Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Nature ; 607(7919): 534-539, 2022 07.
Article in English | MEDLINE | ID: mdl-35794475

ABSTRACT

Precise signalling between pollen tubes and synergid cells in the ovule initiates fertilization in flowering plants1. Contact of the pollen tube with the ovule triggers calcium spiking in the synergids2,3 that induces pollen tube rupture and sperm release. This process, termed pollen tube reception, entails the action of three synergid-expressed proteins in Arabidopsis: FERONIA (FER), a receptor-like kinase; LORELEI (LRE), a glycosylphosphatidylinositol-anchored protein; and NORTIA (NTA), a transmembrane protein of unknown function4-6. Genetic analyses have placed these three proteins in the same pathway; however, it remains unknown how they work together to enable synergid-pollen tube communication. Here we identify two pollen-tube-derived small peptides7 that belong to the rapid alkalinization factor (RALF) family8 as ligands for the FER-LRE co-receptor, which in turn recruits NTA to the plasma membrane. NTA functions as a calmodulin-gated calcium channel required for calcium spiking in the synergid. We also reconstitute the biochemical pathway in which FER-LRE perceives pollen-tube-derived peptides to activate the NTA calcium channel and initiate calcium spiking, a second messenger for pollen tube reception. The FER-LRE-NTA trio therefore forms a previously unanticipated receptor-channel complex in the female cell to recognize male signals and trigger the fertilization process.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Calcium Signaling , Calcium , Calmodulin-Binding Proteins , Membrane Glycoproteins , Phosphotransferases , Pollen Tube , Pollen , Arabidopsis/anatomy & histology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Calcium/metabolism , Calcium Channels/metabolism , Calmodulin-Binding Proteins/metabolism , Cell Membrane/metabolism , Fertilization , Membrane Glycoproteins/metabolism , Ovule/metabolism , Peptide Hormones/metabolism , Phosphotransferases/metabolism , Pollen/metabolism , Pollen Tube/metabolism
2.
Development ; 148(19)2021 10 01.
Article in English | MEDLINE | ID: mdl-34495331

ABSTRACT

Plant sexual and asexual reproduction through seeds (apomixis) is tightly controlled by complex gene regulatory programs, which are not yet fully understood. Recent findings suggest that RNA helicases are required for plant germline development. This resembles their crucial roles in animals, where they are involved in controlling gene activity and the maintenance of genome integrity. Here, we identified previously unknown roles of Arabidopsis RH17 during reproductive development. Interestingly, RH17 is involved in repression of reproductive fate and of elements of seed development in the absence of fertilization. In lines carrying a mutant rh17 allele, development of supernumerary reproductive cell lineages in the female flower tissues (ovules) was observed, occasionally leading to formation of two embryos per seed. Furthermore, seed coat, and putatively also endosperm development, frequently initiated autonomously. Such induction of several features phenocopying distinct elements of apomixis by a single mutation is unusual and suggests that RH17 acts in regulatory control of plant reproductive development. Furthermore, an in-depth understanding of its action might be of use for agricultural applications.


Subject(s)
Arabidopsis Proteins/genetics , DEAD-box RNA Helicases/genetics , Seeds/genetics , Apomixis , Arabidopsis , Arabidopsis Proteins/metabolism , DEAD-box RNA Helicases/metabolism , Endosperm/genetics , Endosperm/physiology , Mutation , Ovule/genetics , Ovule/metabolism , Ovule/physiology , Pollen/genetics , Pollen/metabolism , Pollen/physiology , Seeds/metabolism , Seeds/physiology
3.
Nature ; 592(7854): 433-437, 2021 04.
Article in English | MEDLINE | ID: mdl-33790463

ABSTRACT

Upon gamete fusion, animal egg cells secrete proteases from cortical granules to establish a fertilization envelope as a block to polyspermy1-4. Fertilization in flowering plants is more complex and involves the delivery of two non-motile sperm cells by pollen tubes5,6. Simultaneous penetration of ovules by multiple pollen tubes (polytubey) is usually avoided, thus indirectly preventing polyspermy7,8. How plant egg cells regulate the rejection of extra tubes after successful fertilization is not known. Here we report that the aspartic endopeptidases ECS1 and ECS2 are secreted to the extracellular space from a cortical network located at the apical domain of the Arabidopsis egg cell. This reaction is triggered only after successful fertilization. ECS1 and ECS2 are exclusively expressed in the egg cell and transcripts are degraded immediately after gamete fusion. ECS1 and ESC2 specifically cleave the pollen tube attractor LURE1. As a consequence, polytubey is frequent in ecs1 ecs2 double mutants. Ectopic secretion of these endopeptidases from synergid cells led to a decrease in the levels of LURE1 and reduced the rate of pollen tube attraction. Together, these findings demonstrate that plant egg cells sense successful fertilization and elucidate a mechanism as to how a relatively fast post-fertilization block to polytubey is established by fertilization-induced degradation of attraction factors.


Subject(s)
Arabidopsis/metabolism , Endopeptidases/metabolism , Fertilization , Ovule/metabolism , Pollen Tube/metabolism , Pollen/metabolism , Arabidopsis/cytology , Arabidopsis/enzymology , Arabidopsis Proteins/metabolism , Cell Fusion , Ovule/enzymology , Pollen/enzymology
4.
Int J Mol Sci ; 21(24)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348898

ABSTRACT

The main aim of this study was to compare the cytological difference between ovular mucilage cells in two Asteraceae species-Pilosella officinarum and Taraxacum officinale-in order to determine whether pectic epitopes, arabinogalactan proteins, or extensins are present. The immunocytochemical technique was used. Both the Taracacum and Pilosella genera have been used recently as models for understanding the mechanisms of apomixis. Knowledge of the presence of signal molecules (pectic epitopes, arabinogalactan proteins, and extensins) can help better understand the developmental processes in these plants during seed growth. The results showed that in Pilosella officinarum, there was an accumulation of pectins in the mucilage, including both weakly and highly esterified pectins, which was in contrast to the mucilage of Taraxacum officinale, which had low amounts of these pectins. However, Taraxacum protoplasts of mucilage cells were rich in weakly methyl-esterified pectins. While the mucilage contained arabinogalactan proteins in both of the studied species, the types of arabinogalactan proteins were different. In both of the studied species, extensins were recorded in the transmitting tissues. Arabinogalactan proteins as well as weakly and highly esterified pectins and extensins occurred in close proximity to calcium oxalate crystals in both Taraxacum and Pilosella cells.


Subject(s)
Asteraceae/metabolism , Cell Wall/metabolism , Epitopes/immunology , Mucoproteins/metabolism , Ovule/metabolism , Pectins/metabolism , Taraxacum/metabolism , Asteraceae/growth & development , Asteraceae/immunology , Cell Wall/immunology , Mucoproteins/immunology , Ovule/immunology , Pectins/immunology , Plant Proteins/immunology , Plant Proteins/metabolism , Seeds/immunology , Seeds/metabolism , Taraxacum/growth & development , Taraxacum/immunology
5.
Proc Natl Acad Sci U S A ; 117(51): 32757-32763, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33288691

ABSTRACT

After eukaryotic fertilization, gamete nuclei migrate to fuse parental genomes in order to initiate development of the next generation. In most animals, microtubules control female and male pronuclear migration in the zygote. Flowering plants, on the other hand, have evolved actin filament (F-actin)-based sperm nuclear migration systems for karyogamy. Flowering plants have also evolved a unique double-fertilization process: two female gametophytic cells, the egg and central cells, are each fertilized by a sperm cell. The molecular and cellular mechanisms of how flowering plants utilize and control F-actin for double-fertilization events are largely unknown. Using confocal microscopy live-cell imaging with a combination of pharmacological and genetic approaches, we identified factors involved in F-actin dynamics and sperm nuclear migration in Arabidopsis thaliana (Arabidopsis) and Nicotiana tabacum (tobacco). We demonstrate that the F-actin regulator, SCAR2, but not the ARP2/3 protein complex, controls the coordinated active F-actin movement. These results imply that an ARP2/3-independent WAVE/SCAR-signaling pathway regulates F-actin dynamics in female gametophytic cells for fertilization. We also identify that the class XI myosin XI-G controls active F-actin movement in the Arabidopsis central cell. XI-G is not a simple transporter, moving cargos along F-actin, but can generate forces that control the dynamic movement of F-actin for fertilization. Our results provide insights into the mechanisms that control gamete nuclear migration and reveal regulatory pathways for dynamic F-actin movement in flowering plants.


Subject(s)
Actin-Related Protein 2-3 Complex/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Myosins/metabolism , Nicotiana/metabolism , Actins/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Nucleus/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Magnoliopsida/metabolism , Myosins/genetics , Ovule/metabolism , Plants, Genetically Modified , Pollen/metabolism
6.
Plant J ; 104(5): 1399-1409, 2020 12.
Article in English | MEDLINE | ID: mdl-33015884

ABSTRACT

Sex differences and evolutionary differences are critical biological issues. Ginkgo is an ancient lineage of dioecious gymnosperms with special value for studying the mechanism of sex determination in plants. However, the major genetic basic underlying sex chromosomes remains to be uncovered. In this study, we identify the sex-determining region of Ginkgo and locate it to the area from megabases 48 to 75 on chromosome 2. We find that the male sex-determining region of Ginkgo contains more than 200 genes, including four MADS-box genes, demonstrating that the Ginkgo sex determination system is of the XY type. We also find that genetic sex differences result in specialized flavonoid metabolism and regulation in each sex. These findings establish a foundation for revealing the molecular mechanism of sexual dimorphism and promoting the development of the Ginkgo industry.


Subject(s)
Ginkgo biloba/genetics , Ovule/genetics , Plant Proteins/genetics , Pollen/genetics , Chromosomes, Plant , Genetic Markers , Genome, Plant , Ginkgo biloba/metabolism , MADS Domain Proteins/genetics , Ovule/metabolism , Pollen/metabolism , Sex Determination Processes
7.
Nature ; 579(7800): 561-566, 2020 03.
Article in English | MEDLINE | ID: mdl-32214247

ABSTRACT

Species that propagate by sexual reproduction actively guard against the fertilization of an egg by multiple sperm (polyspermy). Flowering plants rely on pollen tubes to transport their immotile sperm to fertilize the female gametophytes inside ovules. In Arabidopsis, pollen tubes are guided by cysteine-rich chemoattractants to target the female gametophyte1,2. The FERONIA receptor kinase has a dual role in ensuring sperm delivery and blocking polyspermy3. It has previously been reported that FERONIA generates a female gametophyte environment that is required for sperm release4. Here we show that FERONIA controls several functionally linked conditions to prevent the penetration of female gametophytes by multiple pollen tubes in Arabidopsis. We demonstrate that FERONIA is crucial for maintaining de-esterified pectin at the filiform apparatus, a region of the cell wall at the entrance to the female gametophyte. Pollen tube arrival at the ovule triggers the accumulation of nitric oxide at the filiform apparatus in a process that is dependent on FERONIA and mediated by de-esterified pectin. Nitric oxide nitrosates both precursor and mature forms of the chemoattractant LURE11, respectively blocking its secretion and interaction with its receptor, to suppress pollen tube attraction. Our results elucidate a mechanism controlled by FERONIA in which the arrival of the first pollen tube alters ovular conditions to disengage pollen tube attraction and prevent the approach and penetration of the female gametophyte by late-arriving pollen tubes, thus averting polyspermy.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Arabidopsis/metabolism , Fertilization , Intercellular Signaling Peptides and Proteins/metabolism , Nitric Oxide/metabolism , Ovule/metabolism , Pectins/metabolism , Phosphotransferases/metabolism , Pollen Tube/metabolism , Cell Wall/chemistry , Cell Wall/metabolism , Ovule/cytology , Pectins/chemistry , Pollen Tube/cytology
8.
Plant Cell ; 32(4): 1270-1284, 2020 04.
Article in English | MEDLINE | ID: mdl-32086364

ABSTRACT

Male and female gametophytes are generated from micro- or megaspore mother cells through consecutive meiotic and mitotic cell divisions. Defects in these divisions often result in gametophytic lethality. Gametophytic lethality was also reported when genes encoding ribosome-related proteins were mutated. Although numerous ribosomal proteins (RPs) have been identified in plants based on homology with their yeast and metazoan counterparts, how RPs are regulated, e.g., through dynamic subcellular targeting, is unknown. We report here that an Arabidopsis (Arabidopsis thaliana) importin ß, KETCH1 (karyopherin enabling the transport of the cytoplasmic HYL1), is critical for gametogenesis. Karyopherins are molecular chaperones mediating nucleocytoplasmic protein transport. However, the role of KETCH1 during gametogenesis is independent of HYPONASTIC LEAVES 1 (HYL1), a previously reported KETCH1 cargo. Instead, KETCH1 interacts with several RPs and is critical for the nuclear accumulation of RPL27a, whose mutations caused similar gametophytic defects. We further showed that knocking down KETCH1 caused reduced ribosome biogenesis and translational capacity, which may trigger the arrest of mitotic cell cycle progression and lead to gametophytic lethality.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Cell Nucleus/metabolism , Gametogenesis, Plant , Karyopherins/metabolism , Ribosomal Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/ultrastructure , Cell Cycle Checkpoints , Cell Nucleus/ultrastructure , Down-Regulation , Gene Expression Regulation, Plant , Loss of Function Mutation/genetics , Ovule/metabolism , Ovule/ultrastructure , Pollen/growth & development , Pollen/ultrastructure , Protein Binding , Protein Biosynthesis , RNA-Binding Proteins/metabolism , Ribosomes/metabolism , Seeds/metabolism , Seeds/ultrastructure
9.
Mol Reprod Dev ; 87(3): 370-373, 2020 03.
Article in English | MEDLINE | ID: mdl-31515875

ABSTRACT

Plants have evolved a battery of mechanisms that potentially act as polyspermy barriers. Supernumerary sperm fusion to one egg cell has consequently long remained a hypothetical concept. The recent discovery that polyspermy in flowering plants is not lethal but generates viable triploid plants is a game changer affecting the field of developmental biology, evolution, and plant breeding. The establishment of protocols to artificially induce polyspermy together with the development of a high-throughput assay to identify and trace polyspermic events in planta now provide powerful tools to unravel mechanisms of polyspermy regulation. These achievements are likely to open new avenues for animal polyspermy research as well, where forward genetic approaches are hampered by the fatal outcome of supernumerary sperm fusion.


Subject(s)
Magnoliopsida/genetics , Pollination/physiology , Sperm-Ovum Interactions/genetics , Triploidy , Animals , Female , Male , Oocytes/metabolism , Ovule/metabolism , Plant Breeding , Pollen/metabolism , Seeds/metabolism , Spermatozoa/metabolism , Zygote/metabolism
10.
Int J Mol Sci ; 20(19)2019 Sep 21.
Article in English | MEDLINE | ID: mdl-31546611

ABSTRACT

Methylation of cytosine (5-meC) is a critical epigenetic modification in many eukaryotes, and genomic DNA methylation landscapes are dynamically regulated by opposed methylation and demethylation processes. Plants are unique in possessing a mechanism for active DNA demethylation involving DNA glycosylases that excise 5-meC and initiate its replacement with unmodified C through a base excision repair (BER) pathway. Plant BER-mediated DNA demethylation is a complex process involving numerous proteins, as well as additional regulatory factors that avoid accumulation of potentially harmful intermediates and coordinate demethylation and methylation to maintain balanced yet flexible DNA methylation patterns. Active DNA demethylation counteracts excessive methylation at transposable elements (TEs), mainly in euchromatic regions, and one of its major functions is to avoid methylation spreading to nearby genes. It is also involved in transcriptional activation of TEs and TE-derived sequences in companion cells of male and female gametophytes, which reinforces transposon silencing in gametes and also contributes to gene imprinting in the endosperm. Plant 5-meC DNA glycosylases are additionally involved in many other physiological processes, including seed development and germination, fruit ripening, and plant responses to a variety of biotic and abiotic environmental stimuli.


Subject(s)
5-Methylcytosine/metabolism , DNA Demethylation , DNA Glycosylases/metabolism , DNA, Plant/genetics , Plants/enzymology , DNA Glycosylases/chemistry , DNA Methylation , DNA, Plant/chemistry , Endosperm/metabolism , Gene Expression Regulation, Plant , Genomic Instability/genetics , Ovule/metabolism , Pollen/metabolism , Stress, Physiological/genetics
11.
Development ; 146(14)2019 07 24.
Article in English | MEDLINE | ID: mdl-31262724

ABSTRACT

In flowering plants, anther dehiscence and pollen release are essential for sexual reproduction. Anthers dehisce after cell wall degradation weakens stomium cell junctions in each anther locule, and desiccation creates mechanical forces that open the locules. Either effect or both together may break stomium cell junctions. The microRNA miR167 negatively regulates ARF6 and ARF8, which encode auxin response transcription factors. Arabidopsis mARF6 or mARF8 plants with mutated miR167 target sites have defective anther dehiscence and ovule development. Null mir167a mutations recapitulated mARF6 and mARF8 anther and ovule phenotypes, indicating that MIR167a is the main miR167 precursor gene that delimits ARF6 and ARF8 expression in these organs. Anthers of mir167a or mARF6/8 plants overexpressed genes encoding cell wall loosening functions associated with cell expansion, and grew larger than wild-type anthers did starting at flower stage 11. Experimental desiccation enabled dehiscence of miR167-deficient anthers, indicating competence to dehisce. Conversely, high humidity conditions delayed anther dehiscence in wild-type flowers. These results support a model in which miR167-mediated anther growth arrest permits anther dehiscence. Without miR167 regulation, excess anther growth delays dehiscence by prolonging desiccation.


Subject(s)
Flowers/growth & development , Flowers/genetics , MicroRNAs/physiology , Ovule/growth & development , Agrobacterium tumefaciens , Arabidopsis , Cell Survival/genetics , Cell Wall/metabolism , Dehydration/genetics , Dehydration/metabolism , Gene Expression Regulation, Plant , Ovule/genetics , Ovule/metabolism , Phenotype , Plants, Genetically Modified , Pollen/genetics , Pollen/metabolism
12.
Plant Physiol Biochem ; 135: 9-18, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30496891

ABSTRACT

Arabinogalactan proteins (AGPs), i.e. a subfamily of hydroxyproline-rich proteins (HRGPs), are widely distributed in the plant kingdom. For many years, AGPs have been connected with the multiple phases of plant reproduction and developmental processes. Currently, extensive knowledge is available about their various functions, i.e. involvement in pollen grain formation, initiation of pollen grain germination, pollen tube guidance in the transmission tissue of pistil and ovule nucellus, and function as a signaling molecule during cell-cell communication. Although many studies have been performed, the mechanism of action, the heterogeneous molecule structure, and the connection with other extracellular matrix components have not been sufficiently explained. The aim of this work was to gather and describe the most important information on the distribution of AGPs in gametophyte development. The present review provides a summary of the first reports about AGPs and the most recent knowledge about their functions during male and female gametophyte formation.


Subject(s)
Mucoproteins/metabolism , Ovule/growth & development , Plant Proteins/metabolism , Pollen/growth & development , Mucoproteins/physiology , Ovule/metabolism , Plant Proteins/physiology , Pollen/metabolism
13.
Development ; 145(23)2018 11 28.
Article in English | MEDLINE | ID: mdl-30487178

ABSTRACT

All flowering plants exhibit a unique type of sexual reproduction called 'double fertilization' in which each pollen tube-delivered sperm cell fuses with an egg and a central cell. Proteins that localize to the plasma membrane of gametes regulate one-to-one gamete pairing and fusion between male and female gametes for successful double fertilization. Here, we have identified a membrane protein from Lilium longiflorum generative cells using proteomic analysis and have found that the protein is an ortholog of Arabidopsis DUF679 DOMAIN MEMBRANE PROTEIN 9 (DMP9)/DUO1-ACTIVATED UNKNOWN 2 (DAU2). The flowering plant DMP9 proteins analyzed in this study were predicted to have four transmembrane domains and be specifically expressed in both generative and sperm cells. Knockdown of DMP9 resulted in aborted seeds due to single fertilization of the central cell. Detailed imaging of DMP9-knockdown sperm cells during in vivo and semi-in vitro double fertilization revealed that DMP9 is involved in gamete interaction that leads to correct double fertilization.


Subject(s)
Fertilization , Magnoliopsida/metabolism , Membrane Proteins/metabolism , Plant Proteins/metabolism , Pollen/metabolism , Arabidopsis , Arabidopsis Proteins/chemistry , Cell Adhesion , Lilium/cytology , Lilium/metabolism , Magnoliopsida/cytology , Ovule/cytology , Ovule/metabolism , Plant Infertility , Seeds/metabolism
14.
Biochem Biophys Res Commun ; 505(1): 176-180, 2018 10 20.
Article in English | MEDLINE | ID: mdl-30243715

ABSTRACT

Protein phosphatase 2A (PP2A) is a heterotrimeric protein complex conserved among eukaryotes. The B subunit of PP2A determines the substrate specificity of the PP2A holoenzyme, and is classified into the B, B', B″ and B‴ families. Arabidopsis thaliana has two isoforms of the B-family subunit (ATBA and ATBB). A double knockout of their genes is lethal, but which developmental process is primarily impaired by the double knockout is unclear. Identifying such a process helps understand PP2A-mediated signaling more deeply. Here, genetic characterization of new knockout mutants for these genes shows that they are necessary for pollen development but not for female gametophyte development. Compared to wild-type pollen grains, the mutant pollen grains exhibited lower enzyme activities, germinated less frequently on stigmas, and exhibited the aberrant numbers of sperm cell nuclei, suggesting that ATBA and ATBB play pleiotropic roles in pollen development. The amino acids stabilizing the interaction between the human PP2A A and B-family subunits are conserved in an Arabidopsis A subunit (AtPP2AA2), ATBA and ATBB. His-tagged AtPP2AA2 co-immunoprecipitated with either Myc-tagged ATBA or Myc-tagged ATBB in vitro, confirming their interactions. Proteins that regulate pollen development and that undergo dephosphorylation are likely primary targets of ATBA and ATBB.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Isoenzymes/metabolism , Ovule/metabolism , Pollen/metabolism , Protein Phosphatase 2/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Isoenzymes/genetics , Mutation , Ovule/genetics , Ovule/growth & development , Plants, Genetically Modified , Pollen/genetics , Pollen/growth & development , Protein Binding , Protein Phosphatase 2/genetics
15.
J Plant Physiol ; 230: 1-12, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30134217

ABSTRACT

Ovule and seed development in plants has long fascinated the scientific community given the complex cell coordination implicated in these processes. These cell events are highly conserved but are not necessarily representative of all plants. In this study, with the aim of obtaining information regarding the cellular patterns that follow the usual development of the ovule and the zygotic embryo, we carried out an integral anatomical study of the Capsicum chinense Jacq., floral buds and seeds at various days during maturation. This study allowed us to identify the main histo-morphological stages accompanying the transition of somatic cells into the macrospore, female gamete, and the zygotic embryogenesis. This knowledge is fundamental for future biotechnological research focused on solving the morphological recalcitrance observed during the in vitro induction of somatic or microspore embryogenesis in Capsicum. For the first time in C. chinense, we have described the hypostases, a putative source of plant growth regulators, and "the corrosion cavity", a space around the embryo. Additionally, the cell wall pectin-esterification status was investigated by immunohistology. At early stages of morphogenesis, the pectin is highly methyl-esterified; however, methyl-esterification decreases gradually throughout the process. A comparison of the results obtained here, together with the histo- and immunological changes occurring during the somatic and microspore embryogenesis, should help to elucidate the biochemical mechanisms that trigger the morphogenic events in Capsicum spp.


Subject(s)
Capsicum/growth & development , Ovule/growth & development , Pectins/metabolism , Seeds/growth & development , Capsicum/anatomy & histology , Capsicum/metabolism , Esterification , Flowers/anatomy & histology , Flowers/growth & development , Flowers/metabolism , Fluorescent Antibody Technique , Ovule/anatomy & histology , Ovule/metabolism , Seeds/anatomy & histology , Seeds/metabolism
16.
Sci Rep ; 8(1): 2796, 2018 02 12.
Article in English | MEDLINE | ID: mdl-29434276

ABSTRACT

During reproduction in flowering plants, the male gametophyte delivers an immotile male gamete to the female gametophyte in the pistil by formation of pollen tubes. In Arabidopsis thaliana, two synergid cells situated on either side of the egg cell produce cysteine-rich chemoattractant peptide LURE that guides the pollen tube to the female gametophyte for sexual reproduction. Recently, in Arabidopsis thaliana, Pollen Receptor Kinase 3 (PRK3), along with PRK1, PRK6, and PRK8, have been predicted to be the receptors responsible for sensing LURE. These receptors belong to the Leucine Rich Repeat Receptor Like Kinases (LRR-RLKs), the largest family of receptor kinases found in Arabidopsis thaliana. How PRKs regulate the growth and development of the pollen tube remains elusive. In order to better understand the PRK-mediated signaling mechanism in pollen tube growth and guidance, we have determined the crystal structure of the extracellular domain (ecd) of PRK3 at 2.5 Å, which resembles the SERK family of plant co-receptors. The structure of ecdPRK3 is composed of a conserved surface that coincides with the conserved receptor-binding surface of the SERK family of co-receptors. Our structural analyses of PRK3 have provided a template for future functional studies of the PRK family of LRR-RLK receptors in the regulation of pollen tube development.


Subject(s)
Arabidopsis Proteins/metabolism , Plant Proteins/metabolism , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Arabidopsis/metabolism , Flowers/growth & development , Ovule/metabolism , Pollen/metabolism , Pollen Tube/growth & development , Pollination , Reproduction/physiology , Signal Transduction/physiology
17.
Plant Cell Rep ; 37(2): 293-306, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29080908

ABSTRACT

KEY MESSAGE: BbrizGID1 is expressed in the nucellus of apomictic Brachiaria brizantha, previous to aposporous initial differentiation. AtGID1a overexpression triggers differentiation of Arabidopsis thaliana MMC-like cells, suggesting its involvement in ovule development. GIBBERELLIN-INSENSITIVE DWARF1 (GID1) is a gibberellin receptor previously identified in plants and associated with reproductive development, including ovule formation. In this work, we characterized the Brachiaria brizantha GID1 gene (BbrizGID1). BbrizGID1 showed up to 92% similarity to GID1-like gibberellin receptors of other plants of the Poaceae family and around 58% to GID1-like gibberellin receptors of Arabidopsis thaliana. BbrizGID1 was more expressed in ovaries at megasporogenesis than in ovaries at megagametogenesis of both sexual and apomictic plants. In ovules, BbrizGID1 transcripts were detected in the megaspore mother cell (MMC) of sexual and apomictic B. brizantha. Only in the apomictic plants, expression was also observed in the surrounding nucellar cells, a region in which aposporous initial cells differentiate to form the aposporic embryo sac. AtGID1a ectopic expression in Arabidopsis determines the formation of MMC-like cells in the nucellus, close to the MMC, that did not own MMC identity. Our results suggest that GID1 might be involved in the proper differentiation of a single MMC during ovule development and provide valuable information on the role of GID1 in sexual and apomictic reproduction.


Subject(s)
Brachiaria/genetics , Flowers/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Ovule/genetics , Plant Proteins/genetics , Amino Acid Sequence , Apomixis/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Brachiaria/growth & development , Brachiaria/metabolism , Flowers/growth & development , Flowers/metabolism , Ovule/growth & development , Ovule/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified , Poaceae/genetics , Poaceae/growth & development , Poaceae/metabolism , Pollen/genetics , Pollen/growth & development , Pollen/metabolism , Sequence Homology, Amino Acid
18.
J Integr Plant Biol ; 59(9): 657-668, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28782297

ABSTRACT

Both female and male gametophytes harbor companion cells and gametes. MET1, a DNA methyltransferase, is down-regulated in companion cells. However, how MET1 is differentially regulated in gametophytes remains unexplored. ARID1, a transcription factor that is specifically depleted in sperm cells, is occupied by MET1-dependent CG methylation. Here, we show that MET1 confines ARID1 to the vegetative cell of male gametes, but ARID1 conversely represses MET1 in the central cell of female gametes. Compared to the vegetative cell-localization in wild type pollen, ARID1 expands to sperm cells in the met1 mutant. To understand whether MET1-dependent ARID1 inhibition exists during female gametogenesis, we first show that ARID1 is expressed in the megaspore mother cell (MMC), ARID1 but not MET1 is detectable in the central cell at maturity. Interestingly, compared to the absence of MET1 in the central cell and the egg cell of wild type ovules, MET1 significantly accumulates in these two cells in arid1 ovules. Lastly, we show that both ARID1 and MET1 are required for the cell specification of MMC. Collectively, our results uncover a reciprocal dependence between ARID1 and MET1, and provide a clue to further understand how the specification of MMC is likely regulated by DNA methylation.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , DNA (Cytosine-5-)-Methyltransferases/metabolism , Nuclear Proteins/metabolism , Ovule/metabolism , Pollen/metabolism , Transcription Factors/metabolism
19.
Plant Physiol ; 174(1): 258-275, 2017 May.
Article in English | MEDLINE | ID: mdl-28270625

ABSTRACT

Tetrapyrrole biosynthesis is one of the most essential metabolic pathways in almost all organisms. Coproporphyrinogen III oxidase (CPO) catalyzes the conversion of coproporphyrinogen III into protoporphyrinogen IX in this pathway. Here, we report that mutation in the Arabidopsis (Arabidopsis thaliana) CPO-coding gene At5g63290 (AtHEMN1) adversely affects silique length, ovule number, and seed set. Athemn1 mutant alleles were transmitted via both male and female gametes, but homozygous mutants were never recovered. Plants carrying Athemn1 mutant alleles showed defects in gametophyte development, including nonviable pollen and embryo sacs with unfused polar nuclei. Improper differentiation of the central cell led to defects in endosperm development. Consequently, embryo development was arrested at the globular stage. The mutant phenotype was completely rescued by transgenic expression of AtHEMN1 Promoter and transcript analyses indicated that AtHEMN1 is expressed mainly in floral tissues and developing seeds. AtHEMN1-green fluorescent protein fusion protein was found targeted to mitochondria. Loss of AtHEMN1 function increased coproporphyrinogen III level and reduced protoporphyrinogen IX level, suggesting the impairment of tetrapyrrole biosynthesis. Blockage of tetrapyrrole biosynthesis in the AtHEMN1 mutant led to increased reactive oxygen species (ROS) accumulation in anthers and embryo sacs, as evidenced by nitroblue tetrazolium staining. Our results suggest that the accumulated ROS disrupts mitochondrial function by altering their membrane polarity in floral tissues. This study highlights the role of mitochondrial ROS homeostasis in gametophyte and seed development and sheds new light on tetrapyrrole/heme biosynthesis in plant mitochondria.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Coproporphyrinogen Oxidase/metabolism , Germ Cells, Plant/metabolism , Mitochondria/enzymology , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Coproporphyrinogen Oxidase/genetics , Coproporphyrinogens/metabolism , Endosperm/genetics , Endosperm/growth & development , Endosperm/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Germ Cells, Plant/growth & development , Mitochondria/metabolism , Mutation , Ovule/genetics , Ovule/growth & development , Ovule/metabolism , Plants, Genetically Modified , Pollen/genetics , Pollen/growth & development , Pollen/metabolism , Reactive Oxygen Species/metabolism , Seeds/genetics , Seeds/growth & development , Seeds/metabolism
20.
Plant J ; 90(2): 261-275, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28107777

ABSTRACT

In this work we identified VACUOLELESS GAMETOPHYTES (VLG) as a DC1 domain-containing protein present in the endomembrane system and essential for development of both female and male gametophytes. VLG was originally annotated as a gene coding for a protein of unknown function containing DC1 domains. DC1 domains are cysteine- and histidine-rich zinc finger domains found exclusively in the plant kingdom that have been named on the basis of similarity with the C1 domain present in protein kinase C (PKC). In Arabidopsis, both male and female gametophytes are characterized by the formation of a large vacuole early in development; this is absent in vlg mutant plants. As a consequence, development is arrested in embryo sacs and pollen grains at the first mitotic division. VLG is specifically located in multivesicular bodies or pre-vacuolar compartments, and our results suggest that vesicular fusion is affected in the mutants, disrupting vacuole formation. Supporting this idea, AtPVA12 - a member of the SNARE vesicle-associated protein family and previously related to a sterol-binding protein, was identified as a VLG interactor. A role for VLG is proposed mediating vesicular fusion in plants as part of the sterol trafficking machinery required for vacuole biogenesis in plants.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Ovule/metabolism , Pollen/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Ovule/genetics , Ovule/growth & development , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism , Pollen/genetics , Pollen/growth & development , Protein Kinase C/genetics , Protein Kinase C/metabolism , Vacuoles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL