Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Type of study
Language
Publication year range
1.
Biosci Rep ; 38(1)2018 02 28.
Article in English | MEDLINE | ID: mdl-29208764

ABSTRACT

Thiamine plays a very important coenzymatic and non-coenzymatic role in the regulation of basic metabolism. Thiamine diphosphate is a coenzyme of many enzymes, most of which occur in prokaryotes. Pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes as well as transketolase are the examples of thiamine-dependent enzymes present in eukaryotes, including human. Therefore, thiamine is considered as drug or diet supplement which can support the treatment of many pathologies including neurodegenerative and vascular system diseases. On the other hand, thiamine antivitamins, which can interact with thiamine-dependent enzymes impeding their native functions, thiamine transport into the cells or a thiamine diphosphate synthesis, are good propose to drug design. The development of organic chemistry in the last century allowed the synthesis of various thiamine antimetabolites such as amprolium, pyrithiamine, oxythiamine, or 3-deazathiamine. Results of biochemical and theoretical chemistry research show that affinity to thiamine diphosphate-dependent enzymes of these synthetic molecules exceeds the affinity of native coenzyme. Therefore, some of them have already been used in the treatment of coccidiosis (amprolium), other are extensively studied as cytostatics in the treatment of cancer or fungal infections (oxythiamine and pyrithiamine). This review summarizes the current knowledge concerning the synthesis and mechanisms of action of selected thiamine antivitamins and indicates the potential of their practical use.


Subject(s)
Drug Design , Thiamine Pyrophosphate/metabolism , Thiamine/metabolism , Amprolium/chemistry , Amprolium/metabolism , Antimetabolites/therapeutic use , Biological Transport , Humans , Oxythiamine/antagonists & inhibitors , Oxythiamine/metabolism , Pyrithiamine/antagonists & inhibitors , Pyrithiamine/metabolism , Thiamine/antagonists & inhibitors , Thiamine/chemical synthesis , Thiamine Pyrophosphate/chemistry
2.
Kidney Int ; 90(2): 396-403, 2016 08.
Article in English | MEDLINE | ID: mdl-27198804

ABSTRACT

Decreased transketolase activity is an unexplained characteristic of patients with end-stage renal disease and is linked to impaired metabolic and immune function. Here we describe the discovery of a link to impaired functional activity of thiamine pyrophosphate cofactor through the presence, accumulation, and pyrophosphorylation of the thiamine antimetabolite oxythiamine in renal failure. Plasma oxythiamine was significantly increased by 4-fold in patients receiving continuous ambulatory peritoneal dialysis and 15-fold in patients receiving hemodialysis immediately before the dialysis session (healthy individuals, 0.18 [0.11-0.22] nM); continuous ambulatory peritoneal dialysis patients, 0.64 [0.48-0.94] nM; and hemodialysis patients (2.73 [1.52-5.76] nM). Oxythiamine was converted to the transketolase inhibitor oxythiamine pyrophosphate. The red blood cell oxythiamine pyrophosphate concentration was significantly increased by 4-fold in hemodialysis (healthy individuals, 15.9 nM and hemodialysis patients, 66.1 nM). This accounted for the significant concomitant 41% loss of transketolase activity (mU/mg hemoglobin) from 0.410 in healthy individuals to 0.240 in hemodialysis patients. This may be corrected by displacement with excess thiamine pyrophosphate and explain lifting of decreased transketolase activity by high-dose thiamine supplementation in previous studies. Oxythiamine is likely of dietary origin through cooking of acidic thiamine-containing foods. Experimentally, trace levels of oxythiamine were not formed from thiamine degradation under physiologic conditions but rather under acidic conditions at 100(°)C. Thus, monitoring of the plasma oxythiamine concentration in renal failure and implementation of high-dose thiamine supplements to counter it may help improve the clinical outcome of patients with renal failure.


Subject(s)
Antimetabolites/toxicity , Kidney Failure, Chronic/metabolism , Oxythiamine/toxicity , Thiamine Deficiency/chemically induced , Thiamine Pyrophosphate/metabolism , Transketolase/antagonists & inhibitors , Adult , Diet/adverse effects , Female , Humans , Kidney Failure, Chronic/blood , Kidney Failure, Chronic/therapy , Male , Middle Aged , Oxythiamine/blood , Oxythiamine/metabolism , Protein Processing, Post-Translational , Renal Dialysis , Renal Elimination , Thiamin Pyrophosphokinase/metabolism , Thiamine/therapeutic use , Thiamine Deficiency/drug therapy , Vitamin B Complex/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL