Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 202
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Clin Exp Pharmacol Physiol ; 51(4): e13847, 2024 04.
Article in English | MEDLINE | ID: mdl-38382534

ABSTRACT

The use of all-trans retinoic acid and arsenic trioxide resulted in favourable therapeutic responses in standard-risk acute promyelocytic leukaemia (APL) patients. However, resistance to these agents has made treating the high-risk subgroup more problematic, and possible side effects limit their clinical dosages. Numerous studies have proven the cytotoxic properties of Gaillardin, one of the Inula oculus-christi-derived sesquiterpene lactones. Due to the adverse effects of arsenic trioxide on the high-risk subgroup of APL patients, we aimed to assess the cytotoxic effect of Gaillardin on HL-60 cells as a single or combined-form approach. The results of the trypan blue and MTT assays outlined the potent cytotoxic properties of Gaillardin. The flow cytometric analysis and the mRNA expression levels revealed that Gaillardin attenuated the proliferative capacity of HL-60 cells through cell cycle arrest and induced apoptosis via reactive oxygen species generation. Moreover, the results of synergistic experiments indicated that this sesquiterpene lactone sensitizes HL-60 cells to the cytotoxic effects of arsenic trioxide. Taken together, the findings of the present investigation highlighted the antileukemic characteristics of Gaillardin by inducing G1 cell cycle arrest and triggering apoptosis. Gaillardin acts as an antileukemic metabolite against HL-60 cells and this study provides new insight into treating APL patients, especially in the high-risk subgroup.


Subject(s)
Antineoplastic Agents , Leukemia , Sesquiterpenes , Humans , Arsenic Trioxide/pharmacology , HL-60 Cells , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Lactones/pharmacology , Lactones/therapeutic use , Sesquiterpenes/pharmacology , Sesquiterpenes/therapeutic use , Leukemia/drug therapy , Apoptosis , Oxides/pharmacology , Oxides/therapeutic use
2.
Anticancer Res ; 43(6): 2467-2476, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37247918

ABSTRACT

BACKGROUND/AIM: Arsenic trioxide (As2O3), a potent toxin in traditional Chinese medicine, has been utilized as an anticancer agent in Chinese culture for over a millennium. Betulin, commonly extracted from the bark of birch trees, has been identified for its pharmacological properties, including antibacterial, anti-inflammatory, antitumor, and antiviral activities. The aim of this study was to determine the efficacy and underlying anticancer signaling cascade induced by As2O3 and betulin in neuroblastoma cells. MATERIALS AND METHODS: SK-N-SH cells were treated with As2O3 with or without betulin. Cell viability and apoptotic signaling were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, measurement of mitochondrial membrane potential (MMP) loss and reactive oxygen species (ROS), and quantitative western blotting analysis. Student's t-test in addition to one- or two-way analysis of variance was used to examine significant differences between comparison groups. RESULTS: The combined treatment of As2O3 plus betulin was more effective than single treatments in suppressing cell viability and induction of apoptosis, which correlated well with elevated ROS levels. The apoptotic signaling cascade of As2O3 plus betulin was revealed as ROS elevation and relative loss of MMP, leading to the cleavage of caspase-3 and -9. As2O3 plus betulin treatment also reduced the expression of BCL2 apoptosis regulator, BH3-interacting domain death agonist, and BCL2-like-1. CONCLUSION: The novel combination of As2O3 plus betulin has the potential to serve as a practical anti-neuroblastoma drug.


Subject(s)
Antineoplastic Agents , Arsenicals , Humans , Arsenic Trioxide/pharmacology , Reactive Oxygen Species/metabolism , Oxides/pharmacology , Oxides/therapeutic use , Arsenicals/pharmacology , Cell Line, Tumor , Apoptosis , Antineoplastic Agents/pharmacology , Oxidative Stress , Proto-Oncogene Proteins c-bcl-2/metabolism
3.
Nanotechnology ; 34(19)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36731115

ABSTRACT

A rapid, clean plasma-chemical technique is demonstrated here, for cost-effective, synthesis of surface vacancy engineered, 2D, molybdenum-oxide nanomaterials, during a one-step, integrated synthesis-hydrogenation process for biomedical applications. A laminar plasma beam populated with O and H radicals impinges on a molybdenum target, out of which molybdenum-oxide nanomaterials are very rapidly generated with controlled surface O vacancies. 2D, dark-blue coloured, nano-flake/ribbon like MoO3-xis produced maximum up to 194 g h-1, the core of which still remains as stoichiometric molybdenum-oxide. These nanomaterials can get heated-up by absorbing energy from a near-infrared (NIR) laser, which enable them as photothermal therapy (PTT) candidate material for the invasive precision therapy of cancer. The surface defects endows the products with robust ferromagnetism at room temperature conditions (maximum saturation-magnetization: 6.58 emu g-1), which is order of magnitude stronger than most other vacancy engineered nanomaterials. These nanometric metal-oxides are observed to be perfectly compatible in animal physiological environment and easily dispersed in an aqueous solution even without any pre-treatment. The MoO3-xnanomaterials are stable against further oxidation even under prolonged atmospheric exposure.In vitroexperiments confirm that they have ideal efficacy for photothermal ablation of human and murine melanoma cancer at relatively lower dose. Duringin vivoPTT treatments, they may be manipulated with a simple external magnetic field for targeted delivery at the malignant tumours. It is demonstrated that commensurate to the neutralization of the malignant cells, the nanomaterials themselves get self-degraded, which should get easily excreted out of the body.


Subject(s)
Nanostructures , Neoplasms , Animals , Humans , Mice , Molybdenum , Phototherapy/methods , Neoplasms/drug therapy , Nanostructures/therapeutic use , Oxides/therapeutic use
4.
Homeopathy ; 112(3): 160-169, 2023 08.
Article in English | MEDLINE | ID: mdl-36442592

ABSTRACT

BACKGROUND: Arsenic trioxide (As2O3) has been in therapeutic use since the 18th century for various types of cancers including skin and breast; however, it gained popularity following FDA approval for its use against acute promyelocytic leukemia. This present work was designed to evaluate the anti-cancer potential of a homeopathic potency of arsenic trioxide (Arsenicum album 6C) in hormone-dependent breast cancer. METHODS: Breast cancer cells (MCF7) were treated with Arsenicum album (Ars 6C) to evaluate its anti-proliferative and apoptotic potential. We examined the effect of Ars 6C on the cell cycle, wound healing, reactive oxygen species (ROS) generation, and modulation of expression of key genes which are aberrant in cancer. RESULTS: Treating breast cancer cells with Ars 6C halted the cell cycle at the sub-G0 and G2/M phases, which could be attributed to DNA damage induced by the generation of ROS. Apoptotic induction was associated with upregulation of Bax expression, with concurrent downregulation of the Bcl-2 gene. Ars 6C was also seen to reverse epithelial to mesenchymal transition and reduce the migration of breast cancer cells. CONCLUSION: The findings suggest that Ars has significant anti-proliferative and apoptotic potential against breast cancer cells. Further studies are required to elucidate the mechanism by which Ars exerts its effect in the in vivo setting.


Subject(s)
Arsenicals , Breast Neoplasms , Homeopathy , Humans , Female , Arsenic Trioxide/pharmacology , Epithelial-Mesenchymal Transition , Arsenicals/pharmacology , Arsenicals/therapeutic use , Oxides/therapeutic use , Breast Neoplasms/drug therapy , Reactive Oxygen Species/pharmacology , Apoptosis , Cell Cycle Checkpoints , Hormones/pharmacology , MCF-7 Cells , Cell Line, Tumor
5.
Clin Oral Investig ; 27(3): 1215-1225, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36287273

ABSTRACT

OBJECTIVES: To develop a 3D-printed, microparticulate hydrogel supplemented with dentin matrix molecules (DMM) as a novel regenerative strategy for dental pulp capping. MATERIALS AND METHODS: Gelatin methacryloyl microgels (7% w/v) mixed with varying concentrations of DMM were printed using a digital light projection 3D printer and lyophilized for 2 days. The release profile of the DMM-loaded microgels was measured using a bicinchoninic acid assay. Next, dental pulp exposure defects were created in maxillary first molars of Wistar rats. The exposures were randomly capped with (1) inert material - negative control, (2) microgels, (3) microgels + DMM 500 µg/ml, (4) microgels + DMM 1000 µg/ml, (5) microgels + platelet-derived growth factor (PDGF 10 ng/ml), or (6) MTA (n = 15/group). After 4 weeks, animals were euthanized, and treated molars were harvested and then processed to evaluate hard tissue deposition, pulp tissue organization, and blood vessel density. RESULTS: All the specimens from groups treated with microgel + 500 µg/ml, microgel + 1000 µg/ml, microgel + PDGF, and MTA showed the formation of organized pulp tissue, tertiary dentin, newly formed tubular and atubular dentin, and new blood vessel formation. Dentin bridge formation was greater and pulp necrosis was less in the microgel + DMM groups compared to MTA. CONCLUSIONS: The 3D-printed photocurable microgels doped with DMM exhibited favorable cellular and inflammatory pulp responses, and significantly more tertiary dentin deposition. CLINICAL RELEVANCE: 3D-printed microgel with DMM is a promising biomaterial for dentin and dental pulp regeneration in pulp capping procedures.


Subject(s)
Dentin, Secondary , Microgels , Pulp Capping and Pulpectomy Agents , Rats , Animals , Dental Pulp , Calcium Compounds/therapeutic use , Dental Pulp Capping/methods , Biocompatible Materials , Silicates/therapeutic use , Rats, Wistar , Regeneration , Printing, Three-Dimensional , Drug Combinations , Oxides/therapeutic use
6.
Biosci Trends ; 16(6): 447-450, 2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36504072

ABSTRACT

Chlorine dioxide (ClO2) is a high-level disinfectant that is safe and widely used for sterilization. Due to the limitations on preparing a stable solution, direct use of ClO2 in the human body is limited. Nasal irrigation is an alternative therapy used to treat respiratory infectious diseases. This study briefly summarizes the available evidence regarding the safety/efficacy of directly using ClO2 on the human body as well as the approach of nasal irrigation to treat COVID-19. Based on the available information, as well as a preliminary experiment that comprehensively evaluated the efficacy and safety of ClO2, 25-50 ppm was deemed to be an appropriate concentration of ClO2 for nasal irrigation to treat COVID-19. This finding requires further verification. Nasal irrigation with ClO2 can be considered as a potential alternative therapy to treat respiratory infectious diseases, and COVID-19 in particular.


Subject(s)
COVID-19 , Chlorine Compounds , Communicable Diseases , Humans , Oxides/therapeutic use , Chlorine Compounds/pharmacology , Chlorine Compounds/therapeutic use , Nasal Lavage
7.
ACS Appl Bio Mater ; 5(12): 5865-5876, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36410719

ABSTRACT

Immunogenic cell death (ICD) induced by treatment modalities like chemotherapy, radiotherapy, and photothermal and photodynamic therapy has shown great potential to improve the low response rate of various solid tumors in cancer immunotherapy. However, extensive studies have revealed that the efficacy of cancer treatment is limited by the hypoxia and immunosuppression in the tumor microenvironment (TME). To address these challenges, a hypoxia alleviated and one phototriggered thermal/dynamic nanoplatform based on MnO2@PDA/ICG-BSA (MPIB) is developed for oxygen (O2) self-supply enhanced cancer phototherapy (PT). First, MnO2 transfers intracellular overexpression H2O2 into O2 in the acidic TME through its catalase-like activity to improve the hypoxia and also provide O2 for the following photodynamic therapy. Then, under single NIR-808 nm light irradiation (called the "phototherapeutic window"), excellent photothermal and photodynamic performance of the MPIB is activated for combined PT. Finally, assisted with immune adjuvant cytosine-phospho-guanine, obvious ICD and systemic antitumor immunity was elicited in PT-treated mice and demonstrated significant growth inhibition on distant tumors. This MPIB-based nanoplatform highlights the promise to overcome the limitations of hypoxia and also challenges of immunosuppressive tumor microenvironments for improved cancer immunotherapy.


Subject(s)
Manganese Compounds , Neoplasms , Mice , Animals , Manganese Compounds/therapeutic use , Immunogenic Cell Death , Hydrogen Peroxide/therapeutic use , Oxides/therapeutic use , Immunotherapy , Neoplasms/therapy , Oxygen/therapeutic use , Hypoxia/therapy , Tumor Microenvironment
8.
Invest New Drugs ; 40(6): 1231-1243, 2022 12.
Article in English | MEDLINE | ID: mdl-36287298

ABSTRACT

Acute promyelocytic leukemia (APL) is liable to induce disseminated intravascular coagulation and has a high early mortality. Although the combination of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) has significantly improved the complete remission rate, there are still some patients developed drug resistance. Growing evidence suggests that natural killer (NK) cell-mediated immunotherapy as a new treatment can help slow the progression of hematological malignancies. Previous studies also indicated that some tumors exhibited excellent responsiveness to NK cells in vitro. However, many clinical trial results showed that the anti-tumor effect of NK cells infusion alone was not ideal, which may be related to the inactivation of infiltrating NK cells caused by strong immunosuppression in tumor microenvironment, but the specific mechanism remains to be further explored. In the present study, we demonstrated that low doses of tetra-arsenic tetra-sulfide (As4S4) not only enhanced the in vitro killing of NK-92MI against ATRA-resistant APL cells, but also strengthened the growth inhibition of xenografted tumors in APL mouse model. Mechanistically, As4S4 altered the expression of natural killer group 2 member D ligands (NKG2DLs) and cytokines in APL cells, and PD-1 in NK-92MI cells. In addition, database retrieval results further revealed the relationship between the differentially regulated molecules of As4S4 and immune infiltration and its impact on prognosis. In conclusion, our findings confirmed the potential of As4S4 as an adjuvant for NK-92MI in the treatment of ATRA-resistant APL.


Subject(s)
Arsenic , Arsenicals , Leukemia, Promyelocytic, Acute , Animals , Mice , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/metabolism , Leukemia, Promyelocytic, Acute/pathology , Arsenic/therapeutic use , Arsenicals/pharmacology , Arsenicals/therapeutic use , Tretinoin/pharmacology , Tretinoin/therapeutic use , Sulfides/pharmacology , Sulfides/therapeutic use , Immunotherapy , Oxides/pharmacology , Oxides/therapeutic use , Tumor Microenvironment
9.
Adv Sci (Weinh) ; 9(17): e2200005, 2022 06.
Article in English | MEDLINE | ID: mdl-35484709

ABSTRACT

Sonodynamic therapy (SDT) typically suffers from compromised anticancer efficacy owing to the low reactive oxygen species (ROS) yield and complicated tumor microenvironment (TME) which can consume ROS and support the occurrence and development of tumors. Herein, ultrathin-FeOOH-coated MnO2 nanospheres (denoted as MO@FHO) as sonosensitizers which can not only facilitate ultrasound (US)-triggered ROS but also tune the TME by hypoxia alleviation, H2 O2 consumption as well as glutathione (GSH) depletion are designed. The FeOOH coating will boost the production yield of singlet oxygen (1 O2 ) and hydroxyl radicals (• OH) by inhibiting the recombination of US-initiated electron-hole pairs and Fenton-like reaction, respectively. Additionally, the catalase-like and GSH peroxidase-like activities of MO@FHO nanospheres enable them to break the TME equilibrium via hypoxia alleviation and GSH depletion. The combination of high ROS yield and fundamental destruction of TME equilibrium results in satisfactory antitumor outcomes, as demonstrated by the high tumor suppression efficacy of MO@FHO on MDA-MB-231-tumor-bearing mice. No obvious toxicity is detected to normal tissues at therapeutic doses in vivo. The capability to modulate the ROS production and TME simultaneously can afford new probability for the development of advanced sonosensitizers for synergistic comprehensive cancer therapy.


Subject(s)
Neoplasms , Tumor Microenvironment , Animals , Glutathione/therapeutic use , Hypoxia , Manganese Compounds/pharmacology , Manganese Compounds/therapeutic use , Mice , Neoplasms/therapy , Oxides/pharmacology , Oxides/therapeutic use , Reactive Oxygen Species
10.
Drug Deliv Transl Res ; 12(11): 2678-2692, 2022 11.
Article in English | MEDLINE | ID: mdl-35061221

ABSTRACT

The limited tissue penetration depth and tumor hypoxic microenvironment have become the two pivotal obstacles that alleviate the antineoplastic efficacy in tumor photodynamic therapy (PDT). In the research, MnO2-decorated upconversion nanoparticles (UCSMn) have been designed to generate certain oxygen within the solid tumor, and also increase the light penetrating depth due to the optical conversion ability derived from upconversion nanoparticles. Furthermore, upconversion nanoparticles as the inner core are coated by mesoporous silica for the loading of curcumin as photosensitizer and chemotherapeutics, and then a MnO2 shell is proceeding to grow via redox method. When reaching the tumor tissue, the MnO2 nanoshells of UCSMn could be rapidly degraded into manganese ions (Mn2+) owing to the reaction with H2O2 in acidic tumor microenvironment, meanwhile producing oxygen and facilitating curcumin release. Once the tumor is illuminated by 980 nm light, the upconversion nanoparticles can transform the infrared light to visible light of 450 nm and 475.5 nm, which can be efficiently absorbed by curcumin, and then produce singlet oxygen to induce tumor cell apoptosis. Curcumin played a dual role which can not only be acted as a photosensitizer, but also a chemotherapeutic agent to further reinforce the antitumor activity. In short, the intelligent nanostructure has the potential to overcome the above-mentioned shortcomings existed in PDT and eventually do work well in the hypoxia tumors. MnO2-decorated upconversion nanoparticle to solve the tissue penetration and tumor hypoxic microenvironment for tumor photodynamic therapy.


Subject(s)
Antineoplastic Agents , Curcumin , Nanoparticles , Neoplasms , Photochemotherapy , Antineoplastic Agents/chemistry , Cell Line, Tumor , Humans , Hydrogen Peroxide , Manganese/therapeutic use , Manganese Compounds/chemistry , Manganese Compounds/therapeutic use , Nanoparticles/chemistry , Neoplasms/drug therapy , Oxides/chemistry , Oxides/therapeutic use , Oxygen/metabolism , Oxygen/therapeutic use , Photochemotherapy/methods , Photosensitizing Agents , Silicon Dioxide/chemistry , Singlet Oxygen/metabolism , Singlet Oxygen/therapeutic use
11.
Clin Sci (Lond) ; 135(23): 2643-2658, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34796904

ABSTRACT

Acute kidney injury (AKI)-related fibrosis is emerging as a major driver of chronic kidney disease (CKD) development. Aberrant kidney recovery after AKI is multifactorial and still poorly understood. The accumulation of indoxyl sulfate (IS), a protein-bound uremic toxin, has been identified as a detrimental factor of renal fibrosis. However, the mechanisms underlying IS-related aberrant kidney recovery after AKI is still unknown. The present study aims to elucidate the effects of IS on tubular damage and its involvement in the pathogenesis of AKI-to-CKD transition. Our results showed that serum IS started to accumulate associated with the downregulation of tubular organic anion transporter but not observed in the small-molecule uremic toxins of the unilateral ischemia-reperfusion injury (UIRI) without a contralateral nephrectomy model. Serum IS is positively correlated with renal fibrosis and binding immunoglobulin protein (BiP) and CAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) expression induction in the UIRI with a contralateral nephrectomy model (UIRI+Nx). To evaluate the effects of IS in the AKI-to-CKD transition, we administered indole, a precursor of IS, at the early stage of UIRI. Our results demonstrated IS potentiates renal fibrosis, senescence-associated secretory phenotype (SASP), and activation of endoplasmic reticulum (ER) stress, which is attenuated by synergistic AST-120 administration. Furthermore, we clearly demonstrated that IS exposure potentiated hypoxia-reperfusion (H/R) induced G2/M cell cycle arrest, epithelial-mesenchymal transition (EMT) and aggravated ER stress induction in vitro. Finally, the ER chemical chaperon, 4-phenylbutyric acid (4-PBA), successfully reversed the above-mentioned AKI-to-CKD transition. Taken together, early IS elimination in the early stage of AKI is likely to be a useful strategy in the prevention and/or treatment of the AKI-to-CKD transition.


Subject(s)
Acute Kidney Injury/blood , Carbon/therapeutic use , Indican/antagonists & inhibitors , Nephrosclerosis/prevention & control , Oxides/therapeutic use , Renal Insufficiency, Chronic/prevention & control , Acute Kidney Injury/complications , Animals , Butylamines , Carbon/pharmacology , Drug Evaluation, Preclinical , Indican/blood , Indican/isolation & purification , Mice, Inbred C57BL , Nephrosclerosis/blood , Nephrosclerosis/etiology , Oxides/pharmacology , Renal Insufficiency, Chronic/etiology , Reperfusion Injury/blood , Reperfusion Injury/etiology , Senescence-Associated Secretory Phenotype/drug effects , Unfolded Protein Response/drug effects
12.
ACS Appl Mater Interfaces ; 13(10): 11683-11695, 2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33656325

ABSTRACT

Glucose oxidase (GOx) is regarded as an ideal endogenous natural enzyme for tumor starvation therapy and photothermal therapy (PTT) is a promising strategy for the ablation of primary tumor. In this work, Cu-doped cobalt oxide and porous carbon nanocomposites (CuCo(O)@PCNs) were synthesized from double-layered ZIF-8@ZIF-67 and GOx was loaded in the porous carbon to form a CuCo(O)/GOx@PCNs hybrid nanozyme. CuCo(O) was characterized as the Cu0.3Co2.7O4 phase through X-ray diffraction analysis and it can react with H2O2 to generate O2 and alleviate tumor hypoxia, resulting in the recovered enzymatic activity of GOx and the enhanced starvation therapy. The porous nanocarbon can ablate the primary tumor because of its high photothermal conversion efficiency of 40.04%. The three-in-one functions of oxygen supply, glucose consumption, and photothermal conversion were realized in the ZIFs-derived CuCo(O)/GOx@PCNs nanozyme and the starvation therapy effect was improved by PTT and oxygen supplement. Furthermore, the inhibition effect of CuCo(O)/GOx@PCNs on metastatic tumor is similar to combined therapy of the nanozyme and the immune checkpoint-blocking antibody, α-PD-1. The related antitumor immune mechanism was studied through the analysis of immune-related proinflammatory cytokines and the activated T cells. This work may provide new ideas for the development and application of the ZIFs-derived hybrid nanozyme in tumor therapy and the CuCo(O)/GOx@PCNs nanozyme may be a promising alternative to immune checkpoint inhibitors.


Subject(s)
Carbon/therapeutic use , Cobalt/therapeutic use , Copper/therapeutic use , Glucose Oxidase/therapeutic use , Imidazoles/therapeutic use , Metal-Organic Frameworks/therapeutic use , Neoplasms/therapy , Oxides/therapeutic use , Animals , Cell Line, Tumor , Humans , Immunotherapy , Mice , Photothermal Therapy , Tumor Hypoxia
13.
Nanoscale ; 13(10): 5383-5399, 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33666213

ABSTRACT

Early diagnosis of tumors is crucial in selecting appropriate treatment options to achieve the desired therapeutic effect, but it is difficult to accurately diagnose cancer by a single imaging modality due to technical constraints. Therefore, we synthesized a type of Fe3O4 nanoparticle with manganese dioxide grown on the surface and then prepared it by loading photosensitive drugs and traditional Chinese medicine monomers to create an integrated diagnosis/treatment multifunctional nanoplatform: Fe3O4@MnO2-celastrol (CSL)/Ce6. This nanoplatform can have full advantage of the tumor microenvironment (TME) characteristics of hypoxia (hypoxia), acidic pH (acidosis), and increased levels of reactive oxygen species (e.g., H2O2), even outside the TME. Specific imaging and drug release can also enhance tumor therapy by adjusting the hypoxic state of the TME to achieve the combined effect of chemotherapy (CT) and photodynamic therapy (PDT). Moreover, the obtained Fe3O4@MnO2-CSL/Ce6 has H2O2- and pH-sensitive biodegradation and can release the anticancer drug celastrol (CSL) and photosensitizer Ce6 in TME and simultaneously generate O2 and Mn2+. Therefore, the "dual response" synergistic strategy also confers specific drug release on nanomaterials, relieves tumor hypoxia and antioxidant capacity, and achieves significant optimization of CT and PDT. Furthermore, the resulting Mn2+ ions and Fe3O4 nanoparticles can be used for T1/T2 magnetic resonance imaging on tumor-bearing mice, and the released Ce6 can simultaneously provide fluorescence imaging functions. Therefore, Fe3O4@MnO2-CSL/Ce6 realized the synergistic treatment of PDT and CT under multimodal near-infrared fluorescence/photoacoustic (photoacoustic) imaging monitoring, showing its great potential in the accurate medical treatment of tumors.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Porphyrins , Animals , Cell Line, Tumor , Hydrogen Peroxide/therapeutic use , Iron/therapeutic use , Manganese , Manganese Compounds , Mice , Multimodal Imaging , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Oxides/therapeutic use , Photosensitizing Agents/therapeutic use , Porphyrins/therapeutic use , Tumor Microenvironment
14.
Toxins (Basel) ; 13(2)2021 01 26.
Article in English | MEDLINE | ID: mdl-33530404

ABSTRACT

Chronic kidney disease (CKD) is a highly prevalent condition and is associated with a high comorbidity burden, polymedication, and a high mortality rate. A number of conventional and nonconventional risk factors for comorbidities and mortality in CKD have been identified. Among the nonconventional risk factors, uremic toxins are valuable therapeutic targets. The fact that some uremic toxins are gut-derived suggests that intestinal chelators might have a therapeutic effect. The phosphate binders used to prevent hyperphosphatemia in hemodialysis patients act by complexing inorganic phosphate in the gastrointestinal tract but might conceivably have a nonspecific action on gut-derived uremic toxins. Since phosphorous is a major nutrient for the survival and reproduction of bacteria, changes in its intestinal concentration may impact the gut microbiota's activity and composition. Furthermore, AST-120 is an orally administered activated charcoal adsorbent that is widely used in Asian countries to specifically decrease uremic toxin levels. In this narrative review, we examine the latest data on the use of oral nonspecific and specific intestinal chelators to reduce levels of gut-derived uremic toxins.


Subject(s)
Bacteria/metabolism , Charcoal/therapeutic use , Chelating Agents/therapeutic use , Gastrointestinal Microbiome , Intestines/microbiology , Phosphorus/metabolism , Renal Insufficiency, Chronic/therapy , Toxins, Biological/metabolism , Adsorption , Animals , Carbon/adverse effects , Carbon/therapeutic use , Charcoal/adverse effects , Chelating Agents/adverse effects , Humans , Oxides/adverse effects , Oxides/therapeutic use , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/microbiology , Treatment Outcome
15.
Biomater Sci ; 9(7): 2709-2720, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33616151

ABSTRACT

Carbon monoxide (CO) based gas therapy has been an emerging strategy for cancer treatment. However, the uncontrolled release of CO and limited therapeutic efficacy of monotherapy are two major obstacles for clinical application. To overcome these issues, human serum albumin (HSA) nanoparticles combined with manganese dioxide (MnO2) were developed to deliver a photosensitizer (IR780) and CO donor (MnCO) for a synergistic therapy combining CO gas therapy and phototherapy. The nanoparticles (HIM-MnO2) formed catalyze hydrogen peroxide to produce oxygen for hypoxia relief. With laser irradiation, it can increase the generation of reactive oxygen species for the enhancement of photodynamic therapy (PDT). Furthermore, the generated heat of photothermal therapy (PTT) induced by nanoparticles could trigger the release of CO to achieve a therapeutic window for enhanced gas therapy. Due to the co-localization of IR780 in mitochondria, HIM-MnO2 could accumulate in mitochondria for the synergistic therapy combining CO gas therapy and phototherapy, and could oxidize the mitochondrial membrane and induce more apoptosis. After intravenous injection into tumor bearing mice, HIM-MnO2 could accumulate at tumor sites and with laser irradiation, tumor growth was significantly inhibited due to the enhanced PDT, PTT, and CO gas therapy. This study provides a strategy with oxygen generating and thermal-responsive CO release to combine phototherapy and CO gas therapy for cancer treatment.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Animals , Carbon Monoxide , Cell Line, Tumor , Manganese Compounds/therapeutic use , Mice , Mitochondria , Neoplasms/drug therapy , Oxides/therapeutic use , Oxygen
16.
Rinsho Ketsueki ; 62(12): 1661-1665, 2021.
Article in Japanese | MEDLINE | ID: mdl-35022333

ABSTRACT

A 46-year-old woman was diagnosed with acute promyelocytic leukemia (APL). The patient was given remission induction therapy with all-trans retinoic acid, and complete remission was achieved. Despite consolidation therapies with arsenic trioxide, daunorubicin and cytosine arabinoside (AraC), and gemtuzumab ozogamicin as well as maintenance therapy with tamibarotene, the patient experienced a relapse 6 months after the start of maintenance therapy. She was then given re-induction therapy with idarubicin+AraC and high-dose AraC, but remission was not achieved. Since the coordination of the unrelated donor had been completed at this time, she then underwent bone marrow transplantation with pre-conditioning of 4 Gy total body irradiation, fludarabine, and busulfan. However, on the 12th day after the transplantation, APL cells appeared in the peripheral blood and the disease progressed rapidly leading to the patient's death on the 15th day after the transplantation. APL usually has a good prognosis, and relapsed cases are often cured by autologous stem cell transplantation. However, this case was highly refractory to treatment and the patient deteriorated rapidly after the transplantation, suggesting a different pathogenesis from the usual from of APL.


Subject(s)
Antineoplastic Agents , Arsenicals , Hematopoietic Stem Cell Transplantation , Leukemia, Promyelocytic, Acute , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Arsenicals/therapeutic use , Female , Humans , Karyotype , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/genetics , Middle Aged , Oxides/therapeutic use , Transplantation, Autologous , Treatment Outcome , Tretinoin/therapeutic use
17.
Lasers Med Sci ; 36(4): 735-742, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32583187

ABSTRACT

The repair of large bone defects is lengthy and complex. Both biomaterials and phototherapy have been used to improve bone repair. We aimed to describe histologically the repair of tibial fractures treated by wiring (W), irradiated or not, with laser (λ780 nm, 70 mW, CW, spot area of 0.5 cm2, 20.4 J/cm2 (4 × 5.1 J/cm2, Twin Flex Evolution®, MM Optics, Sao Carlos, SP, Brazil) per session, 300 s, 142.8 J/cm2 per treatment) or LED (λ850 ± 10 nm, 150 mW, spot area of 0.5 cm2, 20.4 J/cm2 per session, 64 s, 142.8 J/cm2 per treatment, Fisioled®, MM Optics, Sao Carlos, Sao Paulo, Brazil) and associated or not to the use of mineral trioxide aggregate (MTA, Angelus®, Londrina, PR, Brazil). Inflammation was discrete on groups W and W + LEDPT and absent on the others. Phototherapy protocols started immediately before suturing and repeated at every other day for 15 days. Collagen deposition intense on groups W + LEDPT, W + BIO-MTA + LaserPT and W + BIO-MTA + LEDPT and discrete or moderate on the other groups. Reabsorption was discrete on groups W and W + LEDPT and absent on the other groups. Neoformation varied greatly between groups. Most groups were partial and moderately filed with new-formed bone (W, W + LaserPT, W + LEDPT, W + BIO-MTA + LEDPT). On groups W + BIO-MTA and W + BIO-MTA + LaserPT bone, neoformation was intense and complete. Our results are indicative that the association of MTA and PBMT (λ = 780 nm) improves the repair of complete tibial fracture treated with wire osteosynthesis in a rodent model more efficiently than LED (λ = 850 ± 10 nm).


Subject(s)
Aluminum Compounds/pharmacology , Bone Wires , Calcium Compounds/pharmacology , Low-Level Light Therapy , Oxides/pharmacology , Silicates/pharmacology , Tibial Fractures/radiotherapy , Tibial Fractures/surgery , Aluminum Compounds/therapeutic use , Animals , Calcium Compounds/therapeutic use , Drug Combinations , Oxides/therapeutic use , Rodentia , Silicates/therapeutic use
18.
Theranostics ; 10(20): 9132-9152, 2020.
Article in English | MEDLINE | ID: mdl-32802183

ABSTRACT

Photodynamic therapy (PDT) is a promising strategy in cancer treatment that utilizes photosensitizers (PSs) to produce reactive oxygen species (ROS) and eliminate cancer cells under specific wavelength light irradiation. However, special tumor environments, such as those with overexpression of glutathione (GSH), which will consume PDT-mediated ROS, as well as hypoxia in the tumor microenvironment (TME) could lead to ineffective treatment. Moreover, PDT is highly light-dependent and therefore can be hindered in deep tumor cells where light cannot easily penetrate. To solve these problems, we designed oxygen-dual-generating nanosystems MnO2@Chitosan-CyI (MCC) for enhanced phototherapy. Methods: The TME-sensitive nanosystems MCC were easily prepared through the self-assembly of iodinated indocyanine green (ICG) derivative CyI and chitosan, after which the MnO2 nanoparticles were formed as a shell by electrostatic interaction and Mn-N coordinate bonding. Results: When subjected to NIR irradiation, MCC offered enhanced ROS production and heat generation. Furthermore, once endocytosed, MnO2 could not only decrease the level of GSH but also serve as a highly efficient in situ oxygen generator. Meanwhile, heat generation-induced temperature increase accelerated in vivo blood flow, which effectively relieved the environmental tumor hypoxia. Furthermore, enhanced PDT triggered an acute immune response, leading to NIR-guided, synergistic PDT/photothermal/immunotherapy capable of eliminating tumors and reducing tumor metastasis. Conclusion: The proposed novel nanosystems represent an important advance in altering TME for improved clinical PDT efficacy, as well as their potential as effective theranostic agents in cancer treatment.


Subject(s)
Immunologic Factors/metabolism , Nanoparticles/therapeutic use , Tumor Hypoxia/drug effects , Tumor Hypoxia/physiology , Tumor Microenvironment/physiology , Animals , Cell Line , Cell Line, Tumor , Female , Glutathione/metabolism , Humans , Indocyanine Green/metabolism , Male , Manganese Compounds/therapeutic use , Mice , Mice, Inbred BALB C , Oxides/therapeutic use , Photochemotherapy/methods , Photosensitizing Agents/therapeutic use , Phototherapy/methods , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Theranostic Nanomedicine/methods
19.
Biomed Mater Eng ; 31(2): 95-105, 2020.
Article in English | MEDLINE | ID: mdl-32568170

ABSTRACT

BACKGROUND: Scallop shell powder is called bioshell calcium oxide (BiSCaO), which is known to possess deodorizing properties and broad antimicrobial activity against various pathogenic microbes, including viruses, bacteria, spores, and fungi. OBJECTIVE: This study aims to investigate the applications of BiSCaO suspension cleansing in clinical situations, for instance for the prevention and treatment of infections in chronic wounds in healing-impaired patients, without delaying wound healing. METHODS: The bactericidal activities of 1000 ppm BiSCaO suspension; 500 ppm hypochlorous acid; 1000 ppm povidone iodine; and saline were compared to evaluate in vivo disinfection and healing of Pseudomonas aeruginosa-infected wounds in hairless rats. RESULTS: Cleansing of the infected wounds with BiSCaO suspension daily for 3 days significantly enhanced wound healing and reduced the in vivo bacterial counts, in comparison to hypochlorous acid, povidone iodine, and saline. Furthermore, histological examinations showed significantly advanced granulation tissue and capillary formation in the wounds cleansed with BiSCaO suspension than in those cleansed with the other solutions. CONCLUSIONS: This study suggested that the possibility of using BiSCaO suspension as a disinfectant for infected wounds and limiting disinfection to 3 days may be sufficient to avoid the negative effects on wound repair.


Subject(s)
Calcium Compounds/therapeutic use , Oxides/therapeutic use , Pseudomonas Infections/drug therapy , Staphylococcal Skin Infections/drug therapy , Animal Shells/chemistry , Animals , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Load/drug effects , Calcium Compounds/isolation & purification , Calcium Compounds/pharmacology , Disease Models, Animal , Disinfection/methods , Male , Mice , Microbial Sensitivity Tests , Oxides/isolation & purification , Oxides/pharmacology , Povidone-Iodine/pharmacology , Povidone-Iodine/therapeutic use , Pseudomonas Infections/microbiology , Pseudomonas Infections/pathology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Rats , Rats, Hairless , Staphylococcal Skin Infections/microbiology , Staphylococcal Skin Infections/pathology , Therapeutic Irrigation/methods , Wound Healing/drug effects
20.
Bioconjug Chem ; 31(1): 82-92, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31809019

ABSTRACT

Manganese dioxide (MnO2) nanoparticles are a promising type of radiosensitizer for they can catalyze H2O2 decomposition to produce O2. Combining MnO2 nanoparticles with conventional, small molecule radiosensitizers would further enhance radiotherapy (RT) efficacy due to complementary mechanisms of action. However, solid MnO2 nanoparticles are suboptimal at drug loading, limiting the related progress. Herein we report a facile method to synthesize mesoporous MnO2 (mMnO2) nanoparticles, which can efficiently encapsulate small molecule therapeutics. In particular, we found that acridine orange (AO), a small molecule radiosensitizer, can be loaded onto mMnO2 nanoparticles at very high efficiency and released to the surroundings in a controlled fashion. We show that mMnO2 nanoparticles can efficiently produce O2 inside cells. This, together with AO-induced DNA damage, significantly enhances RT outcomes, which was validated both in vitro and in vivo. Meanwhile, mMnO2 nanoparticles slowly degrade in acidic environments to release Mn2+, providing a facile way to keep track of the nanoparticles through magnetic resonance imaging (MRI). Overall, our studies suggest mMnO2 as a promising nanoplatform that can be exploited to produce composite radiosensitizers for RT.


Subject(s)
Acridine Orange/therapeutic use , Fluorescent Dyes/therapeutic use , Manganese Compounds/therapeutic use , Nanoparticles/therapeutic use , Neoplasms/radiotherapy , Oxides/therapeutic use , Radiation-Sensitizing Agents/therapeutic use , Animals , Cell Line, Tumor , Female , Humans , Mice, Nude , Nanoparticles/ultrastructure , Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL