Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.729
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Mikrochim Acta ; 191(5): 231, 2024 04 03.
Article in English | MEDLINE | ID: mdl-38565795

ABSTRACT

Blood stasis syndrome (BSS) has persistent health risks; however, its pathogenesis remains elusive. This obscurity may result in missed opportunities for early intervention, increased susceptibility to chronic diseases, and reduced accuracy and efficacy of treatments. Metabolomics, employing the matrix-assisted laser desorption/ionization (MALDI) strategy, presents distinct advantages in biomarker discovery and unraveling molecular mechanisms. Nonetheless, the challenge is to develop efficient matrices for high-sensitivity and high-throughput analysis of diverse potential biomarkers in complex biosamples. This work utilized nitrogen-doped porous transition metal carbides and nitrides (NP-MXene) as a MALDI matrix to delve into the molecular mechanisms underlying BSS pathogenesis. Structural optimization yielded heightened peak sensitivity (by 1.49-fold) and increased peak numbers (by 1.16-fold) in clinical biosamples. Validation with animal models and clinical serum biosamples revealed significant differences in metabolic fingerprints between BSS and control groups, achieving an overall diagnostic efficacy of 0.905 (95% CI, 0.76-0.979). Prostaglandin F2α was identified as a potential biomarker (diagnostics efficiency of 0.711, specificity = 0.7, sensitivity = 0.6), and pathway enrichment analysis disclosed disruptions in arachidonic acid metabolism in BSS. This innovative approach not only advances comprehension of BSS pathogenesis, but also provides valuable insights for personalized treatment and diagnostic precision.


Subject(s)
Drugs, Chinese Herbal , Animals , Dinoprost , Feedback , Nitrogen , Porosity , Organic Chemicals , Biomarkers
2.
Environ Microbiol Rep ; 16(2): e13248, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38581137

ABSTRACT

Sulphate-reducing bacteria (SRB) are the main culprits of microbiologically influenced corrosion in water-flooding petroleum reservoirs, but some sulphur-oxidising bacteria (SOB) are stimulated when nitrate and oxygen are injected, which control the growth of SRB. This study aimed to determine the distributions of SRB and SOB communities in injection-production systems and to analyse the responses of these bacteria to different treatments involving nitrate and oxygen. Desulfovibrio, Desulfobacca, Desulfobulbus, Sulfuricurvum and Dechloromonas were commonly detected via 16S rRNA gene sequencing. Still, no significant differences were observed for either the SRB or SOB communities between injection and production wells. Three groups of water samples collected from different sampling sites were incubated. Statistical analysis of functional gene (dsrB and soxB) clone libraries and quantitative polymerase chain reaction showed that the SOB community structures were more strongly affected by the nitrate and oxygen levels than SRB clustered according to the sampling site; moreover, both the SRB and SOB community abundances significantly changed. Additionally, the highest SRB inhibitory effect and the lowest dsrB/soxB ratio were obtained under high concentrations of nitrate and oxygen in the three groups, suggesting that the synergistic effect of nitrate and oxygen level was strong on the inhibition of SRB by potential SOB.


Subject(s)
Desulfovibrio , Petroleum , Nitrates , Sulfates , Water , RNA, Ribosomal, 16S/genetics , Bacteria , Desulfovibrio/genetics , Organic Chemicals , Sulfur , Oxidation-Reduction
3.
Food Res Int ; 184: 114213, 2024 May.
Article in English | MEDLINE | ID: mdl-38609212

ABSTRACT

Understanding the impact of minor components and the fatty acid profile of oil on oleogel properties is essential for optimizing their characteristics. Considering the scarcity of literature addressing this aspect, this study aimed to explore the correlation between these factors and the properties of beeswax and stearic acid-based oleogels derived from rice bran oil and sesame oil. Minor oil components were modified by stripping the oil, heating the oil with water, and adding ß-sitosterol. Oleogels were then prepared using a mixture of beeswax and stearic acid (3:1, w/w) at a concentration of 11.74 % (w/w). The properties of oils and oleogels were evaluated. The findings indicated that minor components and fatty acid composition of the oils substantially influence the oleogel properties. Removing minor components by stripping resulted in smaller and less uniformly distributed crystals and less oil binding capacity compared to the oleogels prepared from untreated oils. A moderate amount of minor components exhibited a significant influence on oleogel properties. The addition of ß-sitosterol did not show any influence on oleogel properties except for the oleogel made from untreated oil blend added with ß-sitosterol which had more uniform crystals in the microstructure and demonstrated better rheological stability when stored at 5 °C for two months. The oil composition did not show any influence on the thermal and molecular properties of oleogels. Consequently, the oleogel formulation derived from the untreated oil blend enriched with ß-sitosterol was identified as the optimal formula for subsequent development. The findings of this study suggest that the physical and mechanical properties as well as the oxidative stability of beeswax and stearic acid-based oleogels are significantly affected by the minor constituents and fatty acid composition of the oil. Moreover, it demonstrates that the properties of oleogels can be tailored by modifying oil composition by blending different oils.


Subject(s)
Fatty Acids , Stearic Acids , Waxes , Rice Bran Oil , Organic Chemicals
4.
Ying Yong Sheng Tai Xue Bao ; 35(3): 639-647, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38646751

ABSTRACT

Vegetation restoration can effectively enhance soil quality and soil organic carbon (SOC) sequestration. In this study, the distribution characteristics of soil nutrients and SOC along soil profile (0-100 cm), and their responses to restoration years (16, 28, 38 years) were studied in Caragana korshinskii plantations in the southern mountainous area of Ningxia, compared with cropland and natural grassland. The results showed that: 1) the contents of SOC, soil total nitrogen (TN), total phosphorus (TP), particulate organic carbon (POC), mineral-associated organic carbon (MAOC) and the proportion of particulate organic carbon to total organic carbon (POC/SOC) all decreased with increasing soil depth. The ratio of mineral-associated organic carbon to total organic carbon (MAOC/SOC) exhibited an opposite trend. 2) The contents of SOC, TN, TP, C:P, N:P, POC and MAOC gra-dually decreased as the restoration years increased. However, the C:N ratio showed no significant change. The POC/SOC ratio initially increased and then decreased, while the MAOC/SOC ratio decreased initially and then increased. 3) In three different types of vegetation, POC, MAOC, and SOC showed a highly significant positive linear correlation, with the increase in SOC mainly depended on the increase in MAOC. The SOC, TN, TP, POC and MAOC contents in natural grassland and C. korshinskii plantations were significantly higher than those in cropland. In conclusion, soil nutrients and POC and MAOC contents of C. korshinskii plantations gradually decreased with the increases in restoration years. However, when compared with cropland, natural grassland and C. korshinskii plantations demonstrated a greater capacity to maintain and enhance soil nutrient and carbon storage.


Subject(s)
Caragana , Carbon , Forests , Nitrogen , Organic Chemicals , Phosphorus , Soil , China , Soil/chemistry , Carbon/analysis , Caragana/growth & development , Nitrogen/analysis , Phosphorus/analysis , Organic Chemicals/analysis , Nutrients/analysis , Environmental Restoration and Remediation/methods , Carbon Sequestration , Ecosystem
5.
Bioresour Technol ; 398: 130511, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38437963

ABSTRACT

The effect of thiamine (TA), ascorbic acid (AA), citric acid, and gallic acid (GA) on bacterial cellulose (BC) production by Komagataeibacter sucrofermentans, in synthetic (Hestrin and Schramm, HS) and natural substrates (industrial raisins finishing side stream extract, FSSE; orange juice, OJ; green tea extract, GTE), was investigated. The Response Surface Methodology was found reliable for BC yield prediction and optimization. Higher yields were achieved in the FSSE substrates, especially those supplemented with AA, TA, and GA (up to 19.4 g BC/L). The yield in the non-fortified substrates was 1.1-5.4 and 11.6-15.7 g/L, in HS and FSSE, respectively. The best yield in the natural non-fortified substrate FSSE-OJ-GTE (50-20-30 %), was 5.9 g/L. The porosity, crystallinity, and antioxidant properties of the produced BC films were affected by both the substrate and the drying method (freeze- or oven-drying). The natural substrates and the process wastewaters can be further exploited towards added value and sustainability. Take Home Message Sentence: Raisin and citrus side-streams can be efficiently combined for bacterial cellulose production, enhanced by other vitamin- and phenolic-rich substrates such as green tea.


Subject(s)
Acetobacteraceae , Cellulose , Vitamins , Cellulose/chemistry , Rivers , Vitamin A , Vitamin K , Organic Chemicals , Culture Media , Tea , Plant Extracts
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124148, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38492463

ABSTRACT

Oleogel represents a promising healthier alternative to act as a substitute for conventional fat in various food products. Oil selection is a crucial factor in determining the technological properties and applications of oleogels due to their distinct fatty acid composition, molecular weight, and thermal properties, as well as the presence of antioxidants and oxidative stability. Hence, the relevance of monitoring oleogel properties by non-destructive, eco-friendly, portable, fast, and effective techniques is a relevant task and constitutes an advance in the evaluation of oleogels quality. Thus, the present study aims to classify oleogels rapidly and reliably, without the use of chemicals, comparing two handheld near infrared (NIR) spectrometers and one portable Raman device. Furthermore, two different multivariate methods are compared for oleogel classification according to oil type. Three types of oleogels were prepared, containing 95 % oil (sunflower, soy, olive) and 5 % beeswax as a structuring agent, melted at 90 °C. Polarized light microscopy (PLM) images were acquired, and fatty acid composition, peroxide index and free fatty acid content were determined using official methods. A total of 240 oleogel and 92 oil spectra were obtained for each instrument. After spectra pretreatment, Principal Component Analysis (PCA) was performed, and two classification methods were investigated. The Data Driven - Soft Independent Modelling of Class Analogy (DD-SIMCA) and Partial Least Squares Discriminant Analysis (PLS-DA) models demonstrated 95 % to 100 % of accuracy for the external test set. In conclusion, the use of vibrational spectroscopy using handheld and portable instruments in tandem with chemometrics showed to be an efficient alternative for classifying oils and oleogels and could be extended to other food samples. Although the classification of vegetable oils by NIR is widely used and known, this work proposes the classification of different types of oil in oleogel matrices, which has not yet been explored in the literature.


Subject(s)
Chemometrics , Plant Oils , Fatty Acids/chemistry , Spectrum Analysis , Organic Chemicals
7.
Environ Pollut ; 346: 123688, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38431247

ABSTRACT

One challenge of the citrus industry is the treatment and disposal of its effluents due to their high toxicity, substantial organic load, and consequent resistance to conventional biotechnological processes. This study introduces a novel approach, using electrochemical oxidation with a boron-doped diamond anode to efficiently remove organic compounds from biodegraded pulp wash (treated using the fungus Pleurotus sajor-caju.) The findings reveal that employing a current density of 20 mA cm-2 achieves notable results, including a 44.1% reduction in color, a 70.0% decrease in chemical oxygen demand, an 88.0% reduction in turbidity, and an impressive 99.7% removal of total organic carbon (TOC) after 6 h of electrolysis. The energy consumption was estimated at 2.93 kWh g-1 of removed TOC. This sequential biological-electrochemical procedure not only significantly reduced the mortality rate (85%) of Danio rerio embryos but also reduced the incidence of morphologically altered parameters. Regarding acute toxicity (LC50) of the residue, the process demonstrated a mortality reduction of 6.97% for D. rerio and a 40.88% lethality decrease for Lactuca sativa seeds. The substantial reduction in toxicity and organic load observed in this study highlights the potential applicability of combined biological and electrochemical treatments for real agroindustrial residues or their effluents.


Subject(s)
Diamond , Water Pollutants, Chemical , Diamond/chemistry , Water Pollutants, Chemical/analysis , Electrolysis/methods , Organic Chemicals , Electrodes , Oxidation-Reduction
8.
Nature ; 627(8002): 116-122, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38355803

ABSTRACT

Terrestrial animal biodiversity is increasingly being lost because of land-use change1,2. However, functional and energetic consequences aboveground and belowground and across trophic levels in megadiverse tropical ecosystems remain largely unknown. To fill this gap, we assessed changes in energy fluxes across 'green' aboveground (canopy arthropods and birds) and 'brown' belowground (soil arthropods and earthworms) animal food webs in tropical rainforests and plantations in Sumatra, Indonesia. Our results showed that most of the energy in rainforests is channelled to the belowground animal food web. Oil palm and rubber plantations had similar or, in the case of rubber agroforest, higher total animal energy fluxes compared to rainforest but the key energetic nodes were distinctly different: in rainforest more than 90% of the total animal energy flux was channelled by arthropods in soil and canopy, whereas in plantations more than 50% of the energy was allocated to annelids (earthworms). Land-use change led to a consistent decline in multitrophic energy flux aboveground, whereas belowground food webs responded with reduced energy flux to higher trophic levels, down to -90%, and with shifts from slow (fungal) to fast (bacterial) energy channels and from faeces production towards consumption of soil organic matter. This coincides with previously reported soil carbon stock depletion3. Here we show that well-documented animal biodiversity declines with tropical land-use change4-6 are associated with vast energetic and functional restructuring in food webs across aboveground and belowground ecosystem compartments.


Subject(s)
Biodiversity , Energy Metabolism , Food Chain , Rainforest , Animals , Arthropods/metabolism , Bacteria/metabolism , Birds/metabolism , Carbon Sequestration , Feces , Fungi/metabolism , Indonesia , Oligochaeta/metabolism , Organic Chemicals/metabolism , Palm Oil , Rubber , Soil/chemistry , Tropical Climate
9.
Food Res Int ; 178: 113986, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38309886

ABSTRACT

This study is a bibliometric analysis and literature review on the use of oleogels (OGs), hydrogels (HGs) and hybrid gels (HYGs) in chocolate, compounds and spreads with the aim of reducing the saturated fat in these products. The articles were selected by analyzing titles, keywords and abstracts in the Web of Science (WoS), Scopus and Google Scholar databases. Supplementary documents were obtained from government sources, including patent registrations. The theoretical and practical aspects were critically analyzed, highlighting the main points of agreement and disagreement between the authors. The results revealed a lack of regulations and official guidelines that widely allow the use of OGs, HGs and HYGs in chocolate confectionery products. The type and characteristics of raw materials affect the properties of products. Replacing cocoa butter (CB) with OGs, HGs or HYGs also affects texture, melting point and behavior, and nutritional aspects. These substitutions can result in products with better sensory acceptance and health benefits, such as reducing saturated fat and promoting cardiovascular health. However, it is important to find the ideal combination and proportions of components to obtain the desired properties in the final products.


Subject(s)
Cacao , Chocolate , Chocolate/analysis , Hydrogels , Fatty Acids/analysis , Organic Chemicals
10.
Water Res ; 252: 121239, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38335753

ABSTRACT

Limited mineralization of organic phosphorus to phosphate during the anaerobic digestion process poses a significant challenge in the development of cost-effective nutrient recovery strategies from anaerobically digested poultry wastewater (ADPW). This study investigated the influence of organic acids on phosphorus solubilization from ADPW, followed by its recycling in the form of struvite using a bubble column electrolytic reactor (BCER) without adding chemicals. The impact of seeding on the efficiency of PO43- and NH3-N recovery as well as the size distribution of recovered precipitates from the acid pre-treated ADPW was also evaluated. Pre-treatment of the ADPW with oxalic acid achieved complete solubilization of phosphorus, reaching ∼100% extraction efficiency at pH 2.5. The maximum removal efficiency of phosphate and ammonia-nitrogen from the ADPW were 88.9% and 90.1%, respectively, while the addition of 5 and 10 g/L struvite seed to the BCER increased PO43- removal efficiency by 9.6% and 11.5%, respectively. The value of the kinetic rate constant, k, increased from 0.0176 min-1 (unseeded) to 0.0198 min-1, 0.0307 min-1, and 0.0375 min-1 with the seed loading rate of 2, 5, and 10 g/L, respectively. Concurrently, the average particle size rose from 75.3 µm (unseeded) to 82.1 µm, 125.7 µm, and 148.9 µm, respectively. Results from XRD, FTIR, EDS, and dissolved chemical analysis revealed that the solid product obtained from the recovery process was a multi-nutrient fertilizer consisting of 94.7% struvite with negligible levels of heavy metals.


Subject(s)
Poultry , Wastewater , Animals , Struvite , Phosphates/analysis , Phosphorus/analysis , Organic Chemicals , Nutrients/analysis , Chemical Precipitation
11.
Environ Pollut ; 345: 123527, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38336136

ABSTRACT

Chlorobenzene (CB) is a prevalent organic contaminant in water and soil environments. It presents high chemical stability and is resistant to both oxidation and reduction. In this study, we showed that CB was substantially removed by soluble Mn(III) produced during the reductive dissolution of colloidal MnO2 by naturally-occurring organic acids such as formate (FOR), oxalate (OX), and citrate (CIT). The removal rate was dependent on the physicochemical properties of organic acids. With strong electron-donating and coordination ability, OX and CIT promoted MnO2 dissolution and Mn(III) generation compared to FOR, but had adverse effects on the stability and reactivity of Mn(III). As a result, CB removal followed the order: MnO2/CIT > MnO2/FOR > MnO2/OX. Analysis of the transformation products showed that Mn(III) complexes acted as strong electrophiles, attacking the ortho/para carbons of the benzene ring and transforming CB to chlorophenols via an electrophilic substitution mechanism. The theoretical foundation of this proposed reaction mechanism was supplemented by quantum mechanical calculations. Together, the findings of this study provide new insights into the transformation of CB in natural environments and hold the potential to offer a novel strategy for the development of manganese oxide/ligand systems for CB elimination.


Subject(s)
Chlorophenols , Oxides , Oxides/chemistry , Manganese Compounds/chemistry , Oxidation-Reduction , Water , Organic Chemicals
12.
Food Chem ; 444: 138633, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38330607

ABSTRACT

The present study focused on investigating the stability and in vitro simulation characteristics of oil-in-water (O/W) and oleogel-in-water (Og/W) emulsions. Compared with O/W emulsion, the Og/W emulsion exhibited superior stability, with a more evenly spread droplet distribution, and the Og/W emulsion containing 3 % hemp seed protein (HSP) showed better stability against environmental factors, including heat treatment, ionic strength, and changes in pH. Additionally, the stability of Δ9-tetrahydrocannabinol (Δ9-THC) and cannabinol (CBN) and the in vitro digestion of hemp seed oil (HSO) were evaluated. The half-life of CBN in the Og/W emulsion was found to be 131.82 days, with a degradation rate of 0.00527. The in vitro simulation results indicated that the Og/W emulsion effectively delayed the intestinal digestion of HSO, and the bioaccessibility of Δ9-THC and CBN reached 56.0 % and 58.0 %, respectively. The study findings demonstrated that the Og/W emulsion constructed with oleogel and HSP, exhibited excellent stability.


Subject(s)
Cannabis , Plant Extracts , Cannabis/metabolism , Emulsions/metabolism , Cannabinol , Dronabinol , Water , Organic Chemicals
13.
J Environ Manage ; 354: 120299, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38368801

ABSTRACT

Copper (Cu) and zinc (Zn) have negative environmental impacts as they accumulate in the soil after pig manure is spread. Cu and Zn are essential elements in pig nutrition but due to their low retention rate, more than 90% of ingested Cu and Zn are excreted. A better understanding of the behaviour of these elements throughout the animal-manure-soil continuum according to feed composition and manure management chain is thus required to propose alternative ways to reduce these environmental impacts. The aim of this study was to determine the fate of Cu and Zn throughout this continuum by studying the effect of Cu and Zn contents in animal feed and in the manure management chain based on anaerobic digestion and composting. Faeces were collected from 24 finishing pigs fed with 4 different Cu and Zn dietary levels and sources of supplementation. Samples of faeces were exposed to mesophilic anaerobic digestion or to 5-week composting with straw. Concentrations of Cu and Zn in the faeces were highly dependent on dietary supplies and ranged from 38 to 188 mg Cu/kg DM and from 191 to 728 mg Zn/kg DM. Degradation of a significant fraction of organic matter during treatment led to a significant increase in Cu and Zn concentration relative to the product's dry matter (DM) content, which. Cu and Zn concentrations relative to DM content were twice as high after treatment whatever the content and the form of Cu and Zn dietary supplementation. Otherwise, effluent treatment tended to reduce the possible availability of Cu and Zn in final organic products according to water-extractible contents. This study clearly shows that feed management is the main lever for reducing the amount of Cu and Zn amount in pig effluents and hence in the soil. Appropriate treatment could also facilitate the supply of organic fertilisers to areas with soil deficiency, but feed strategies need to be adapted to the treatment chain to enable the production of good quality organic products that respect EU regulations.


Subject(s)
Manure , Zinc , Swine , Animals , Zinc/analysis , Copper/analysis , Feces , Soil , Organic Chemicals , Animal Feed
14.
Sci Rep ; 14(1): 4448, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38396015

ABSTRACT

The objective of this study was to evaluate the impact of dietary zinc supplementation in pre-weaned dairy calves on the phenotypic antimicrobial resistance (AMR) of fecal commensal bacteria. A repository of fecal specimens from a random sample of calves block-randomized into placebo (n = 39) and zinc sulfate (n = 28) groups collected over a zinc supplementation clinical trial at the onset of calf diarrhea, calf diarrheal cure, and the last day of 14 cumulative days of zinc or placebo treatment were analyzed. Antimicrobial susceptibility testing was conducted for Enterococcus spp. (n = 167) and E. coli (n = 44), with one representative isolate of each commensal bacteria tested per sample. Parametric survival interval regression models were constructed to evaluate the association between zinc treatment and phenotypic AMR, with exponentiated accelerated failure time (AFT) coefficients adapted for MIC instead of time representing the degree of change in AMR (MIC Ratio, MR). Findings from our study indicated that zinc supplementation did not significantly alter the MIC in Enterococcus spp. for 13 drugs: gentamicin, vancomycin, ciprofloxacin, erythromycin, penicillin, nitrofurantoin, linezolid, quinupristin/dalfopristin, tylosin tartrate, streptomycin, daptomycin, chloramphenicol, and tigecycline (MR = 0.96-2.94, p > 0.05). In E. coli, zinc supplementation was not associated with resistance to azithromycin (MR = 0.80, p > 0.05) and ceftriaxone (MR = 0.95, p > 0.05). However, a significant reduction in E. coli MIC values was observed for ciprofloxacin (MR = 0.17, 95% CI 0.03-0.97) and nalidixic acid (MR = 0.28, 95% CI 0.15-0.53) for zinc-treated compared to placebo-treated calves. Alongside predictions of MIC values generated from these 17 AFT models, findings from this study corroborate the influence of age and antimicrobial exposure on phenotypic AMR.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Animals , Cattle , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Zinc/pharmacology , Escherichia coli , Drug Resistance, Bacterial , Anti-Infective Agents/pharmacology , Enterococcus , Diarrhea/drug therapy , Diarrhea/veterinary , Diarrhea/microbiology , Organic Chemicals/pharmacology , Dietary Supplements , Ciprofloxacin/pharmacology
15.
Food Chem ; 445: 138754, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38364496

ABSTRACT

The antioxidant activity of curcumin and curcumin esters was investigated in oleogel and emulgel produced by linseed oil. In the initiation phase, curcumin acetate at 1.086 mM concentration showed the highest antioxidant activity in linseed oil, while curcumin at 2.172 mM concentration showed the highest antioxidant activity in oleogel. In the propagation phase, curcumin and curcumin esters exhibited higher efficiency in linseed oil samples than those of oleogel samples. In the initiation phase, curcumin hexanoate showed higher antioxidant activity than curcumin acetate and curcumin butyrate, while curcumin hexanoate showed lower efficiency than curcumin acetate and curcumin butyrate in the propagation phase. Investigating the mechanism of action of curcumin and curcumin esters in oleogel and emulgel showed that in addition to inhibiting peroxyl radicals, curcumin and curcumin esters were likely to pro-oxidatively attack hydroperoxides. Also, curcumin and curcumin esters radicals were likely to attack lipid substrates in these systems.


Subject(s)
Antioxidants , Curcumin , Antioxidants/pharmacology , Linseed Oil/pharmacology , Curcumin/pharmacology , Caproates , Esters , Butyrates , Acetates , Organic Chemicals
16.
Adv Healthc Mater ; 13(8): e2303095, 2024 03.
Article in English | MEDLINE | ID: mdl-38175177

ABSTRACT

Androgenetic alopecia (AGA) is a prevalent systemic disease caused by diverse factors, for which effective treatments are currently limited. Herein, the oleogel (OG) containing copper-curcumin (CuR) nanoparticles is developed, designated as CuRG, which is also combined with traditional naturopathic scraping (Gua Sha, SCR) as a multifunctional therapy for AGA. With the assistance of lipophilic OG and SCR, CuR can efficaciously penetrate the epidermal and dermal regions where most hair follicles (HFs) reside, thereby releasing curcumin (CR) and copper ions (Cu2+) subcutaneously to facilitate hair regeneration. Concomitantly, the mechanical stimulation induced by SCR promotes the formation of new blood vessels, which is conducive to reshaping the microenvironment of HFs. This study validates that the combination of CuRG and SCR is capable of systematically interfering with different pathological processes, ranging from improvement of perifollicular microenvironment (oxidative stress and insufficient vascularization), regulation of inflammatory responses to degradation of androgen receptor, thus potentiating hair growth. Compared with minoxidil, a widely used clinical drug for AGA therapy, the designed synergistic system displays augmented hair regeneration in the AGA mouse model.


Subject(s)
Copper , Curcumin , Animals , Mice , Copper/pharmacology , Curcumin/pharmacology , Alopecia/drug therapy , Alopecia/metabolism , Alopecia/pathology , Hair/metabolism , Organic Chemicals
17.
Food Chem ; 442: 138384, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38219567

ABSTRACT

A nucleic acid aptamer based thermally oxidized porous silicon/zinc oxide microarray chip was constructed for the detection of ochratoxin A. The hybrid chains formed by aptamer and complementary chains labeled with fluorescent groups and fluorescent burst groups were used as recognition molecules, and the detection of toxins was accomplished on the chip by the principle of fluorescence signal burst and recovery. The modified QuEChERS method was used for sample pretreatment and the performance of the method was evaluated. The results showed that the linear range was 0.02 âˆ¼ 200 ng/kg with the detection limit of 0.0196 ng/kg under the optimal detection conditions. The method was applied to different cereals with the recoveries of 90.30 âˆ¼ 111.69 %. The developed microarray chip has the advantages of being cost-effective, easy to prepare, sensitive and specific, and can provide a new method for the detection of other toxins.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Nucleic Acids , Ochratoxins , Zinc Oxide , Silicon , Edible Grain/chemistry , Porosity , Zinc , Limit of Detection , Aptamers, Nucleotide/genetics , Ochratoxins/analysis , Silicon Dioxide , Organic Chemicals , Biosensing Techniques/methods
18.
J Food Sci ; 89(2): 1098-1113, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38235990

ABSTRACT

Hibiscus sabdariffa has gained increasing attention from consumers as a natural, healthy food ingredient, leading to a myriad of available products, yet there is a lack of understanding of the quality and chemical diversity among commercially available hibiscus products. Here, we conducted a survey on the chemistry of 29 hibiscus products (calyces, beverages, and extracts). UHPLC-DAD and UHPLC-QQQ/MS methods with high sensitivity and selectivity were developed to evaluate the chemical profiles pertaining to the sensory attributes (color and taste). Two major anthocyanins (delphinidin-3-sambubioside and cyanindin-3-sambubioside), eight organic acids, and 23 phenolic acids were identified and quantified in hibiscus market products. The results showed that hibiscus samples contained < 0.001-2.372% of total anthocyanins, 0.073-78.002% of total organic acids, and 0.001-1.041% of total phenolic acids, and demonstrated significant variations in market products. This is the first time that an in-depth organic acid profiling was conducted on hibiscus products using UHPLC-QQQ/MS. This method can also be extended to chemical profiling, sensory analysis, quality control, authentication, and standardization of other natural products.


Subject(s)
Anthocyanins , Hibiscus , Hydroxybenzoates , Anthocyanins/analysis , Flowers/chemistry , Organic Chemicals , Phenols/analysis , Plant Extracts
19.
Int J Biol Macromol ; 254(Pt 1): 127758, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38287596

ABSTRACT

This study has explored the potential of plant-derived oil bodies (OBs)-based oleogels as novel drug delivery systems for in vitro release under simulated physiological conditions. To obtain stable OBs-based oleogels, gum arabic (GA) and chitosan (CH) were coated onto the curcumin-loaded OBs using an electrostatic deposition technique, followed by 2,3,4-trihydroxybenzaldehyde (TB) induced Schiff-base cross-linking. Microstructural analyses indicated successful encapsulation of curcumin into the hydrophobic domain of the OBs through a pH-driven method combined with ultrasound treatment. The curcumin encapsulation efficiency of OBs increased up to 83.65 % and 92.18 % when GA and GA-CH coatings were applied, respectively, compared to uncoated OBs (63.47 %). In addition, GA-CH coatings retained the structural integrity of oleogel droplets with superior oil-holding capacity (99.07 %), while TB addition induced interconnected 3D-network structures with excellent gel strength (≥4.8 × 105 Pa) and thermal stability (≥80 °C). GA-CH coated oleogels appeared to provide the best protection for loaded bioactive against UV irradiation and high temperature-induced degradation during long-term storage. The combination of biopolymer coatings and TB-induced Schiff-base cross-linking synergistically hindered the simulated gastric degradability of oleogels, releasing only 23.35 %, 12.46 % and 7.19 % of curcumin by GA, GA-CH and GA-CH-TB stabilized oleogels, respectively, while also resulting in sustained release effects during intestinal conditions.


Subject(s)
Chitosan , Curcumin , Gum Arabic/chemistry , Curcumin/chemistry , Chitosan/chemistry , Delayed-Action Preparations , Lipid Droplets , Plant Oils , Organic Chemicals
20.
Int J Biol Macromol ; 256(Pt 2): 128551, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38043659

ABSTRACT

The subtle balance between the interactions of polysaccharide molecules and the interactions of polysaccharide molecules with oil molecules is significantly important for developing polysaccharide-based polyunsaturated oleogels. Here, hydroxylpropyl methyl cellulose and xanthan gum were used to structure edible oleogels via emulsion-template methodology, while the effects of drying methods (hot-air drying (AD) and vacuum-freeze drying (FD)) and oil types (walnut, flaxseed and Moringa seed oil) on the structure, oil binding capacity (OBC), rheological properties, thermal behaviors and stability of oleogels were specially investigated. Compared with AD oleogels, FD oleogels exhibited significantly better OBC, enhanced gelation strength (G' value) and better capacity to holding oil after high temperature processing, which was attributed to the possibly increased oil-polysaccharide interactions. However, the weakened polysaccharide-polysaccharide interactions in FD oleogels failed in providing stronger physical interface or enough rigidity to restrict the migration of oil molecules. Polyunsaturated triacylglycerols in vegetable oils deeply participated in the construction of the network of AD oleogels through weak intermolecular non-covalent interactions, which in turn greatly changed the crystallization and melting behaviors of vegetables oils. In brief, this research may provide useful information for the development of polysaccharide-based polyunsaturated oil oleogels.


Subject(s)
Methylcellulose , Polysaccharides, Bacterial , Methylcellulose/chemistry , Plant Oils , Organic Chemicals
SELECTION OF CITATIONS
SEARCH DETAIL