drug-drug interactions. This study aimed to screen potential inhibitors of OCT2 from 96 flavonoids, assess the nephroprotective effects on cisplatin-induced kidney injury, and clarify the structure-activity relationships of flavonoids with OCT2. Ten flavonoids exhibited significant inhibition (>50%) on OCT2 in OCT2-HEK293 cells. Among them, the six most potent flavonoid inhibitors, including pectolinarigenin, biochanin A, luteolin, chrysin, 6-hydroxyflavone, and 6-methylflavone markedly decreased cisplatin-induced cytotoxicity. Moreover, in cisplatin-induced renal injury models, they also reduced serum blood urea nitrogen (BUN) and creatinine levels to different degrees, the best of which was 6-methylflavone. The pharmacophore model clarified that the aromatic ring, hydrogen bond acceptors, and hydrogen bond donors might play a vital role in the inhibitory effect of flavonoids on OCT2. Thus, our findings would pave the way to predicting the potential risks of flavonoid-containing food/herb-drug interactions in humans and optimizing flavonoid structure to alleviate OCT2-related AKI.


Subject(s)
Acute Kidney Injury , Cisplatin , Humans , Organic Cation Transporter 2/metabolism , Cisplatin/toxicity , Organic Cation Transport Proteins/metabolism , HEK293 Cells , Flavonoids/pharmacology , Structure-Activity Relationship , Acute Kidney Injury/chemically induced , Acute Kidney Injury/prevention & control
4.
Toxicol Lett ; 366: 17-25, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35788046

ABSTRACT

Lenvatinib, an oral tyrosine kinase inhibitor, is widely used to treat several types of advanced cancers but often causes muscular adverse reactions. Although carnitine supplementation may prevent these effects, the mechanism underlying lenvatinib-induced skeletal muscle impairment remains poorly understood. To this end, we aimed to investigate the impact of lenvatinib on carnitine disposition in rats. Once-daily administration of lenvatinib repeated for two weeks did not affect urinary excretion or serum concentration of carnitines throughout the treatment period but ultimately decreased the L-carnitine content in the skeletal muscle. The treatment decreased the expression of carnitine/organic cation transporter (OCTN) 2, a key transporter of carnitine, in skeletal muscle at the protein level but not at the mRNA level. In cultured C2C12 myocytes, lenvatinib inhibited OCTN2 expression in a dose-dependent manner at the protein level. Furthermore, lenvatinib dose-dependently decreased the protein levels of carnitine-related genes, adenosine triphosphate content, mitochondrial membrane potential, and markers of mitochondrial function in vitro. These results reveal the deleterious effects of lenvatinib on OCTN2 expression, carnitine content, and mitochondrial function in skeletal muscle that may be associated with muscle toxicity.


Subject(s)
Carnitine , Organic Cation Transport Proteins , Animals , Cardiomyopathies , Carnitine/deficiency , Hyperammonemia , Muscle, Skeletal/metabolism , Muscular Diseases , Organic Cation Transport Proteins/genetics , Organic Cation Transport Proteins/metabolism , Organic Cation Transporter 2 , Phenylurea Compounds , Quinolines , Rats , Solute Carrier Family 22 Member 5
5.
Bioorg Chem ; 117: 105444, 2021 12.
Article in English | MEDLINE | ID: mdl-34775203

ABSTRACT

As a promising therapeutic target for gout, hURAT1 has attracted increasing attention. In this work, we identified a novel scaffold of hURAT1 inhibitors from a personal natural product database of verified herb-treated gout. First, we constructed more than 800 natural compounds from Chinese medicine that were verified to treat gout. Following the application of both shape-based and docking-based virtual screening (VS) methods, taking into account the shape similarity and flexibility of the target, we identified isopentenyl dihydroflavones that might inhibit hURAT1. Specifically, 9 compounds with commercial availability were tested with biochemical assays for the inhibition of 14C-uric acid uptake in high-expression hURAT1 cells (HEK293-hURAT1), and their structure-activity relationship was evaluated. As a result, 8-isopentenyl dihydroflavone was identified as a novel scaffold of hURAT1 inhibitors since isobavachin (DHF3) inhibited hURAT1 with an IC50 value of 0.39 ± 0.17 µM, which was comparable to verinurad with an IC50 value of 0.32 ± 0.23 µM. Remarkably, isobavachin also displayed an eminent effect in the decline of serum uric acid in vivo experiments. Taken together, isobavachin is a promising candidate for the treatment of hyperuricemia and gout.


Subject(s)
Biological Products/pharmacology , Drugs, Chinese Herbal/pharmacology , Flavones/pharmacology , Hyperuricemia/drug therapy , Molecular Docking Simulation , Organic Anion Transporters/antagonists & inhibitors , Organic Cation Transport Proteins/antagonists & inhibitors , Animals , Biological Products/chemistry , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/chemistry , Flavones/chemistry , Hyperuricemia/metabolism , Male , Medicine, Chinese Traditional , Mice , Mice, Inbred Strains , Molecular Structure , Organic Anion Transporters/metabolism , Organic Cation Transport Proteins/metabolism , Structure-Activity Relationship
6.
Hum Exp Toxicol ; 40(12_suppl): S447-S459, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34592875

ABSTRACT

The balance of cisplatin uptake and efflux, mediated mainly by organic cation transporter 2 (OCT2) and multidrug and toxin extrusion 1 (MATE1), respectively, determines the renal accumulation and nephrotoxicity of cisplatin. Using transporter-mediated cellular uptake assay, we identified wedelolactone (WEL), a medicinal plant-derived natural compound, is a competitive inhibitor of OCT2 and a noncompetitive inhibitor of MATE1. Wedelolactone showed a selectivity to inhibit OCT2 rather than MATE1. Cytotoxicity studies revealed that wedelolactone alleviated cisplatin-induced cytotoxicity in OCT2-overexpressing HEK293 cells, whereas it did not alter the cytotoxicity of cisplatin in various cancer cell lines. Additionally, wedelolactone altered cisplatin pharmacokinetics, reduced kidney accumulation of cisplatin, and ameliorated cisplatin-induced acute kidney injury in the Institute of Cancer Research mice. In conclusion, these findings suggest a translational potential of WEL as a natural therapy for preventing cisplatin-induced nephrotoxicity and highlight the need for drug-drug interaction investigations of WEL with other treatments which are substrates of OCT2 and/or MATE1.


Subject(s)
Cisplatin/toxicity , Coumarins/pharmacology , Kidney Diseases/chemically induced , Kidney Diseases/drug therapy , Organic Cation Transporter 2/antagonists & inhibitors , Organic Cation Transporter 2/metabolism , Animals , Antineoplastic Agents/pharmacology , Gene Expression Regulation/drug effects , HEK293 Cells , Humans , Male , Mice , Mice, Inbred ICR , Organic Cation Transport Proteins/genetics , Organic Cation Transport Proteins/metabolism , Organic Cation Transporter 2/genetics
7.
Mol Biol Rep ; 48(9): 6343-6348, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34383246

ABSTRACT

BACKGROUND: MATE2-K is an efflux transporter protein of organic cation expressed mainly in the kidney and encoded by the SLC47A2 gene. Different variants of this gene have shown an impact on the pharmacokinetics of various drugs, including metformin, which represents one of the most widely used drugs in treating type 2 diabetes. The SLC47A2 gene variants have been scarcely studied in Mexican populations, especially in Native American groups. For this reason, we analyzed the distribution of the variants rs12943590, rs35263947, and rs9900497 within the SLC47A2 gene in 173 Native Americans (Tarahumara, Huichol, Maya, Puerépecha) and 182 Mestizos (admixed) individuals from Mexico. METHODS AND RESULTS: Genotypes were determined through TaqMan probes (qPCR). The Hardy-Weinberg agreement was confirmed for all three SLC47A2 gene variants in all the Mexican populations analyzed. When worldwide populations were included for comparison purposes, for alleles and genotypes a relative interpopulation homogeneity was observed for rs35263947 (T allele; range 23.3-51.1%) and rs9900497 (T allele; range 18.6-40.9%). Conversely, heterogeneity was evident for rs12943590 (A allele, range 22.1-59.1%), where the most differentiated population was the Huichol, with high frequencies of the risk genotype associated with decreased response to metformin treatment (A/A = 40.9%). CONCLUSIONS: Although the SLC47A2 gene variants allow predicting favorable response to the metformin treatment in Mexican populations, the probable high frequency of ineffectiveness should be discarded in Huichols.


Subject(s)
American Indian or Alaska Native/genetics , Genetics, Population/methods , Indians, North American/genetics , Organic Cation Transport Proteins/genetics , Polymorphism, Single Nucleotide , Alleles , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Gene Frequency , Haplotypes , Healthy Volunteers , Humans , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Mexico/ethnology , Plants, Medicinal , Treatment Outcome
8.
Am J Clin Nutr ; 114(2): 617-627, 2021 08 02.
Article in English | MEDLINE | ID: mdl-33876196

ABSTRACT

BACKGROUND: The essential nutrient choline provides one-carbon units for metabolite synthesis and epigenetic regulation in tissues including brain. Dietary choline intake is often inadequate, and higher intakes are associated with improved cognitive function. OBJECTIVE: Choline supplements confer cognitive improvement for those diagnosed with fetal alcohol spectrum disorder (FASD), a common set of neurodevelopmental impairments; however, the effect sizes have been modest. In this retrospective analysis, we report that genetic polymorphisms affecting choline utilization are associated with cognitive improvement following choline intervention. METHODS: Fifty-two children from the upper midwestern United States and diagnosed with FASD, ages 2-5 y, were randomly assigned to receive choline (500 mg/d; n = 26) or placebo (n = 26) for 9 mo, and were genotyped for 384 choline-related single nucleotide polymorphisms (SNPs). Memory and cognition were assessed at enrollment, study terminus, and at 4-y follow-up for a subset. RESULTS: When stratified by intervention (choline vs. placebo), 14-16 SNPs within the cellular choline transporter gene solute carrier family 44 member 1 (SLC44A1) were significantly associated with performance in an elicited imitation sequential memory task, wherein the effect alleles were associated with the greatest pre-/postintervention improvement. Of these, rs3199966 is a structural variant (S644A) and rs2771040 is a single-nucleotide variant within the 3' untranslated region of the plasma membrane isoform. An additive genetic model best explained the genotype associations. Lesser associations were observed for cognitive outcome and polymorphisms in flavin monooxygenase-3 (FMO3), methylenetetrahydrofolate dehydrogenase-1 (MTHFD1), fatty acid desaturase-2 (FADS2), and adiponectin receptor 1 (ADIPOR1). CONCLUSIONS: These SLC44A1 variants were previously associated with greater vulnerability to choline deficiency. Our data potentially support the use of choline supplements to improve cognitive function in individuals diagnosed with FASD who carry these effect alleles. Although these findings require replication in both retrospective and prospective confirmatory trials, they emphasize the need to incorporate similar genetic analyses of choline-related polymorphisms in other FASD-choline trials, and to test for similar associations within the general FASD population. This trial was registered at www.clinicaltrials.gov as NCT01149538.


Subject(s)
Antigens, CD/metabolism , Choline/pharmacology , Dietary Supplements , Fetal Alcohol Spectrum Disorders/drug therapy , Gene Expression Regulation/drug effects , Organic Cation Transport Proteins/metabolism , Polymorphism, Single Nucleotide , Administration, Oral , Antigens, CD/genetics , Child, Preschool , Choline/administration & dosage , Cognition , Female , Fetal Alcohol Spectrum Disorders/genetics , Fetal Alcohol Spectrum Disorders/pathology , Genotype , Humans , Male , Organic Cation Transport Proteins/genetics , Retrospective Studies
9.
Pharmacol Ther ; 217: 107647, 2021 01.
Article in English | MEDLINE | ID: mdl-32758646

ABSTRACT

The members of the organic anion transporter (OAT) family are mainly expressed in kidney, liver, placenta, intestine, and brain. These transporters play important roles in the disposition of clinical drugs, pesticides, signaling molecules, heavy metal conjugates, components of phytomedicines, and toxins, and therefore critical for maintaining systemic homeostasis. Alterations in the expression and function of OATs contribute to the intra- and inter-individual variability of the therapeutic efficacy and the toxicity of many drugs, and to many pathophysiological conditions. Consequently, the activity of these transporters must be highly regulated to carry out their normal functions. This review will present an update on the recent advance in understanding the cellular and molecular mechanisms underlying the regulation of renal OATs, emphasizing on the post-translational modification (PTM), the crosstalk among these PTMs, and the remote sensing and signaling network of OATs. Such knowledge will provide significant insights into the roles of these transporters in health and disease.


Subject(s)
Kidney/metabolism , Organic Anion Transporters/metabolism , ATP-Binding Cassette Transporters/metabolism , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , Biological Transport , Drug Elimination Routes , Drug Interactions/physiology , Glycosylation , Humans , Kidney Diseases/metabolism , Kidney Diseases/pathology , Multidrug Resistance-Associated Proteins/metabolism , Organic Anion Transporters/genetics , Organic Cation Transport Proteins/metabolism , Phosphorylation/physiology , Polymorphism, Genetic , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism
10.
Phytomedicine ; 80: 153374, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33075645

ABSTRACT

BACKGROUND: Insufficient renal urate excretion and/or overproduction of uric acid (UA) are the dominant causes of hyperuricemia. Baicalein (BAL) is widely distributed in dietary plants and has extensive biological activities, including antioxidative, anti-inflammatory and antihypertensive activities. PURPOSE: To investigate the anti-hyperuricemic effects of BAL and the underlying mechanisms in vitro and in vivo. METHODS: We investigated the inhibitory effects of BAL on GLUT9 and URAT1 in vitro through electrophysiological experiments and 14C-urate uptake assays. To evaluate the impact of BAL on serum and urine UA, the expression of GLUT9 and URAT1, and the activity of xanthine oxidase (XOD), we developed a mouse hyperuricemia model by potassium oxonate (PO) injection. Molecular docking analysis based on homology modeling was performed to explain the predominant efficacy of BAL compared with the other test compounds. RESULTS: BAL dose-dependently inhibited GLUT9 and URAT1 in a noncompetitive manner with IC50 values of 30.17 ± 8.68 µM and 31.56 ± 1.37 µM, respectively. BAL (200 mg/kg) significantly decreased serum UA and enhanced renal urate excretion in PO-induced hyperuricemic mice. Moreover, the expression of GLUT9 and URAT1 in the kidney was downregulated, and XOD activity in the serum and liver was suppressed. The docking analysis revealed that BAL potently interacted with Trp336, Asp462, Tyr71 and Gln328 of GLUT9 and Ser35 and Phe241 of URAT1. CONCLUSION: These results indicated that BAL exerts potent antihyperuricemic efects through renal UA excretal promotion and serum UA production. Thus, we propose that BAL may be a promising treatment for the prevention of hyperuricemia owing to its multitargeted inhibitory activity.


Subject(s)
Flavanones/pharmacology , Hyperuricemia/drug therapy , Uric Acid/urine , Xanthine Oxidase/antagonists & inhibitors , Animals , Antioxidants/pharmacology , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Flavanones/chemistry , Flavanones/metabolism , Glucose Transport Proteins, Facilitative/chemistry , Glucose Transport Proteins, Facilitative/genetics , Glucose Transport Proteins, Facilitative/metabolism , HEK293 Cells , Humans , Hyperuricemia/chemically induced , Kidney/drug effects , Kidney/metabolism , Liver/drug effects , Male , Mice , Molecular Docking Simulation , Organic Anion Transporters/chemistry , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , Organic Cation Transport Proteins/chemistry , Organic Cation Transport Proteins/genetics , Organic Cation Transport Proteins/metabolism , Oxonic Acid/toxicity , Uric Acid/blood
11.
Neuromolecular Med ; 23(1): 184-198, 2021 03.
Article in English | MEDLINE | ID: mdl-33067719

ABSTRACT

Ergothioneine (ET) is a naturally occurring antioxidant that is synthesized by non-yeast fungi and certain bacteria. ET is not synthesized by animals, including humans, but is avidly taken up from the diet, especially from mushrooms. In the current study, we elucidated the effect of ET on the hCMEC/D3 human brain endothelial cell line. Endothelial cells are exposed to high levels of the cholesterol oxidation product, 7-ketocholesterol (7KC), in patients with cardiovascular disease and diabetes, and this process is thought to mediate pathological inflammation. 7KC induces a dose-dependent loss of cell viability and an increase in apoptosis and necrosis in the endothelial cells. A relocalization of the tight junction proteins, zonula occludens-1 (ZO-1) and claudin-5, towards the nucleus of the cells was also observed. These effects were significantly attenuated by ET. In addition, 7KC induces marked increases in the mRNA expression of pro-inflammatory cytokines, IL-1ß IL-6, IL-8, TNF-α and cyclooxygenase-2 (COX2), as well as COX2 enzymatic activity, and these were significantly reduced by ET. Moreover, the cytoprotective and anti-inflammatory effects of ET were significantly reduced by co-incubation with an inhibitor of the ET transporter, OCTN1 (VHCL). This shows that ET needs to enter the endothelial cells to have a protective effect and is unlikely to act via extracellular neutralizing of 7KC. The protective effect on inflammation in brain endothelial cells suggests that ET might be useful as a nutraceutical for the prevention or management of neurovascular diseases, such as stroke and vascular dementia. Moreover, the ability of ET to cross the blood-brain barrier could point to its usefulness in combatting 7KC that is produced in the CNS during neuroinflammation, e.g. after excitotoxicity, in chronic neurodegenerative diseases, and possibly COVID-19-related neurologic complications.


Subject(s)
Antioxidants/pharmacology , COVID-19/complications , Endothelial Cells/drug effects , Ergothioneine/pharmacology , Ketocholesterols/toxicity , Nervous System Diseases/prevention & control , Neuroprotective Agents/pharmacology , Antioxidants/pharmacokinetics , Apoptosis/drug effects , Biological Transport , Blood-Brain Barrier , Brain/blood supply , Brain/cytology , Cell Line , Cholesterol/metabolism , Claudin-5 , Cyclooxygenase 2/biosynthesis , Cyclooxygenase 2/genetics , Cytokines/biosynthesis , Cytokines/genetics , Drug Evaluation, Preclinical , Ergothioneine/pharmacokinetics , Humans , Microvessels/cytology , Nervous System Diseases/etiology , Neuroprotective Agents/pharmacokinetics , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type III/metabolism , Organic Cation Transport Proteins , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Symporters , Zonula Occludens-1 Protein
12.
Clin Pharmacol Ther ; 109(5): 1342-1352, 2021 05.
Article in English | MEDLINE | ID: mdl-33174626

ABSTRACT

The botanical natural product goldenseal can precipitate clinical drug interactions by inhibiting cytochrome P450 (CYP) 3A and CYP2D6. Besides P-glycoprotein, effects of goldenseal on other clinically relevant transporters remain unknown. Established transporter-expressing cell systems were used to determine the inhibitory effects of a goldenseal extract, standardized to the major alkaloid berberine, on transporter activity. Using recommended basic models, the extract was predicted to inhibit the efflux transporter BCRP and uptake transporters OATP1B1/3. Using a cocktail approach, effects of the goldenseal product on BCRP, OATP1B1/3, OATs, OCTs, MATEs, and CYP3A were next evaluated in 16 healthy volunteers. As expected, goldenseal increased the area under the plasma concentration-time curve (AUC0-inf ) of midazolam (CYP3A; positive control), with a geometric mean ratio (GMR) (90% confidence interval (CI)) of 1.43 (1.35-1.53). However, goldenseal had no effects on the pharmacokinetics of rosuvastatin (BCRP and OATP1B1/3) and furosemide (OAT1/3); decreased metformin (OCT1/2, MATE1/2-K) AUC0-inf (GMR, 0.77 (0.71-0.83)); and had no effect on metformin half-life and renal clearance. Results indicated that goldenseal altered intestinal permeability, transport, and/or other processes involved in metformin absorption, which may have unfavorable effects on glucose control. Inconsistencies between model predictions and pharmacokinetic outcomes prompt further refinement of current basic models to include differential transporter expression in relevant organs and intestinal degradation/metabolism of the precipitant(s). Such refinement should improve in vitro-in vivo prediction accuracy, contributing to a standard approach for studying transporter-mediated natural product-drug interactions.


Subject(s)
Biological Products/pharmacokinetics , Drug Evaluation/methods , Herb-Drug Interactions , Hydrastis , Adult , Alkaloids/pharmacokinetics , Biological Products/chemistry , Cross-Over Studies , Female , Furosemide/pharmacokinetics , HEK293 Cells , Humans , Hydrastis/chemistry , Male , Metformin/pharmacokinetics , Midazolam/pharmacokinetics , Organic Anion Transporters/antagonists & inhibitors , Organic Anion Transporters/metabolism , Organic Cation Transport Proteins/antagonists & inhibitors , Organic Cation Transport Proteins/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacokinetics , Rosuvastatin Calcium/pharmacokinetics
13.
Aging (Albany NY) ; 13(1): 813-830, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33290254

ABSTRACT

Carnitine is required for transporting fatty acids into the mitochondria for ß-oxidation. Carnitine has been used as an energy supplement but the roles in improving health and delaying aging remain unclear. Here we show in C. elegans that L-carnitine improves recovery from oxidative stress and extends lifespan. L-carnitine promotes recovery from oxidative stress induced by paraquat or juglone and improves mobility and survival in response to H2O2 and human amyloid (Aß) toxicity. L-carnitine also alleviates the oxidative stress during aging, resulting in moderate but significant lifespan extension, which was dependent on SKN-1 and DAF-16. Long-lived worms with germline loss (glp-1) or reduced insulin receptor activity (daf-2) recover from aging-associated oxidative stress faster than wild-type controls and their long lifespans were not further increased by L-carnitine. A new gene, T08B1.1, aligned to a known carnitine transporter OCTN1 in humans, is required for L-carnitine uptake in C. elegans. T08B1.1 expression is elevated in daf-2 and glp-1 mutants and its knockdown prevents L-carnitine from improving oxidative stress recovery and prolonging lifespan. Together, our study suggests an important role of L-carnitine in oxidative stress recovery that might be important for healthy aging in humans.


Subject(s)
Aging/drug effects , Caenorhabditis elegans Proteins/genetics , Carnitine/pharmacology , DNA-Binding Proteins/genetics , Forkhead Transcription Factors/genetics , Longevity/drug effects , Oxidative Stress/drug effects , Stress, Physiological/drug effects , Transcription Factors/genetics , Aging/metabolism , Amyloid beta-Peptides , Animals , Caenorhabditis elegans , Humans , Hydrogen Peroxide , Naphthoquinones , Organic Cation Transport Proteins/genetics , Paraquat , Reactive Oxygen Species/metabolism , Receptor, Insulin/genetics , Receptors, Notch/genetics , Stress, Physiological/genetics
14.
Drug Metab Dispos ; 48(12): 1330-1346, 2020 12.
Article in English | MEDLINE | ID: mdl-33020063

ABSTRACT

Imeglimin is a novel oral antidiabetic drug for treatment of type 2 diabetes that targets mitochondrial bioenergetics. Its pharmacokinetics absorption characteristics, metabolism, distribution, and elimination were assessed through several in vitro and in vivo experiments in both animals and humans. Its potential to induce drug-drug interactions was also extensively assessed. Imeglimin is a small cationic compound with an intermediate intestinal permeability. Its absorption mechanism involves an active transport process in addition to passive paracellular absorption. Absorption was good (50%-80%) in vivo across several species but decreased with increasing dose, probably because of saturation of active transport. After absorption, imeglimin was rapidly and largely distributed to internal organs. Plasma protein binding was low, which can explain the rapid distribution to organs observed in all species. In animals and humans, imeglimin was largely excreted unchanged in urine, indicating a low extent of metabolism. Unchanged drug was the main circulating entity in plasma, and none of the identified metabolites were unique to human. Imeglimin renal clearance was higher than creatinine clearance, indicating that it was actively secreted into urine. There was no evidence that it had the potential to cause cytochrome P450 inhibition or induction. It was shown to be a substrate of organic cation transporter (OCT) 1, OCT2, multidrug and toxin extrusion (MATE) 1, and MATE2-K and an inhibitor of OCT1, OCT2, and MATE1; as a consequence, corresponding clinical drug-drug interaction studies were performed and confirmed the absence of relevant interactions with substrates or inhibitors of these transporters. SIGNIFICANCE STATEMENT: Imeglimin is absorbed through a passive and active mechanism, which can be saturated. It is rapidly and largely distributed to internal organs and mainly excreted unchanged in urine. It is poorly metabolized and has no cytochrome P450 inhibition or induction potential. Imeglimin is a substrate of MATE2-K and also a substrate and an inhibitor of OCT1, OCT2, and MATE1 transporters; however, there are no clinically significant interactions when imeglimin is coadministered with either a substrate or an inhibitor of these transporters.


Subject(s)
Hypoglycemic Agents/pharmacokinetics , Triazines/pharmacokinetics , Administration, Intravenous , Administration, Oral , Adult , Animals , Caco-2 Cells , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Diabetes Mellitus, Type 2/drug therapy , Dogs , Drug Evaluation, Preclinical , Drug Interactions , Female , HEK293 Cells , Humans , Hypoglycemic Agents/administration & dosage , Intestinal Absorption/drug effects , Male , Middle Aged , Organic Cation Transport Proteins/agonists , Organic Cation Transport Proteins/antagonists & inhibitors , Organic Cation Transport Proteins/metabolism , Rats , Triazines/administration & dosage
15.
Drug Metab Dispos ; 48(12): 1303-1311, 2020 12.
Article in English | MEDLINE | ID: mdl-33020068

ABSTRACT

Drug-induced kidney injury is a major clinical problem and causes drug attrition in the pharmaceutical industry. To better predict drug-induced kidney injury, kidney in vitro cultures with enhanced physiologic relevance are developed. To mimic the proximal tubule, the main site of adverse drug reactions in the kidney, human-derived renal proximal tubule epithelial cells (HRPTECs) were injected in one of the channels of dual-channel Nortis chips and perfused for 7 days. Tubes of HRPTECs demonstrated expression of tight junction protein 1 (zona occludens-1), lotus lectin, and primary cilia with localization at the apical membrane, indicating an intact proximal tubule brush border. Gene expression of cisplatin efflux transporters multidrug and toxin extrusion transporter (MATE) 1 (SLC47A1) and MATE2-k (SLC47A2) and megalin endocytosis receptor increased 19.9 ± 5.0-, 23.2 ± 8.4-, and 106 ± 33-fold, respectively, in chip cultures compared with 2-dimensional cultures. Moreover, organic cation transporter 2 (OCT2) (SLC22A2) was localized exclusively on the basolateral membrane. When infused from the basolateral compartment, cisplatin (25 µM, 72 hours) induced toxicity, which was evident as reduced cell number and reduced barrier integrity compared with vehicle-treated chip cultures. Coexposure with the OCT2 inhibitor cimetidine (1 mM) abolished cisplatin toxicity. In contrast, infusion of cisplatin from the apical compartment did not induce toxicity, which was in line with polarized localization of cisplatin uptake transport proteins, including OCT2. In conclusion, we developed a dual channel human kidney proximal tubule-on-a-chip with a polarized epithelium, restricting cisplatin sensitivity to the basolateral membrane and suggesting improved physiologic relevance over single-compartment models. Its implementation in drug discovery holds promise to improve future in vitro drug-induced kidney injury studies. SIGNIFICANCE STATEMENT: Human-derived kidney proximal tubule cells retained characteristics of epithelial polarization in vitro when cultured in the kidney-on-a-chip, and the dual-channel construction allowed for drug exposure using the physiologically relevant compartment. Therefore, cell polarization-dependent cisplatin toxicity could be replicated for the first time in a kidney proximal tubule-on-a-chip. The use of this physiologically relevant model in drug discovery has potential to aid identification of safe novel drugs and contribute to reducing attrition rates due to drug-induced kidney injury.


Subject(s)
Acute Kidney Injury/chemically induced , Cisplatin/toxicity , Kidney Tubules, Proximal/drug effects , Lab-On-A-Chip Devices , Acute Kidney Injury/pathology , Acute Kidney Injury/prevention & control , Cell Culture Techniques/instrumentation , Cells, Cultured , Cimetidine/pharmacology , Cimetidine/therapeutic use , Cisplatin/pharmacokinetics , Drug Evaluation, Preclinical/instrumentation , Feasibility Studies , Gene Expression Profiling , Humans , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/metabolism , Organic Cation Transport Proteins/metabolism , Organic Cation Transporter 2/antagonists & inhibitors , Organic Cation Transporter 2/metabolism
16.
Article in English | MEDLINE | ID: mdl-32905987

ABSTRACT

Urate anion exchanger 1 (URAT1) expressed in the proximal renal tubules is responsible for about 90% of the reabsorption of uric acid. URAT1 is identified as an important target of uricosuric drugs. Here we present an LC-MS/MS-based approach, combined with URAT1-transgenic MDCK cells, for the assessment of uric acid. Cell lysis was executed with 50 mM NaOH to release uric acid. 1,3-15N2 uric acid was employed as the internal standard. The harvested uric acid, along with the stable isotope-labeled uric acid, was analyzed by LC-MS/MS in multiple reactions monitoring and negative modes. Validation, i.e. determination of selectivity, precision, accuracy, extraction recovery, and matrix effect, and feasibility was evaluated by use of the approach developed. The linearity was observed in the range of 1.0-250 µM (r = 0.9960) with limit of detection of 50 nM and limit of quantitation of 200 nM. The precision and accuracy were found to be RSD ≤ 20% and 80-120% of the nominal value, respectively. Uric acid uptake showed concentration and time dependency in URAT1-transgenic cells. The observed inhibitory effects of three URAT1-targeted uricosuric drugs were consistent with those reported in literature. The stable isotope dilution-based approach was proven to be selective, sensitive, and convenient, which is a good in vitro model for URAT1-targeted drug candidate screening.


Subject(s)
Chromatography, Liquid/methods , Drug Evaluation, Preclinical/methods , Organic Anion Transporters , Organic Cation Transport Proteins , Tandem Mass Spectrometry/methods , Uricosuric Agents , Animals , Dogs , Humans , Limit of Detection , Linear Models , Madin Darby Canine Kidney Cells , Organic Anion Transporters/antagonists & inhibitors , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , Organic Cation Transport Proteins/antagonists & inhibitors , Organic Cation Transport Proteins/genetics , Organic Cation Transport Proteins/metabolism , Reproducibility of Results , Uric Acid/analysis , Uric Acid/metabolism , Uricosuric Agents/analysis , Uricosuric Agents/pharmacokinetics
17.
Int J Mol Sci ; 21(18)2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32927842

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) is a systemic autoimmune disease in which synovial fibroblasts (SF) play a key role. Baricitinib and Tofacitinib both act intracellularly, blocking the ATP-binding side of JAK proteins and thereby the downstream signalling pathway via STAT-3. Therefore, we investigated the role of organic cation transporters (OCTs) in Baricitinib and Tofacitinib cellular transport. METHODS: OCT expression was analysed in SF isolated from RA and osteoarthritis (OA) patients, as well as peripheral blood mononuclear cells. The interaction of Baricitinib and Tofacitinib with OCTs was investigated using quenching experiments. The intracellular accumulation of both drugs was quantified using LC/MS. Target inhibition for both drugs was tested using Western blot for phosphorylated JAK1 and STAT3 upon stimulation with IL-6. RESULTS: MATE-1 expression increased in OASF compared to RASF. The other OCTs were not differentially expressed. The transport of Baricitinib was not OCT dependent. Tofacitinib; however, was exported from RASF in a MATE-1 dependent way. Tofacitinib and Baricitinib showed comparable inhibition of downstream signalling pathways. CONCLUSION: We observed different cellular uptake strategies for Baricitinib and Tofacitinib. Tofacitinib was exported out of healthy cells due to the increased expression of MATE1. This might make Tofacitinib the favourable drug.


Subject(s)
Antirheumatic Agents/pharmacokinetics , Arthritis, Rheumatoid/drug therapy , Azetidines/pharmacokinetics , Piperidines/pharmacokinetics , Purines/pharmacokinetics , Pyrazoles/pharmacokinetics , Pyrimidines/pharmacokinetics , Sulfonamides/pharmacokinetics , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/metabolism , Azetidines/therapeutic use , Drug Evaluation, Preclinical , Fibroblasts/metabolism , HEK293 Cells , Humans , Janus Kinase 1/antagonists & inhibitors , Organic Cation Transport Proteins/metabolism , Phosphorylation/drug effects , Piperidines/therapeutic use , Primary Cell Culture , Purines/therapeutic use , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , STAT3 Transcription Factor/metabolism , Sulfonamides/therapeutic use
18.
Proc Natl Acad Sci U S A ; 117(37): 22974-22983, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32873649

ABSTRACT

Medium-chain fatty alcohols (MCFOHs, C6 to C12) are potential substitutes for fossil fuels, such as diesel and jet fuels, and have wide applications in various manufacturing processes. While today MCFOHs are mainly sourced from petrochemicals or plant oils, microbial biosynthesis represents a scalable, reliable, and sustainable alternative. Here, we aim to establish a Saccharomyces cerevisiae platform capable of selectively producing MCFOHs. This was enabled by tailoring the properties of a bacterial carboxylic acid reductase from Mycobacterium marinum (MmCAR). Extensive protein engineering, including directed evolution, structure-guided semirational design, and rational design, was implemented. MmCAR variants with enhanced activity were identified using a growth-coupled high-throughput screening assay relying on the detoxification of the enzyme's substrate, medium-chain fatty acids (MCFAs). Detailed characterization demonstrated that both the specificity and catalytic activity of MmCAR was successfully improved and a yeast strain harboring the best MmCAR variant generated 2.8-fold more MCFOHs than the strain expressing the unmodified enzyme. Through deletion of the native MCFA exporter gene TPO1, MCFOH production was further improved, resulting in a titer of 252 mg/L for the final strain, which represents a significant improvement in MCFOH production in minimal medium by S. cerevisiae.


Subject(s)
Fatty Alcohols/metabolism , Oxidoreductases/metabolism , Antiporters/metabolism , Biofuels , Fatty Acids/metabolism , Metabolic Engineering/methods , Organic Cation Transport Proteins/genetics , Oxidoreductases/physiology , Protein Engineering/methods , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
20.
Drug Metab Dispos ; 48(10): 1074-1083, 2020 10.
Article in English | MEDLINE | ID: mdl-32723846

ABSTRACT

Dehydrocorydaline (DHC), one of the main active components of Corydalis yanhusuo, is an important remedy for the treatment of coronary heart disease. Our previous study revealed a higher unbound concentration of DHC in the heart than plasma of mice after oral administration of C. yanhusuo extract or DHC, but the underlying uptake mechanism remains unelucidated. In our investigations, we studied the transport mechanism of DHC in transgenic cells, primary neonatal rat cardiomyocytes, and animal experiments. Using quantitative real-time polymerase chain reaction and Western blotting, we found that uptake transporters expressed in the mouse heart include organic cation transporter 1/3 (OCT1/3) and carnitine/organic cation transporter 1/2 (OCTN1/2). The accumulation experiments in transfected cells showed that DHC was a substrate of OCT1 and OCT3, with K m of 11.29 ± 3.3 and 8.96 ± 3.7 µM, respectively, but not a substrate of OCTN1/2. Additionally, a higher efflux level (1.71-fold of MDCK-mock) of DHC was observed in MDCK-MDR1 cells than in MDCK-mock cells. Therefore, DHC is a weak substrate for MDR1. Studies using primary neonatal rat cardiomyocytes showed that OCT1/3 inhibitors (quinidine, decynium-22, and levo-tetrahydropalmatine) prevented the accumulation of DHC, whereas OCTN2 inhibitors (mildronate and l-carnitine) did not affect its accumulation. Moreover, the coadministration of OCT1/3 inhibitors (levo-tetrahydropalmatine, THP) decreased the concentration of DHC in the mouse heart. Based on these findings, DHC may be accumulated partly by OCT1/3 transporters and excreted by MDR1 in the heart. THP could alter the distribution of DHC in the mouse heart. SIGNIFICANCE STATEMENT: We reported the cardiac transport mechanism of dehydrocorydaline, highly distributed to the heart after oral administration of Corydalis yanhusuo extract or dehydrocorydaline only. Dehydrocorydaline (an OCT1/3 and MDR1 substrate) accumulation in primary cardiomyocytes may be related to the transport activity of OCT1/3. This ability, hampered by selective inhibitors (levo-tetrahydropalmatine, an inhibitor of OCT1/3), causes a nearly 40% reduction in exposure of the heart to dehydrocorydaline. These results suggest that OCT1/3 may contribute to the uptake of dehydrocorydaline in the heart.


Subject(s)
Alkaloids/pharmacokinetics , Drugs, Chinese Herbal/pharmacokinetics , Myocardium/metabolism , Organic Cation Transport Proteins/metabolism , Organic Cation Transporter 1/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Administration, Oral , Alkaloids/administration & dosage , Animals , Animals, Newborn , Coronary Disease/drug therapy , Corydalis/chemistry , Dogs , Drugs, Chinese Herbal/administration & dosage , Humans , Madin Darby Canine Kidney Cells , Male , Mice , Myocytes, Cardiac , Primary Cell Culture , Rats , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL