Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 152
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Urolithiasis ; 52(1): 52, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564033

ABSTRACT

Urolithiasis is a prevalent urological disorder that contributes significantly to global morbidity. This study aimed to assess the anti-urolithic effects of Cymbopogon proximus (Halfa Bar) and Petroselinum crispum (parsley) seed ethanolic extract /Gum Arabic (GA) emulsion, and its nanogel form against ethylene glycol (EG) and ammonium chloride (AC)-induced experimental urolithiasis in rats. Rats were divided into four groups: group 1 served as the normal control, group 2 received EG with AC in drinking water for 14 days to induce urolithiasis, groups 3 and 4 were orally administered emulsion (600 mg/kg/day) and nanogel emulsion (600 mg/kg/day) for 7 days, followed by co-administration with EG and AC in drinking water for 14 days. Urolithiatic rats exhibited a significant decrease in urinary excreted magnesium, and non-enzymic antioxidant glutathione and catalase activity. Moreover, they showed an increase in oxalate crystal numbers and various urolithiasis promoters, including excreted calcium, oxalate, phosphate, and uric acid. Renal function parameters and lipid peroxidation were intensified. Treatment with either emulsion or nanogel emulsion significantly elevated urolithiasis inhibitors, excreted magnesium, glutathione levels, and catalase activities. Reduced oxalate crystal numbers, urolithiasis promoters' excretion, renal function parameters, and lipid peroxidation while improving histopathological changes. Moreover, it decreased renal crystal deposition score and the expression of Tumer necrosis factor-α (TNF-α) and cleaved caspase-3. Notably, nanogel emulsion showed superior effects compared to the emulsion. Cymbopogon proximus (C. proximus) and Petroselinum crispum (P. crispum) seed ethanolic extracts/GA nanogel emulsion demonstrated protective effects against ethylene glycol induced renal stones by mitigating kidney dysfunction, oxalate crystal formation, and histological alterations.


Subject(s)
Cymbopogon , Drinking Water , Kidney Calculi , Polyethylene Glycols , Polyethyleneimine , Urolithiasis , Animals , Rats , Petroselinum , Ammonium Chloride , Gum Arabic , Emulsions , Catalase , Magnesium , Nanogels , Urolithiasis/chemically induced , Urolithiasis/drug therapy , Urolithiasis/prevention & control , Seeds , Antioxidants/therapeutic use , Ethanol , Glutathione , Oxalates , Ethylene Glycols , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
2.
Fitoterapia ; 175: 105894, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38461867

ABSTRACT

Thrombosis is currently among the major causes of morbidity and mortality in the World. New prevention and therapy alternatives have been increasingly sought in medicinal plants. In this context, we have been investigating parsley, Petroselinum crispum (Mill.) Nym, an aromatic herb with two leaf varieties. We report here the in vitro, in vivo, and ex vivo anti-hemostatic and antithrombotic activities of a parsley curly-leaf variety. Aqueous extracts of aerial parts (PCC-AP), stems (PCC-S), and leaves (PCC-L) showed significant in vitro antiplatelet activity. PCC-AP extract exhibited the highest activity (IC50 2.92 mg/mL) when using ADP and collagen as agonists. All extracts also presented in vitro anticoagulant activity (APTT and PT) and anti-thrombogenic activity. PCC-S was the most active, with more significant interference in the factors of the intrinsic coagulation pathway. The oral administration of PCC-AP extract in rats caused a greater inhibitory activity in the deep vein thrombi (50%; 65 mg/kg) than in arterial thrombi formation (50%; 200 mg/kg), without cumulative effect after consecutive five-day administration. PCC-AP extract was safe in the induced bleeding time test. Its anti-aggregating profile was similar in ex vivo and in vitro conditions but was more effective in the extrinsic pathway when compared to in vitro results. Apiin and coumaric acid derivatives are the main compounds in PCC-AP according to the HPLC-DAD-ESI-MS/MS profile. We demonstrated for the first time that extracts from different parts of curly parsley have significant antiplatelet, anticoagulant, and antithrombotic activity without inducing hemorrhage, proving its potential as a source of antithrombotic compounds.


Subject(s)
Fibrinolytic Agents , Petroselinum , Plant Extracts , Plant Leaves , Animals , Petroselinum/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Leaves/chemistry , Rats , Male , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/isolation & purification , Fibrinolytic Agents/chemistry , Rats, Wistar , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Thrombosis/drug therapy , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/isolation & purification , Plant Components, Aerial/chemistry , Plant Stems/chemistry , Hemostatics/pharmacology , Hemostatics/isolation & purification , Anticoagulants/pharmacology , Anticoagulants/isolation & purification , Anticoagulants/chemistry , Plants, Medicinal/chemistry
3.
J Sci Food Agric ; 104(7): 4465-4472, 2024 May.
Article in English | MEDLINE | ID: mdl-38345147

ABSTRACT

BACKGROUND: Minimizing food oxidation remains a challenge in several environments. The addition of rosemary extract (150 mg kg-1) and lyophilized parsley (7.1 g kg-1) at equivalent antioxidant activity (5550 µg Trolox equivalents kg-1) to meat patties was assessed in terms of their effect during microwave cooking and after being subjected to an in vitro digestion process. RESULTS: Regardless of the use of antioxidants, cooking caused a decrease of the fat content as compared to raw samples, without noticing statistical differences in the fatty acid distribution between raw and cooked samples [44%, 47% and 6.8%, of saturated fatty acid (SFA), monounsaturated fatty acid (MUFA) and polyunsaturated fatty acid (PUFA), respectively]. However, the bioaccessible lipid fraction obtained after digestion was less saturated (around 34% SFA) and more unsaturated (35% MUFA +30% PUFA). Cooking caused, in all types of samples, an increased lipid [thiobarbituric acid reactive substances (TBARS)] and protein (carbonyls) oxidation values. The increase of TBARS during in vitro digestion was around 7 mg malondialdehyde (MDA) kg-1 for control and samples with parsley and 4.8 mg MDA kg-1 with rosemary. The addition of parsley, and particularly of rosemary, significantly increased the antioxidant activity (DPPH) of cooked and digested microwaved meat patties. CONCLUSION: Whereas rosemary was effective in minimizing protein oxidation during cooking and digestion as compared to control samples, parsley could only limit it during digestion. Lipid oxidation was only limited by rosemary during in vitro digestion. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Antioxidants , Rosmarinus , Antioxidants/chemistry , Rosmarinus/chemistry , Petroselinum/metabolism , Thiobarbituric Acid Reactive Substances/analysis , Microwaves , Plant Extracts/pharmacology , Meat/analysis , Cooking , Fatty Acids , Fatty Acids, Unsaturated , Digestion
4.
Molecules ; 29(3)2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38338356

ABSTRACT

The status of parsley as a well-known folk medicine noted for its nutritional and medicinal properties prompted the exploration of its potential as a functional food and natural remedy. The paper aims to investigate the potential of parsley to enhance muscle function and alleviate psoriasiform dermatitis, eventually establishing it as a natural, well-tolerated alternative with specific benefits for both muscles and skin. This study examines the tolerability of parsley in a cohort of 937 participants by assessing immunoglobulin G (IgG) reactions. The findings reveal high tolerability, as 96.26% of participants experienced no adverse effects. Among the 902 individuals lacking hypersensitivity, 37.02% reported muscle cramps, with a notable 15.02% reduction observed in the subgroup consuming parsley juice. In the subset of 32 subjects with dermatitis, the application of parsley extract ointment led to a significant decrease in dermatological parameters (redness, thickness, scaling). While the control group exhibited improvements, statistical significance was not observed. Notably, four categories of affected area reduction were identified, with scaling demonstrating the most pronounced impact. The results propose that parsley holds promise for favorable tolerability, contributing to the alleviation of muscle cramps and presenting an effective alternative in dermatitis treatment. Nonetheless, sustained validation through long-term studies is imperative to substantiate these preliminary findings.


Subject(s)
Dermatitis , Functional Food , Humans , Petroselinum , Muscle Cramp/drug therapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Dermatitis/drug therapy
5.
J Agric Food Chem ; 72(2): 956-972, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38189231

ABSTRACT

Petroselinum crispum (Mill.) Fuss (parsley) is a popular medicinal plant widely used in different traditional medicines all over the world. This paper provides an updated review on the traditional use, phytochemistry, and pharmacological activities of parsley. Parsley contains volatile compounds such as terpenes and terpenoids in the essential oil, as well as phenolic compounds in the plant extract. Parsley is traditionally used as a diuretic, liver and stomach tonic, and for urolithiasis and indigestion. Pharmacological investigations also confirm several biological activities of parsley including hepatoprotective, nephroprotective, antiurolithiatic, neuroprotective, cardioprotective, and antineoplastic effects in animal and cell-based studies. Parsley has currently demonstrated several pharmacological activities in preclinical studies; however, there is a big lack in clinical evidence. Considering parsley as a possible valuable medicinal food, future clinical trials are recommended to evaluate the clinical efficacy and safety of the plant in different health conditions.


Subject(s)
Oils, Volatile , Petroselinum , Animals , Petroselinum/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Liver , Terpenes/pharmacology
6.
Biomolecules ; 13(12)2023 12 09.
Article in English | MEDLINE | ID: mdl-38136635

ABSTRACT

The increasing interest in innovative solutions for addressing bone defects has driven research into the use of Bioactive Mesoporous Glasses (MBGs). These materials, distinguished by their well-ordered mesoporous structure, possess the capability to accommodate plant extracts with well-established osteogenic properties, including bovine lactoferrin (bLF), as part of their 3D scaffold composition. This harmonizes seamlessly with the ongoing advancements in the field of biomedicine. In this study, we fabricated 3D scaffolds utilizing MBGs loaded with extracts from parsley leaves (PL) and embryogenic cultures (EC), rich in bioactive compounds such as apigenin and kaempferol, which hold potential benefits for bone metabolism. Gelatin Methacryloyl (GelMa) served as the polymer, and bLF was included in the formulation. Cytocompatibility, Runx2 gene expression, ALP enzyme activity, and biomineralization were assessed in preosteoblastic MC3T3-E1 cell cultures. MBGs effectively integrated PL and EC extracts with loadings between 22.6 ± 0.1 and 43.6 ± 0.3 µM for PL and 26.3 ± 0.3 and 46.8 ± 0.4 µM for EC, ensuring cell viability through a release percentage between 28.3% and 59.9%. The incorporation of bLF in the 3D scaffold formulation showed significant differences compared to the control in all assays, even at concentrations below 0.2 µM. Combinations, especially PL + bLF at 0.19 µM, demonstrated additive potential, with superior biomineralization compared to EC. In summary, this study highlights the effectiveness of MBGs in incorporating PL and EC extracts, along with bLF, into 3D scaffolds. The results underscore cytocompatibility, osteogenic activity, and biomineralization, offering exciting potential for future in vivo applications.


Subject(s)
Lactoferrin , Petroselinum , Lactoferrin/pharmacology , Lactoferrin/metabolism , Osteoblasts/metabolism , Cell Culture Techniques
7.
Chem Biodivers ; 20(11): e202300776, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37811911

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease that occurs especially in advanced ages. It reduces the quality of life of both the patient and their relatives. In addition to its primary effects, AD causes metabolic defects and tissues are damaged due to these effects. Oxidative stress damages cells by disrupting antioxidant/oxidant balance in many tissues, especially due to AD. In individuals with AD and the elderly, lens tissue is damaged due to oxidative stress and may cause vision loss. Therefore, it is very important to investigate herbal products that both prevent/cure AD and reduce AD-related oxidative stress, as they may have fewer side effects. In this study, the protective effects of parsley (Petroselinum crispum) extract on lens tissues of an experimental AD model induced by scopolamine were examined and evaluated through biochemical parameters. The result of biochemical experiments and principal component analysis, was observed that parsley extract had a therapeutic effect by reducing oxidative stress in lens tissues of experimentally induced AD rats. It can be suggested that the phenolic and flavonoid-rich content of parsley extract may have caused the reduction of oxidative damage in lens tissues and can be used to protect lens tissue against oxidative stress due to AD disease.


Subject(s)
Neurodegenerative Diseases , Petroselinum , Humans , Rats , Animals , Aged , Petroselinum/chemistry , Plant Extracts/metabolism , Neurodegenerative Diseases/drug therapy , Quality of Life , Antioxidants/pharmacology , Antioxidants/metabolism , Oxidative Stress , Scopolamine Derivatives/metabolism , Scopolamine Derivatives/pharmacology
8.
Medicina (Kaunas) ; 59(10)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37893532

ABSTRACT

Background and Objectives: Paracetamol overdose is a significant global issue due to its widespread use, which can lead to a lack of awareness regarding its potential side effects. Paracetamol can harm the liver, possibly resulting in liver failure. Conversely, this study employed extracts from Petroselinum crispum (PC), known for its rich content of bioactive compounds, with demonstrated antioxidant properties shown in previous research as well as protective effects against various diseases. The primary objective of this study was to investigate the potential protective effects of Petroselinum crispum on altered hematological and biochemical parameters in the blood of rats exposed to paracetamol. Materials and Methods: The study involved twenty Wistar rats divided into four groups. Different groups of male rats were administered PC extract at 200 mg/kg body weight daily for 15 days, along with a standard reference dose of paracetamol at 200 mg/kg. The study assessed hepatoprotection capacity by analyzing liver enzymes such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), bilirubin, albumin, and lipid profiles. Renal safety was evaluated through creatinine, urea, uric acid, lactate dehydrogenase (LDH), and total protein. Additionally, histopathological examinations of the liver and kidneys were conducted. Results: Following Paracetamol overdose, there were reductions in hemoglobin levels, serum total protein, albumin, and uric acid. Paracetamol overdose also elevated levels of several blood biomarkers, including creatinine, urea, nitrogen, ALT, AST, triglycerides, LDH activity, white blood cell count, and platelet count compared to the control group. However, using an ethanolic extract of Petroselinum crispum significantly mitigated the severity of these alterations and the extent of the effect correlated with the dose administered. Parsley extract helped prevent proteinuria and low hemoglobin, which are common side effects of Paracetamol. Conclusions: Therefore, parsley may hold promise in managing liver and kidney conditions-particularly in addressing proteinuria. Ultimately, these results may have implications for human health by potentially mitigating paracetamol-induced renal, hepatic, and hematological toxicity.


Subject(s)
Acetaminophen , Drug-Related Side Effects and Adverse Reactions , Humans , Rats , Male , Animals , Acetaminophen/toxicity , Petroselinum , Rats, Wistar , Uric Acid/pharmacology , Creatinine/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/metabolism , Liver , Proteinuria , Albumins , Urea , Hemoglobins
9.
Rev Gastroenterol Peru ; 43(2): 127-133, 2023.
Article in Spanish | MEDLINE | ID: mdl-37597227

ABSTRACT

Our objective is to determine the gastric regenerative effect of Petroselinum sativum L. (parsley) consumption in rats with ethanolinduced gastritis. We developed an analytical, experimental, classical, cross-sectional, prospective study. We worked with 36 male Wistar rats (250 ± 30 g.p.c.) randomly distributed into 6 groups (n=6). Groups II-VI were subjected to a 24-hour fast to induce gastric ulcer by administering 10 mL/kg.p.c. of 70% ethanol via orogastric. After one hour, group II was sacrificed to observe the ulcerative damage in the stomach. Afterward, the aqueous extract of fresh parsley leaves (EAHP) was prepared, and the following treatment was administered to the other groups through the orogastric route for 3 days: group III, 10 mL/kg.p.c. 0.9% NaCl solution; and EAHP to groups IV-VI (150, 300, and 600 mg/Kg.p.c., respectively). The rats were then fasted for 24 hours before being sacrificed by breaking their necks. Subsequently, a laparotomy was performed to extract the stomach. The EAHP generated greater production of gastric mucus in the doses of 300 mg/kg.p.c. with 78.03% and 600 mg/kg.p.c. with 80.52% (p<0.05). This was consistent with what was observed histologically in the gastric mucosa, showing only signs of inflammation of the submucosa in the groups that consumed EAHP (IV-VI), compared with fibrinoid necrosis in the groups that did not consume it (II and III). In conclusion, the consumption of EAHP has a gastric regenerative effect in rats with ethanol-induced gastritis.


Subject(s)
Gastritis , Plant Extracts , Animals , Humans , Male , Rats , Anti-Ulcer Agents/therapeutic use , Cross-Sectional Studies , Ethanol/toxicity , Gastric Mucosa/pathology , Gastritis/chemically induced , Gastritis/pathology , Petroselinum , Plant Extracts/therapeutic use , Prospective Studies , Rats, Wistar , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy
10.
J Food Biochem ; 46(10): e14262, 2022 10.
Article in English | MEDLINE | ID: mdl-35796388

ABSTRACT

SARS-CoV-2 has been responsible for causing 6,218,308 deaths globally till date and has garnered worldwide attention. The lack of effective preventive and therapeutic drugs against SARS-CoV-2 has further worsened the scenario and has bolstered research in the area. The N-terminal and C-terminal RNA binding domains (NTD and CTD) of SARS-CoV-2 nucleocapsid protein represent attractive therapeutic drug targets. Naturally occurring compounds are an excellent source of novel drug candidates due to their structural diversity and safety. Ten major bioactive compounds were identified in ethanolic extract (s) of Cinnamomum zeylanicum, Cinnamomum tamala, Origanum vulgare, and Petroselinum crispum using HPLC and their cytotoxic potential was determined against cancer and normal cell lines by MTT assay to ascertain their biological activity in vitro. To evaluate their antiviral potential, the binding efficacy to NTD and CTD of SARS-CoV-2 nucleocapsid protein was determined using in silico biology tools. In silico assessment of the phytocomponents revealed that most of the phytoconstituents displayed a druglike character with no predicted toxicity. Binding affinities were in the order apigenin > catechin > apiin toward SARS-CoV-2 nucleocapsid NTD. Toward nucleocapsid CTD, the affinity decreased as apigenin > cinnamic acid > catechin. Remdesivir displayed lesser affinity with NTD and CTD of SARS-CoV-2 nucleocapsid proteins than any of the studied phytoconstituents. Molecular dynamics (MD) simulation results revealed that throughout the 100 ns simulation, SARS-CoV-2 nucleocapsid protein NTD-apigenin complex displayed greater stability than SARS-CoV-2 nucleocapsid protein NTD-cinnamic acid complex. Hence, apigenin, catechin, apiin and cinnamic acid might prove as effective prophylactic and therapeutic candidates against SARS-CoV-2, if examined further in vitro and in vivo. PRACTICAL APPLICATIONS: Ten major bioactive compounds were identified in the extract(s) of four medicinally important plants viz. Cinnamomum zeylanicum, Cinnamomum tamala, Origanum vulgare and Petroselinum crispum using HPLC and their biological activity was also evaluated against cancer and normal cell lines. Interestingly, while all extract(s) wielded significant cytotoxicity against cancer cells, no significant toxicity was found against normal cells. The outcome of the results prompted evaluation of the antiviral potential of the ten bioactive compounds using in silico biology tools. The present study emphasizes on the application of computational approaches to understand the binding interaction and efficacy of the ten bioactive compounds from the above plants with SARS-CoV-2 nucleocapsid protein N-terminal and C-terminal RNA binding domains in preventing and/or treating COVID-19 using in silico tools. Druglikeness and toxicity profiles of the compounds were carried out to check the therapeutic application of the components. Additionally, molecular dynamics (MD) simulation was performed to check the stability of ligand-protein complexes. The results provided useful insights into the structural binding interaction(s) that can be exploited for the further development of potential antiviral agents targeting SARS-CoV-2 especially since no specific therapy is still available to combat the rapidly evolving virus and the existing treatment is more or less symptomatic which makes search for novel antiviral agents all the more necessary and crucial.


Subject(s)
COVID-19 Drug Treatment , Catechin , Laurus , Origanum , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Apigenin , Cinnamates , Cinnamomum zeylanicum/metabolism , Dietary Supplements , Laurus/metabolism , Ligands , Petroselinum/metabolism , SARS-CoV-2
11.
Toxicon ; 214: 1-7, 2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35504407

ABSTRACT

Mushroom poisoning is a worldwide public health problem that may cause serious toxic consequences on renal functions. The study aimed to evaluate the acute toxicity (24 h) of orellanine (OR) from Cortinarius orellanus in rat kidney and the ameliorative effect of parsley ethanolic extract. Twelve adult male Wistar rats were used to determine intraperitoneal (ip) median lethal dose (LD50) of OR, and 32 rats were divided into 4 groups (n = 8): OR group had 500 mg OR per kg bwt; OR + parsley group had the same dose of OR and after 1 h had 500 mg/kg parsley orally; parsley group had parsley only; and control had the vehicle 0.1% DMSO. Blood and kidney samples were collected at Hour 48. The LD50 dose was 1430 mg/kg for an observation period of 24 h. There were significant reductions (p < 0.01) in the body weight, and relative kidney weight of intoxicated rats compared to parsley treated rats and to controls. Similarly, this group had significantly higher levels of creatinine (p < 0.001), uric acid and urea (p < 0.05). The antioxidant glutathione peroxidase activity was significantly reduced (p < 0.01), while Cystatin C serum levels were significantly higher (p < 0.001) in the intoxicated untreated rats compared to all groups. Histopathological examination indicated necrotic damage in glomeruli and proximal tubules of rats given OR, which was relieved by parsley extract. Overall, the study showed that parsley extract ameliorated OR-induced kidney toxicity. This could be utilized in future research on adjunct therapy for toxicity-induced renal injury.


Subject(s)
Agaricales , Petroselinum , 2,2'-Dipyridyl/analogs & derivatives , Animals , Antioxidants , Cortinarius , Male , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Rats , Rats, Wistar
12.
Food Res Int ; 151: 110864, 2022 01.
Article in English | MEDLINE | ID: mdl-34980400

ABSTRACT

This study determined the bioactive composition and antioxidant potential of parsley, chives and their mixture (Brazilian cheiro-verde). Additionally, the effect of these herbs against cholesterol oxidation in grilled sardines (Sardinella brasiliensis) was also investigated. Ultra-high Performance Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (UHPLC-ESI-MS) analyses revealed the presence of phenolic acids (caffeic, chlorogenic, and ferulic acids) and flavonoids (apigenin, kaempferol, catechin) in the herbs. Higher levels of phenolics (2.10 ± 0.02 mg GAE/g) and carotenoids (205.95 ± 0.17 µg/g) were determined in parsley extracts. Moreover, parsley also presented higher antioxidant capacity by DPPH (59.21 ± 0.07 %) and ORAC (109.94 ± 18.7 µM TE/g) than the other herbs. In vivo analyses demonstrated that the herbs' extracts decreased the damage on Saccharomyces cerevisiae cells exposed to H2O2, except the chives extract at 10 µg/mL. Higher levels of cholesterol oxidation products (COPs) were determined after grilling. The total COPs increased from 61.8 ± 0.7 (raw fish) to 139.7 ± 10.1 µg/g (control). However, the addition of herbs effectively reduced cholesterol oxides formation, this effect was more pronounced in fish containing 4% parsley and 4% cheiro-verde. Promising results were found for cheiro-verde; however, it did not present synergic antioxidant effects.


Subject(s)
Chive , Petroselinum , Animals , Antioxidants/pharmacology , Cholesterol , Hydrogen Peroxide , Plant Extracts/pharmacology
13.
Nat Prod Res ; 36(7): 1883-1888, 2022 Apr.
Article in English | MEDLINE | ID: mdl-32820642

ABSTRACT

The supercritical fluid extraction (SFE) of volatile and fixed oil from milled parsley (Petroselinum crispum L.) seeds, using CO2 as solvent, is presented in this study. Extraction experiments were carried out in two steps: at pressures of (90 or 300) bar and temperature of 40 °C. The first extraction step, performed at 90 bar, produced a volatile fraction mainly formed by apiole (82.1%) and myristicin (11.4%). The volatile oil yield was 2.6% by weight of the charge. The second extraction step, carried out at 300 bar produced a fixed oil at a yield of 0.4% by weight. The most represented fatty acids in P. crispum fixed oil were 18:1 n-12 (49.9%), 18:2 n-6 (18.2%), 18:1 n-9 (11.8%), and 16:0 (7.4%). In particular, the unsaturated fatty acids 18:1 n-12 and 18:1 n-9 averaged 182.2 mg/g and 92.1 mg/g of oil extract, respectively. The quality of the oils extracted by SFE, in terms of its chemical composition, was compared to the oils obtained by hydrodistillation (HD) in a Clevenger apparatus and by solvent extraction (SE) using n-hexane in a Soxhlet apparatus. The antioxidant properties were determined by means of the ABTS assay. The results indicated that the fixed oil possessed low antioxidant activity (EC50 = 0.4 mg/mL) and the volatile oil had no antioxidant activity. The total phenolic content, expressed as concentration of gallic acid (gallic acid equivalent, GAE), of the fixed oil was 1.5 mg/g. The fixed oil found to have inhibitory effects against α-glucosidase, the volatile oil is active on acetylcholinesterase (AChE), tyrosinase, and α-glucosidase. Both samples have weak inhibitory activity on α-amylase and no activity on butyrylcholinesterase (BChE).


Subject(s)
Chromatography, Supercritical Fluid , Oils, Volatile , Acetylcholinesterase/analysis , Butyrylcholinesterase/analysis , Carbon Dioxide/chemistry , Chromatography, Supercritical Fluid/methods , Oils, Volatile/chemistry , Petroselinum , Plant Oils/chemistry , Seeds/chemistry
14.
Environ Technol ; 43(20): 3175-3187, 2022 Aug.
Article in English | MEDLINE | ID: mdl-33840353

ABSTRACT

The transesterification of parsley seed oil using a heterogeneous catalyst prepared from Herring fishbone (HFB) was investigated in this study. The fishbone was calcined at 900oC for 4 h to convert the calcium phosphate in the bone to beta-tricalcium phosphate. The prepared catalyst was then characterized by employing scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) analysis to determine its morphology and elemental composition. The results obtained revealed beta-tricalcium phosphate (ß-TCP) as the major constituent of the calcined HFB and also showed the presence of an insignificant portion of hydroxyapatite and calcium oxide. The synthesized heterogeneous catalyst showed good catalytic activity up to five times on reuse. The biodiesel yield of 93% was obtained using 3 wt% of catalyst amount, 65 oC temperature of the reaction, 1.5 h time, and 9:1 alcohol-to-oil ratio. Gas chromatography-mass spectrometry (GC-MS) and Fourier transform infrared spectrometry (FTIR) were utilized to characterize the produced biodiesel. Also, their fuel properties were within the American Society for Testing and Materials set limits.


Subject(s)
Biofuels , Petroselinum , Animals , Biofuels/analysis , Calcium Phosphates , Catalysis , Esterification , Fishes , Plant Oils/chemistry
15.
Acta Chim Slov ; 68(4): 896-903, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34918773

ABSTRACT

This study was performed to examine the effects of medicinal plant extracts of corn silk (Stigma maydis), parsley leaf (Petroselini folium), and bearberry leaf (Uvae ursi folium) on antioxidant status of the brain of experimental animals (mice) under the physiological conditions. Biological properties of these plants are insufficiently investigated and the aim was to explore their possible antioxidant effects that can alleviate oxidative damage of the brain tissue. Corn silk extract showed positive effect on activities of antioxidant enzymes in mice brain tissue. Parsley extract induced the increase in glutathione content and decrease of lipid peroxidation. Bearberry leaf extract induced catalase activity and decrease of hydroxyl radical content, while malonyldialdehide accumulation was maintained at the control level. Results obtained in this study support the use of corn silk, parsley and bearberry leaves as natural antioxidant sources in the prevention and treatment of brain tissue damages and different diseases caused by oxidative stress.


Subject(s)
Arctostaphylos/chemistry , Brain/drug effects , Oxidative Stress/drug effects , Petroselinum/chemistry , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Zea mays/chemistry , Animals , Antioxidants/chemistry , Arctostaphylos/metabolism , Brain/metabolism , Chromatography, High Pressure Liquid , Glutathione/metabolism , Lipid Peroxidation/drug effects , Male , Malondialdehyde/metabolism , Mice , Petroselinum/metabolism , Plant Extracts/chemistry , Plants, Medicinal/metabolism , Polyphenols/analysis , Spectrophotometry , Zea mays/metabolism
16.
J Sci Food Agric ; 101(15): 6320-6330, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33966275

ABSTRACT

BACKGROUND: Aromatic herbs are an important source of bioactive compounds. Different cultivation systems should give each plant a specific amount of those compounds, which should be of a particular quality. In this study, the effects of three cultivation systems (indoor, greenhouse, and organic field) on the composition of bioactive compounds in parsley (Petroselinum crispum cv. 'Flat Leaf'), green basil (Ocimum basilicum var. minimum cv. 'Greek'), and purple basil (Ocimum basilicum cv. 'Red Rubin') were evaluated. RESULTS: ß-Carotene and lutein were the carotenoids with the highest concentration in the three plants in all the cultivation systems. Overall, parsley proved to be a source of flavonoids. The major phenolic compound found in basil plants was rosmarinic acid, whereas most anthocyanins were derived from cyanidin aglycone. Among the three plants studied, the highest vitamin C content was found in parsley from the field. This was 2.6 and 5.4 times higher than the indoor and greenhouse cultivation, respectively. CONCLUSION: The results suggest that different cultivation systems influence and modulate the concentration of bioactive compounds in plants differently, varying according to their class, and that, above all, an indoor system is an effective cultivation system for the production of bioactive compounds. © 2021 Society of Chemical Industry.


Subject(s)
Crop Production/methods , Ocimum basilicum/chemistry , Petroselinum/growth & development , Plant Extracts/chemistry , Crop Production/instrumentation , Flavonoids/analysis , Flavonoids/metabolism , Lutein/analysis , Lutein/metabolism , Ocimum basilicum/growth & development , Ocimum basilicum/metabolism , Petroselinum/chemistry , Petroselinum/metabolism , Plant Extracts/metabolism , Plant Leaves/chemistry , Plant Leaves/growth & development , Plant Leaves/metabolism , beta Carotene/analysis , beta Carotene/metabolism
17.
Sci Rep ; 11(1): 10041, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33976317

ABSTRACT

Plants with medicinal properties play an increasingly important role in food and pharmaceutical industries for their functions on disease prevention and treatment. This study characterizes the phenolic composition and antioxidant activity of seven medicinal and food plants, including the leaves of Salvia officinalis L., Rosmarinus officinalis L., Olea europaea L., and Punica granatum L., as well as the leaves and young stems of Ruta graveolens L., Mentha piperita L., and Petroselinum crispum, Mill., by using colorimetric, chromatographic, and spectrophotometric assays. Results revealed that the hydro-methanolic leaf extracts of P. granatum (pomegranate) displayed the highest content of total phenols (199.26 mg gallic acid per gram of plant dry weight), ortho-diphenols (391.76 mg gallic acid per gram of plant dry weight), and tannins (99.20 mg epicatechin per gram of plant dry weight), besides a higher content of flavonoids (24 mg catechin per gram of plant dry weight). The highest antioxidant capacity measured by ABTS, DPPH, and FRAP (2.14, 2.27, and 2.33 mM Trolox per gram of plant dry weight, respectively) methods was also obtained in pomegranate leaf extracts, being 4-200 times higher than the other species. Such potent antioxidant activity of pomegranate leaves can be ascribed to the presence of different types of phenolic compounds and the high content in tannins, whilst phenolic acids and flavonoids were found to be the dominant phenolic classes of the other six plants. Consequently, despite the well-known antioxidant properties of these plant species, our study suggests pomegranate leaf can stand out as a relatively more valuable plant source of natural bioactive molecules for developing novel functional food-pharma ingredients, with potential for not only promoting human health but also improving bio-valorization and environment.


Subject(s)
Antioxidants/analysis , Lamiaceae/chemistry , Phenols/analysis , Phytochemicals/analysis , Plants, Medicinal/chemistry , Crops, Agricultural/chemistry , Food Analysis , Olea/chemistry , Petroselinum/chemistry , Plant Leaves/chemistry , Pomegranate/chemistry , Ruta/chemistry
18.
Molecules ; 26(7)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33916097

ABSTRACT

Depression and anxiety are major mental health problems in all parts of the world. These illnesses are associated with a number of risk factors, including oxidative stress. Psychotropic drugs of a chemical nature have demonstrated several side effects that elevated the impact of those illnesses. Faced with this situation, natural products appear to be a promising alternative. The aim of this study was to evaluate the anxiolytic and antidepressant effects of the Petroselinum sativum polyphenols in vivo, as well as its correlated antioxidant properties in vitro. Anxiolytic activity of the extract (50 and 100 mg/kg) was evaluated using the open field and the light-dark chamber tests, while the antidepressant activity was evaluated using the forced swimming test. The antioxidant activity of the extract was evaluated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical test and the FRAP (iron-reducing capacity) test. The phenolic extract showed very powerful anxiolytic and antidepressant-like effects, especially at a dose of 100 mg/kg, decreasing the depressive behavior in mice (decreased immobility time) and also the anxiolytic behavior (tendency for discovery in the center and illuminated areas) better even than those of paroxetine and bromazepam (classic drugs) concomitant with those results the extract also showed an important antioxidant capacity. These preliminary results suggest that Petroselinum sativum exhibits anxiolytic and antidepressant potential for use as a complement or independent phytomedicine to treat depression and anxiety.


Subject(s)
Anti-Anxiety Agents/pharmacology , Antidepressive Agents/pharmacology , Antioxidants/pharmacology , Petroselinum/chemistry , Plant Extracts/pharmacology , Polyphenols/pharmacology , Animals , Anti-Anxiety Agents/chemistry , Antidepressive Agents/chemistry , Antioxidants/chemistry , Anxiety/drug therapy , Behavior, Animal/drug effects , Biphenyl Compounds/antagonists & inhibitors , Depression/drug therapy , Disease Models, Animal , Dose-Response Relationship, Drug , Maze Learning/drug effects , Picrates/antagonists & inhibitors , Plant Extracts/chemistry , Polyphenols/chemistry , Rats , Rats, Wistar
19.
Chem Biodivers ; 18(3): e2000921, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33594799

ABSTRACT

The chemical and pharmacological profiles of essential oils (EOs) hydrodistilled in yields of 0.03-0.77 % (w/w) from three exotic (Cinnamomum camphora, Petroselinum crispum, and Syzygium samarangense) and two endemic (Pittosporum senacia subsp. senacia and Syzygium coriaceum) medicinal plants were studied. GC-MS/GC-FID analysis of the EOs identified the most dominant components to be myristicin (40.3 %), myrcene (62.2 %), 1,8-cineole (54.0 %), ß-pinene (21.3 %) and (E)-ß-ocimene (24.4 %) in P. crispum, P. senacia and C. camphora, S. samarangense and S. coriaceum EOs, respectively. All EOs were found to possess anti-amylase (0.70-1.50 mM ACAE/g EO) and anti-tyrosinase (109.35-158.23 mg KAE/g) properties, whereas no glucosidase inhibition was displayed. Only Syzygium EOs acted as dual inhibitors of both acetyl- and butyryl-cholinesterases, while P. senacia and C. camphora EOs inhibited acetylcholinesterase selectively and P. crispum EO was inactive (AChE: 4.64-4.96 mg GALAE/g; BChE: 5.96 and 7.10 mg GALAE/g). Molecular docking revealed 1,8-cineole to present the best binding affinities with butyrylcholinesterase, amylase and tyrosinase, while both myristicin and ß-pinene with acetylcholinesterase and finally ß-pinene with glucosidase. In vitro antioxidant potency was also demonstrated in different assays (DPPH: 13.52-53.91 mg TE/g, ABTS: 5.49-75.62 mg TE/g; CUPRAC: 45.38-243.21 mg TE/g, FRAP: 42.49-110.64 mg TE/g; and phosphomolybdenum assay: 82.61-160.93 mM TE/g). Principal component analysis revealed the EOs to differ greatly in their bioactivities due to their chemodiversity. This study has unveiled some interesting preliminary pharmacological profiles of the EOs that could be explored for their potential applications as phytotherapeutics.


Subject(s)
Antioxidants/pharmacology , Enzyme Inhibitors/pharmacology , Oils, Volatile/pharmacology , Principal Component Analysis , Acetylcholinesterase/metabolism , Amylases/antagonists & inhibitors , Amylases/metabolism , Antioxidants/chemistry , Antioxidants/isolation & purification , Benzothiazoles/antagonists & inhibitors , Biphenyl Compounds/antagonists & inhibitors , Butyrylcholinesterase/metabolism , Cinnamomum camphora/chemistry , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Gas Chromatography-Mass Spectrometry , Mauritius , Molecular Docking Simulation , Molecular Structure , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Petroselinum/chemistry , Picrates/antagonists & inhibitors , Rosales/chemistry , Structure-Activity Relationship , Sulfonic Acids/antagonists & inhibitors , Syzygium/chemistry
20.
J Med Entomol ; 58(3): 1298-1315, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33570125

ABSTRACT

Previous work presented the profound antimosquito potential of Petroselinum crispum essential oil (PEO) against either the pyrethroid-susceptible or resistant strains of Aedes aegypti. This plant oil also inhibited the activity of acetylcholinesterase and mixed-function oxidases significantly, thus suggesting its potential as a synergist for improving mosquitocidal efficacy of insecticidal formulations. This study investigated the chemical composition, larvicidal activity, and potential synergism with synthetic insecticides of PEO and its main compounds for the purpose of interacting with insecticide resistance in mosquito vectors. The chemical profile of PEO, obtained by GC-MS analysis, showed a total of 17 bioactive compounds, accounting for 99.09% of the whole oil, with the most dominant constituents being thymol (74.57%), p-cymene (10.73%), and γ-terpinene (8.34%). All PEO constituents exhibited promising larvicidal effects, with LC50 values ranging from 19.47 to 59.75 ppm against Ae. aegypti, in both the pyrethroid-susceptible and resistant strains. Furthermore, combination-based bioassays revealed that PEO, thymol, p-cymene, and γ-terpinene enhanced the efficacy of temephos and deltamethrin significantly. The most effective synergist with temephos was PEO, which reduced LC50 values to 2.73, 4.94, and 3.28 ppb against MCM-S, PMD-R, and UPK-R, respectively, with synergism ratio (SR) values of 1.33, 1.38, and 2.12, respectively. The best synergist with deltamethrin also was PEO, which reduced LC50 values against MCM-S, PMD-R, and UPK-R to 0.008, 0.18, and 2.49 ppb, respectively, with SR values of 21.25, 9.00, and 4.06, respectively. This research promoted the potential for using essential oil and its principal constituents as not only alternative larvicides, but also attractive synergists for enhancing efficacy of existing conventional insecticides.


Subject(s)
Aedes , Insecticides , Mosquito Control , Nitriles , Oils, Volatile , Petroselinum/chemistry , Pyrethrins , Temefos , Aedes/growth & development , Animals , Larva/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL