Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 610
Filter
Add more filters

Publication year range
1.
Braz. J. Pharm. Sci. (Online) ; 59: e19978, 2023. tab
Article in English | LILACS | ID: biblio-1429949

ABSTRACT

Abstract Propolis is a resinous hive product collected by bees from the buds or other parts of plants. It is known for having various biological properties, including antifungal activity. Among the substances present in propolis, flavonoids and phenolic acids and their esters are responsible for its antifungal properties. This means that propolis is ideal for use as an antifungal agent in alternative medicine to treat a number of both topical and systemic infections caused by Candida species and other yeast-like fungi, dermatophyte and nondermatophyte moulds, without the serious side effects typical of synthetic treatment. It is also active against strains of fungi that are resistant to polyenes and azoles, the classes of drugs most commonly used to treat fungal infections. In this article, we review current knowledge about the activity of propolis from different parts of the world and its components in vitro and in vivo against pathogenic fungi isolated from human infections. The article also indicates the possible mechanism of antifungal activity of propolis and its components.


Subject(s)
Propolis/adverse effects , Antifungal Agents/analysis , In Vitro Techniques/methods , Complementary Therapies/classification , Candida/classification , Pharmaceutical Preparations/administration & dosage , Arthrodermataceae/classification
2.
Braz. J. Pharm. Sci. (Online) ; 58: e201134, 2022. tab, graf
Article in English | LILACS | ID: biblio-1420509

ABSTRACT

Abstract Cerebrovascular disease is the second most serious disease in the world. It has the features of high morbidity, high mortality and recurrence rate. Numerous research on the compatibility of Chinese medicine with effective ingredients of cerebral ischemia has been made during the past decades. The purpose of this study is to quantitatively analyze the combined pharmacological effect of effective ingredients in Danshen and Honghua (Dan Hong) on rat microvascular endothelial cells after gradually oxygen-glucose deprivation. The experimental concentration range for the compatibility of two effective ingredients were determined in the preliminary experiments by Cell Counting kit-8 (CCK-8) method. Drugs were added to rat brain microvascular endothelial cells at a non-toxic dose level. After that, the cells were cultured for 12 h, and placed in a hypoxic environment. Finally, the cell survival rate was used as a measure of drug effect. In order to determine synergism or antagonism, the combination index (CI)-isobologram method was performed to analyze the data from the experiments. Based on this theory, the potencies of each drug and the shapes of their does-effect curves are both taken into account. The results show that the synergism or the antagonism between two effective ingredients compatibility change with different proportion and dosage. Furthermore, it can be seen from the results of these experiments that when these drugs are used in combination, the dosage required to achieve the same therapeutic effects is greatly reduced compared with the case of single one. It is worth mentioning that our experiments also prove that the median-effect equation and the CI method can be applied in the field of traditional Chinese medicine.


Subject(s)
Animals , Male , Female , Rats , Endothelial Cells/classification , Evaluation Studies as Topic , Pharmaceutical Preparations/administration & dosage , Cerebrovascular Disorders/pathology , Carthamus tinctorius/adverse effects
3.
Braz. J. Pharm. Sci. (Online) ; 58: e20074, 2022. tab, graf
Article in English | LILACS | ID: biblio-1403714

ABSTRACT

Abstract Morinda lucida leaves are largely used by Congolese traditional healers for the treatment of uncomplicated malaria. The antimalarial activity of their ethanolic extract has been confirmed both in vitro and in vivo. However, the development of relevant formulations for potential clinical application is hampered since the active ingredients contained in this extract exhibit poor water solubility and low oral bioavailability. Hence, this work aims not only to develop self-nanoemulsifying drug delivery systems (SNEDDSs) for oral delivery of the ethanolic extract of Morinda lucida (ML) but also to evaluate its oral antimalarial activity alone and in combination with other Congolese ethanolic plant extracts (Alstonia congensis, Garcinia kola, Lantana camara, Morinda morindoides or Newbouldia laevis). Based on the solubility of these different extracts in various excipients, SNEDDS preconcentrates were prepared, and 200 mg/g of each plant extract were suspended in these formulations. The 4-day suppressive Peter's test revealed a significant parasite growth inhibiting effect for all the extract-based SNEDDS (from 55.0 to 82.4 %) at 200 mg/kg. These activities were higher than those of their corresponding ethanolic suspensions given orally at the same dose (p<0.05). The combination therapy of MLSNEDDS with other extract-based SNEDDS exhibited remarkable chemosuppression, ranging from 74.3 % to 95.8 % (for 100 + 100 mg/kg) and 86.7 % to 95.5 % (for 200 + 200 mg/kg/day). In regard to these findings, SNEDDS suspension may constitute a promising approach for oral delivery of ML alone or in combination with other antimalarial plants.


Subject(s)
Plants/metabolism , Pharmaceutical Preparations/administration & dosage , Plant Extracts/administration & dosage , Morinda/adverse effects , Antimalarials/analysis , In Vitro Techniques/methods , Drug Delivery Systems , Dosage , Malaria/drug therapy
4.
Viruses ; 13(11)2021 11 20.
Article in English | MEDLINE | ID: mdl-34835123

ABSTRACT

A number of viruses, including Herpes Simplex Virus (HSV), West Nile Virus (WNV), La Crosse Virus (LACV), Zika virus (ZIKV) and Tick-borne encephalitis virus (TBEV), have the ability to gain access to the central nervous system (CNS) and cause severe neurological disease or death. Although encephalitis cases caused by these viruses are generally rare, there are relatively few treatment options available for patients with viral encephalitis other than palliative care. Many of these viruses directly infect neurons and can cause neuronal death. Thus, there is the need for the identification of useful therapeutic compounds that can inhibit virus replication in neurons or inhibit virus-induced neuronal cell death. In this paper, we describe the methodology to test compounds for their ability to inhibit virus-induced neuronal cell death. These protocols include the isolation and culturing of primary neurons; the culturing of neuroblastoma and neuronal stem cell lines; infection of these cells with viruses; treatment of these cells with selected drugs; measuring virus-induced cell death using MTT or XTT reagents; analysis of virus production from these cells; as well as the basic understanding in mode of action. We further show direct evidence of the effectiveness of these protocols by utilizing them to test the effectiveness of the polyphenol drug, Rottlerin, at inhibiting Zika virus infection and death of neuronal cell lines.


Subject(s)
Cell Death/drug effects , Drug Evaluation, Preclinical/methods , Encephalitis, Viral/drug therapy , Pharmaceutical Preparations/administration & dosage , Animals , Cell Line , Humans , Mice , Neurons , Stem Cells
5.
AAPS J ; 23(6): 111, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34651233

ABSTRACT

Lipid nanoparticles have transformed the drug delivery field enhancing the therapeutic drug performance of small molecules and biologics with several approved drug products. However, in industry, these more complex drug delivery systems such as liposomes require more material and time to develop. Here, we report a liposome and lipodisk decision tree with model compounds of diverse physicochemical properties to understand how to resourcefully optimize encapsulation efficiency (EE) for these lipid-based drug delivery systems. We have identified trends with physicochemical properties such as Log P, where higher Log P compounds such as curcumin were able to efficiently load into the lipid bilayer resulting in high EE with altering the drug/lipid (D/L) ratio. Moderate Log P compounds such as cyclosporine A and dexamethasone had significantly higher encapsulation in lipodisks, which contain higher amounts of PEG lipid compared to liposomes. The EE of negative Log P compounds, like acyclovir, remained low regardless of altering the D/L ratio and PEG concentrations. In this study, microfluidic techniques were employed to fabricate liposomes and lipodisks formulations allowing for a reproducible strategy for formulation development. Both liposome and lipodisk of curcumin demonstrated enhanced in vivo performance compared with a conventional formulation in the rat pharmacokinetic study. This combination of approaches with multiple model compounds and lipid-based drug delivery systems provides a systematic guidance to effective strategies to generate higher EE with minimal drug waste and expedite the process for preclinical development when applied to industry compounds.


Subject(s)
Curcumin/administration & dosage , Drug Delivery Systems , Liposomes , Microfluidics , Nanoparticles , Animals , Curcumin/chemistry , Curcumin/pharmacokinetics , Drug Development , Drug Evaluation, Preclinical/methods , Female , Male , Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/chemistry , Rats , Rats, Sprague-Dawley , Reproducibility of Results
6.
Cells ; 10(8)2021 08 20.
Article in English | MEDLINE | ID: mdl-34440919

ABSTRACT

Hematopoietic stem cells (HSCs) are a specialized subset of cells with self-renewal and multilineage differentiation potency, which are essential for their function in bone marrow or umbilical cord blood transplantation to treat blood disorders. Expanding the hematopoietic stem and progenitor cells (HSPCs) ex vivo is essential to understand the HSPCs-based therapies potency. Here, we established a screening system in zebrafish by adopting an FDA-approved drug library to identify candidates that could facilitate HSPC expansion. To date, we have screened 171 drugs of 7 categories, including antibacterial, antineoplastic, glucocorticoid, NSAIDS, vitamins, antidepressant, and antipsychotic drugs. We found 21 drugs that contributed to HSPCs expansion, 32 drugs' administration caused HSPCs diminishment and 118 drugs' treatment elicited no effect on HSPCs amplification. Among these drugs, we further investigated the vitamin drugs ergocalciferol and panthenol, taking advantage of their acceptability, limited side-effects, and easy delivery. These two drugs, in particular, efficiently expanded the HSPCs pool in a dose-dependent manner. Their application even mitigated the compromised hematopoiesis in an ikzf1-/- mutant. Taken together, our study implied that the larval zebrafish is a suitable model for drug repurposing of effective molecules (especially those already approved for clinical use) that can facilitate HSPCs expansion.


Subject(s)
Apoptosis/drug effects , Cell Proliferation/drug effects , Drug Approval , Hematopoietic Stem Cells/cytology , Pharmaceutical Preparations/administration & dosage , Animals , Animals, Genetically Modified , Apoptosis/genetics , Calcifediol/pharmacology , Calcitriol/pharmacology , Cell Proliferation/genetics , Cholecalciferol/pharmacology , Drug Evaluation, Preclinical/methods , Gene Expression/drug effects , Humans , In Situ Hybridization/methods , Larva/cytology , Larva/drug effects , Larva/metabolism , Pharmaceutical Preparations/classification , Vitamins/pharmacology , Zebrafish
7.
Methods Mol Biol ; 2314: 247-260, 2021.
Article in English | MEDLINE | ID: mdl-34235656

ABSTRACT

Non-replicating persistence (NRP) is a functional adaptation that mycobacteria undergo in response to the stresses of the granuloma, facilitating antibiotic tolerance and long-term infection. These stresses, or NRP-inducing factors, include hypoxia, nutrient deprivation, and nitric oxide assault, which mycobacteria are well evolved to tolerate through a series of metabolic and physiological adaptations producing the NRP state. Most attempts to replicate these conditions in vitro have focused on only one of these factors at a time for ease and simplicity, but as a result, do not necessarily produce physiologically relevant phenotypes. Here, we provide the methods for two different in vitro NRP strategies that are useful for drug susceptibility testing and high-throughput screening.


Subject(s)
Drug Evaluation, Preclinical/methods , Hypoxia/physiopathology , Mycobacterium tuberculosis/growth & development , Nutrients/metabolism , Oxygen/metabolism , Pharmaceutical Preparations/administration & dosage , Stress, Physiological , Humans , In Vitro Techniques , Mycobacterium tuberculosis/drug effects
8.
J Ethnopharmacol ; 280: 114408, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34252529

ABSTRACT

ETHNOPHARMACOLOGY RELEVANCE: Suxiao jiuxin pill (SJP) is a Chinese medical drug with anti-inflammatory, anti-apoptotic, and vasodilatory function. It is widely used in combination with other drugs for the treatment of coronary heart disease (CHD) and angina. Nevertheless, the effect of SJP on Cytochrome P450 (CYP450) enzymes and transporters' activity related to drug metabolism is rarely studied. OBJECTIVE: The aim of this study was to investigate the effect of SJP on the activity of drug-metabolizing enzyme CYP450 and transporters. MATERIALS AND METHODS: Human primary hepatocytes were used in present study. Probe substrates of CYP450 enzymes were incubated in human liver microsomes (HLMs) with and without SJP while IC50 values were calculated. The inhibitory effect of SJP on the activity of CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6 and 3A4 was evaluated. The inducing effect of SJP on the activity of CYP1A2, 2B6 and 3A4 was accessed. The inhibition of SJP on human OATP1B1 was investigated through cell-based assay. The inhibition of SJP on human MDR1 and BCRP was also estimated by means of the vesicles assay. RESULTS: The results showed that the SJP under the concentration of 1000 µg/mL could inhibit the activity of CYP1A2, 2B6, 2C19, and 3A4, with IC50 values of 189.7, 308.2, 331.2 and 805.7 µg/mL, respectively. There was no inhibitory effect found in the other 3 liver drug enzyme subtypes. In addition, SJP showed no induction effect on CYP1A2, 2B6 and 3A4, however it had a significant inhibitory effect on human-derived OATP1B1 at the concentration of 100 and 1000 µg/mL, with the IC50 value of 21.9 µg/mL. Simultaneously, the SJP inhibited BCRP at high concentration of 1000 µg/mL but did not affect human MDR1. CONCLUSIONS: Based on these research results above, it is suggested that the SJP can affect some of the CYP450 enzymes and transporters' activity. When used in combination with related conventional drugs, potential herb-drug interactions should be considered.


Subject(s)
Cytochrome P-450 Enzyme System/drug effects , Drugs, Chinese Herbal/pharmacology , Herb-Drug Interactions , Membrane Transport Proteins/drug effects , Cytochrome P-450 Enzyme Inhibitors/administration & dosage , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/administration & dosage , HEK293 Cells , Hepatocytes/enzymology , Hepatocytes/metabolism , Humans , Inhibitory Concentration 50 , Membrane Transport Proteins/metabolism , Microsomes, Liver/enzymology , Microsomes, Liver/metabolism , Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/metabolism
9.
Biomed Pharmacother ; 141: 111638, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34153846

ABSTRACT

Repositioning or "repurposing" of existing therapies for indications of alternative disease is an attractive approach that can generate lower costs and require a shorter approval time than developing a de novo drug. The development of experimental drugs is time-consuming, expensive, and limited to a fairly small number of targets. The incorporation of separate and complementary data should be used, as each type of data set exposes a specific feature of organism knowledge Drug repurposing opportunities are often focused on sporadic findings or on time-consuming pre-clinical drug tests which are often not guided by hypothesis. In comparison, repurposing in-silico drugs is a new, hypothesis-driven method that takes advantage of big-data use. Nonetheless, the widespread use of omics technology, enhanced data storage, data sense, machine learning algorithms, and computational modeling all give unparalleled knowledge of the methods of action of biological processes and drugs, providing wide availability, for both disease-related data and drug-related data. This review has taken an in-depth look at the current state, possibilities, and limitations of further progress in the field of drug repositioning.


Subject(s)
Computer Simulation , Drug Discovery/methods , Drug Repositioning/methods , Machine Learning , Pharmaceutical Preparations/administration & dosage , Animals , Big Data , Computer Simulation/statistics & numerical data , Drug Delivery Systems/methods , Drug Delivery Systems/statistics & numerical data , Drug Discovery/statistics & numerical data , Drug Repositioning/statistics & numerical data , Humans , Machine Learning/statistics & numerical data
10.
Biol Pharm Bull ; 44(6): 747-761, 2021.
Article in English | MEDLINE | ID: mdl-34078807

ABSTRACT

The paired suprachiasmatic nuclei (SCN) is the circadian pacemaker in mammals. Clock genes ultimately regulates a vast array of circadian rhythms involved in biological, physiological and behavioral process. The clock genes are closely related to sleep disorders, metabolic syndromes, and cancer diseases. Monitoring rhythm, overcoming rhythm disruption, and manipulating rhythm from the perspective of the clock genes play an important role to improve chronopharmacotherapy. Such an approach should be achieved by overcoming the new challenges in drug delivery systems that match the circadian rhythm (Chrono-DDS). Gene and antibody delivery, targeting specific molecules for certain diseases have been focused in recent studies on pharmacotherapy. One of important candidates should also be clock genes. New drugs targeting the molecular clock are being developed to manage diseases in humans. The circadian dynamics of cancer stem cells are controlled by the tumor microenvironment and provide proof for its implication in chronotherapy against triple-negative breast cancer. To examine the relationship between the circadian clock and chronic kidney disease (CKD) exacervation leads to clarify the novel molecular mechanisms causing renal malfunction in mice with CKD. A novel inhibitor of cell cycle regulatory factors has been identified and the inhibitor repressed renal inflammation in a CKD mouse model. Therefore, this review aims to introduce the role of the molecular clock in the time-dependent dosing changes in the therapeutic effect and safety of a drug and the possibility of drug discovery and development based on the molecular clock.


Subject(s)
Drug Chronotherapy , Drug Discovery , Animals , Circadian Clocks , Drug Delivery Systems , Drug Monitoring , Humans , Pharmaceutical Preparations/administration & dosage , Pharmacokinetics , Pharmacology
11.
Molecules ; 26(9)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33925103

ABSTRACT

Oral bioavailability (F) is an essential determinant for the systemic exposure and dosing regimens of drug candidates. F is determined by numerous processes, and computational predictions of human estimates have so far shown limited results. We describe a new methodology where F in humans is predicted directly from chemical structure using an integrated strategy combining 9 machine learning models, 3 sets of structural alerts, and 2 physiologically-based pharmacokinetic models. We evaluate the model on a benchmark dataset consisting of 184 compounds, obtaining a predictive accuracy (Q2) of 0.50, which is successful according to a pharmaceutical industry proposal. Twenty-seven compounds were found (beforehand) to be outside the main applicability domain for the model. We compare our results with interspecies correlations (rat, mouse and dog vs. human) using the same dataset, where animal vs. human-correlations (R2) were found to be 0.21 to 0.40 and maximum prediction errors were smaller than maximum interspecies differences. We conclude that our method has sufficient predictive accuracy to be practically useful with applications in human exposure and dose predictions, compound optimization and decision making, with potential to rationalize drug discovery and development and decrease failures and overexposures in early clinical trials with candidate drugs.


Subject(s)
Machine Learning , Models, Biological , Pharmaceutical Preparations , Pharmacokinetics , Administration, Oral , Biological Availability , Computer Simulation , Drug Evaluation, Preclinical , Humans , Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/chemistry , Quantitative Structure-Activity Relationship , Supervised Machine Learning
12.
Biomed Pharmacother ; 138: 111445, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33711551

ABSTRACT

Whilst the popular use of herbal medicine globally, it poses challenges in managing potential drug-herb interaction. There are two folds of the drug-herb interaction, a beneficial interaction that may improve therapeutic outcome and minimise the toxicity of drug desirably; by contrast, negative interaction may evoke unwanted clinical consequences, especially with drugs of narrow therapeutic index. Scutellaria baicalensis Georgi is one of the most popular medicinal plants used in Asian countries. It has been widely used for treating various diseases and conditions such as cancer, diabetes, inflammation, and oxidative stress. Studies on its extract and bioactive compounds have shown pharmacodynamic and pharmacokinetic interactions with a wide range of pharmaceutical drugs as evidenced by plenty of in vitro, in vivo and clinical studies. Notably, S. baicalensis and its bioactives including baicalein, baicalin and wogonin exhibited synergistic interactions with many pharmaceutical drugs to enhance their efficacy, reduce toxicity or overcome drug resistance to combat complex diseases such as cancer, diabetes and infectious diseases. On the other hand, S. baicalensis and its bioactives also affected the pharmacokinetic profile of many drugs in absorption, distribution, metabolism and elimination via the regulatory actions of the efflux pumps and cytochrome P450 enzymes. This review provides comprehensive references of the observed pharmacodynamic and pharmacokinetic drug interactions of Scutellaria baicalensis and its bioactives. We have elucidated the interaction with detailed mechanistic actions, identified the knowledge gaps for future research and potential clinical implications. Such knowledge is important for the practice of both conventional and complementary medicines, and it is essential to ensure the safe use of related herbal medicines. The review may be of great interest to practitioners, consumers, clinicians who require comprehensive information on the possible drug interactions with S. baicalensis and its bioactives.


Subject(s)
Herb-Drug Interactions/physiology , Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/metabolism , Plant Extracts/metabolism , Plant Extracts/therapeutic use , Scutellaria baicalensis , Animals , Communicable Diseases/drug therapy , Communicable Diseases/metabolism , Diabetes Mellitus/drug therapy , Diabetes Mellitus/metabolism , Drug Resistance/drug effects , Drug Resistance/physiology , Drugs, Chinese Herbal/isolation & purification , Drugs, Chinese Herbal/metabolism , Drugs, Chinese Herbal/therapeutic use , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Plant Extracts/isolation & purification
13.
Molecules ; 26(2)2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33466739

ABSTRACT

Fusarium graminearum is a fungal pathogen that can colonize small-grain cereals and maize and secrete type B trichothecene (TCTB) mycotoxins. The development of environmental-friendly strategies guaranteeing the safety of food and feed is a key challenge facing agriculture today. One of these strategies lies on the promising capacity of products issued from natural sources to counteract crop pests. In this work, the in vitro efficiency of sixteen extracts obtained from eight natural sources using subcritical water extraction at two temperatures was assessed against fungal growth and TCTB production by F. graminearum. Maritime pine sawdust extract was shown to be extremely efficient, leading to a significant inhibition of up to 89% of the fungal growth and up to 65% reduction of the mycotoxin production by F. graminearum. Liquid chromatography/mass spectrometry analysis of this active extract revealed the presence of three families of phenolics with a predominance of methylated compounds and suggested that the abundance of methylated structures, and therefore of hydrophobic compounds, could be a primary factor underpinning the activity of the maritime pine sawdust extract. Altogether, our data support that wood/forest by-products could be promising sources of bioactive compounds for controlling F. graminearum and its production of mycotoxins.


Subject(s)
Forests , Fusarium/metabolism , Mycotoxins/biosynthesis , Pharmaceutical Preparations/administration & dosage , Plant Extracts/pharmacology , Wine/analysis , Wood/chemistry , Fusarium/drug effects , Fusarium/growth & development , Pharmaceutical Preparations/metabolism , Vitis/chemistry
14.
J Dermatolog Treat ; 32(5): 497-502, 2021 Aug.
Article in English | MEDLINE | ID: mdl-31664863

ABSTRACT

BACKGROUND: Topical medications are first-line treatment for mild-to-moderate psoriasis, but adherence is low, which negatively affects patients' outcomes and quality of life. Nurses can play a central role in patient care, particularly in improving adherence. OBJECTIVES: To explore the experience of dermatology nurses with psoriasis patients' adherence to topical drugs. METHODS: We conducted a semi-structured focus group study with 6 dermatology nurses and 2 dermatology nursing students. Participants were recruited from a dermatology hospital outpatient clinic. Data were analyzed by a systematic text condensation method with a phenomenological-hermeneutic approach. RESULTS: Nurses experienced that factors such as social inequality, patient-centered nursing, and patients' quality of life can have an influence on adherence. CONCLUSION: Optimal adherence to topical treatments is a complex exercise and is influenced by many different factors. Involving nurses when prescribing topical treatments may be beneficial since they are one of the most trustworthy professions and have a holistic view on psoriasis severity, patient preferences, health care resources available and socioeconomic factors.


Subject(s)
Nurses/statistics & numerical data , Patient Compliance , Psoriasis/drug therapy , Quality of Life , Administration, Topical , Adult , Aged , Denmark , Dermatology , Female , Focus Groups , Humans , Male , Middle Aged , Patient Preference , Patient-Centered Care , Pharmaceutical Preparations/administration & dosage , Young Adult
15.
Laryngoscope ; 131(9): 1958-1966, 2021 09.
Article in English | MEDLINE | ID: mdl-33125169

ABSTRACT

OBJECTIVES/HYPOTHESIS: Novel laryngotracheal wound coverage devices are limited by complex anatomy, smooth surfaces, and dynamic pressure changes and airflow during breathing. We hypothesize that a bioinspired mucoadhesive patch mimicking how geckos climb smooth surfaces will permit sutureless wound coverage and also allow drug delivery. STUDY DESIGN: ex-vivo. METHODS: Polycaprolactone (PCL) fibers were electrospun onto a substrate and polyethylene glycol (PEG) - acrylate flocks in varying densities were deposited to create a composite patch. Sample topography was assessed with laser profilometry, material stiffness with biaxial mechanical testing, and mucoadhesive testing determined cohesive material failure on porcine tracheal tissue. Degradation rate was measured over 21 days in vitro along with dexamethasone drug release profiles. Material handleability was evaluated via suture retention and in cadaveric larynges. RESULTS: Increased flocking density was inversely related to cohesive failure in mucoadhesive testing, with a flocking density of PCL-PEG-2XFLK increasing failure strength to 6880 ± 1810 Pa compared to 3028 ± 791 in PCL-PEG-4XFLK density and 1182 ± 262 in PCL-PEG-6XFLK density. The PCL-PEG-2XFLK specimens had a higher failure strength than PCL alone (1404 ± 545 Pa) or PCL-PEG (2732 ± 840). Flocking progressively reduced composite stiffness from 1347 ± 15 to 763 ± 21 N/m. Degradation increased from 12% at 7 days to 16% after 10 days and 20% after 21 days. Cumulative dexamethasone release at 0.4 mg/cm2 concentration was maintained over 21 days. Optimized PCL-PEG-2XFLK density flocked patches were easy to maneuver endoscopically in laryngeal evaluation. CONCLUSIONS: This novel, sutureless, patch is a mucoadhesive platform suitable to laryngeal and tracheal anatomy with drug delivery capability. LEVEL OF EVIDENCE: NA Laryngoscope, 131:1958-1966, 2021.


Subject(s)
Dexamethasone/administration & dosage , Glucocorticoids/administration & dosage , Wound Closure Techniques/instrumentation , Wound Healing/drug effects , Animals , Biocompatible Materials , Cadaver , Dexamethasone/therapeutic use , Drug Delivery Systems/trends , Drug Evaluation, Preclinical , Glucocorticoids/therapeutic use , Humans , Larynx/anatomy & histology , Larynx/pathology , Pharmaceutical Preparations/administration & dosage , Polyesters/chemistry , Polyethylene Glycols/chemistry , Sutureless Surgical Procedures/methods , Swine , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Trachea/anatomy & histology , Trachea/pathology , Wound Healing/physiology
16.
Curr Drug Deliv ; 18(4): 446-459, 2021.
Article in English | MEDLINE | ID: mdl-33200698

ABSTRACT

BACKGROUND: Overcoming the skin barrier to achieve the transdermal penetration of drugs across the Stratum Corneum (SC) remains a significant challenge. Our previous study showed that Fu's Cupping Therapy (FCT) contributes to the transdermal enhancement and percutaneous absorption rate of representative drugs and improves their clinical effects. This work evaluated the transdermal enhancement effect of FCT on drugs with different Molecular Weights (MW). METHODS: We investigated the enhancements in the transdermal penetration of eight types of model drugs through the skin of BALB/c-nu mice and Sprague Dawley rats using Franz diffusion devices. In addition, 3% azone, 5% azone, 3% peppermint oil, and 5% peppermint oil were used as penetration enhancers to study the transdermal behaviour of these drugs. RESULTS: Our results showed that the BALB/c-nu mouse skin was the best transdermal media, and the optimal time for FCT was 10 min. Compared with other penetration enhancers, FCT exerted a significantly improved effect on enhancing the percutaneous penetration of the selected log(P)- model drugs in addition to the two large MW drugs (ginsenoside Rg1 and notoginsenoside R1). Statistical analysis revealed that the relationship between the log(P) of various model drugs and the permeability coefficient [log(Pcm)] of the FCT group was log(Pcm)=0.080(log(P))2-0.136 (log(P))-0.282. CONCLUSION: FCT may be used as a novel method for enhancing physical penetration and thus effectively promoting the transdermal absorption of drugs and might lay a foundation for future research on drug transdermal technology.


Subject(s)
Cupping Therapy , Pharmaceutical Preparations , Skin Absorption , Administration, Cutaneous , Animals , Mice , Mice, Inbred BALB C , Pharmaceutical Preparations/administration & dosage , Rats , Rats, Sprague-Dawley , Skin
17.
Int J Mol Sci ; 22(1)2020 Dec 25.
Article in English | MEDLINE | ID: mdl-33375558

ABSTRACT

Biomaterials have been the subject of numerous studies to pursue potential therapeutic interventions for a wide variety of disorders and diseases. The physical and chemical properties of various materials have been explored to develop natural, synthetic, or semi-synthetic materials with distinct advantages for use as drug delivery systems for the central nervous system (CNS) and non-CNS diseases. In this review, an overview of popular biomaterials as drug delivery systems for neurogenerative diseases is provided, balancing the potential and challenges associated with the CNS drug delivery. As an effective drug delivery system, desired properties of biomaterials are discussed, addressing the persistent challenges such as targeted drug delivery, stimuli responsiveness, and controlled drug release in vivo. Finally, we discuss the prospects and limitations of incorporating extracellular vesicles (EVs) as a drug delivery system and their use for biocompatible, stable, and targeted delivery with limited immunogenicity, as well as their ability to be delivered via a non-invasive approach for the treatment of neurodegenerative diseases.


Subject(s)
Biocompatible Materials/chemistry , Drug Carriers/chemistry , Drug Delivery Systems , Animals , Clinical Studies as Topic , Drug Delivery Systems/adverse effects , Drug Delivery Systems/methods , Drug Evaluation, Preclinical , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Humans , Nanoparticles/chemistry , Neurodegenerative Diseases/drug therapy , Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/chemistry , Polymers/chemistry
18.
Drug Deliv ; 27(1): 1562-1580, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33118404

ABSTRACT

Acute pancreatitis is a sudden inflammation and only last for a short time, but might lead to a life-threatening emergency. Traditional drug therapy is an essential supportive method for acute pancreatitis treatment, yet, failed to achieve satisfactory therapeutic outcomes. To date, it is still challenging to develop therapeutic medicine to redress the intricate microenvironment promptly in the inflamed pancreas, and more importantly, avoid multi-organ failure. The understanding of the acute pancreatitis, including the causes, mechanism, and severity judgment, could help the scientists bring up more effective intervention and treatment strategies. New formulation approaches have been investigated to precisely deliver therapeutics to inflammatory lesions in the pancreas, and some even could directly attenuate the pancreatic damages. In this review, we will briefly introduce the involved pathogenesis and underlying mechanisms of acute pancreatitis, as well as the traditional Chinese medicine and the new drug option. Most of all, we will summarize the drug delivery strategies to reduce inflammation and potentially prevent the further development of pancreatitis, with an emphasis on the bifunctional nanoparticles that act as both drug delivery carriers and therapeutics.


Subject(s)
Pancreatitis/drug therapy , Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/chemistry , Animals , Chemistry, Pharmaceutical/methods , Drug Discovery/methods , Humans , Inflammation/drug therapy , Medicine, Chinese Traditional/methods , Pancreas/drug effects
19.
Exp Physiol ; 105(12): 2033-2037, 2020 12.
Article in English | MEDLINE | ID: mdl-33094534

ABSTRACT

NEW FINDINGS: What is the central question of this study? Can Justicia flava leaf extract (JF) inhibit human myometrial contractility as was previously shown in mouse myometrium? What is the main finding and its importance? JF abolished human myometrial contractions and therefore presents as a lead plant in drug discovery studies involving drugs for preterm birth. ABSTRACT: In the search for new potent therapies for preterm labour, Justicia flava leaf extract (JF) was previously shown to potently inhibit uterine contractility in both pregnant and non-pregnant mouse uterus. This study took the investigation a step further and investigated the activity of JF on pregnant human myometrial contractility. JF potently inhibited human myometrial contractility in a concentration-dependent manner. This pilot study provides evidence that JF should be further investigated as a lead plant in the drug discovery of new uterine relaxants.


Subject(s)
Justicia/chemistry , Muscle Contraction/drug effects , Myometrium/drug effects , Plant Extracts/pharmacology , Plant Leaves/chemistry , Uterine Contraction/drug effects , Drug Discovery/methods , Female , Humans , Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/chemistry , Pregnancy , Uterus/drug effects
20.
Biomed Res Int ; 2020: 2417410, 2020.
Article in English | MEDLINE | ID: mdl-33110917

ABSTRACT

Sargassum fulvellum is a brown seaweed of the Sargassaceae family which has been demonstrated to exhibit antipyretic, analgesic, antiedema, antimicrobial, antioxidant, antitumor, neuroprotective, anticoagulative, anti-inflammatory, and hepatoprotective activities. It has been widely used as a food additive and as a medicine in oriental medicine to treat lumps, dropsy, swelling, testicular pains, and urinary problems. S. fulvellum has been identified as a potential producer of a wide spectrum of natural compounds such as carotenoids, fucoidans, and phlorotannins, showing different biological activities in various industrial applications including pharmaceutical, nutraceutical, cosmeceutical, and functional food. However, the promising health effects associated with the extracts and compounds isolated from S. fulvellum have not been reviewed to date. The present review thus focuses on the biological activity of S. fulvellum as reported by previous publications, which include antioxidant, anticoagulant, anti-inflammatory, neuroprotective, immunomodulatory, antidiabetic, and anticancer effects. Thus, this review might serve to increase the utilization of this invaluable natural source as a potential component in pharmaceutical and nutraceutical applications.


Subject(s)
Biological Products/pharmacology , Pharmaceutical Preparations/administration & dosage , Sargassum/chemistry , Animals , Biological Products/chemistry , Dietary Supplements , Humans , Pharmaceutical Preparations/chemistry , Seaweed/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL