Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Complementary Medicines
Database
Language
Publication year range
1.
Sci Rep ; 10(1): 8813, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32483199

ABSTRACT

Sleep abnormality often accompanies the impairment of cognitive function. Both rapid eye movement (REM) and non-REM (NREM) sleep have associated with improved memory performance. However, the role of composition in NREM sleep, consisting of light and deep NREM, for memory formation is not fully understood. We investigated how the dynamics of NREM sleep states influence memory consolidation. Thalamocortical (TC) neuron-specific phospholipase C ß4 (PLCß4) knockout (KO) increased the total duration of NREM sleep, consisting of destabilized light NREM and stabilized deep NREM. Surprisingly, the longer NREM sleep did not improve memory consolidation but rather impaired it in TC-specific PLCß4 KO mice. Memory function was positively correlated with the stability of light NREM and spindle activity occurring in maintained light NREM period. Our study suggests that a single molecule, PLCß4, in TC neurons is critical for tuning the NREM sleep states and thus affects sleep-dependent memory formation.


Subject(s)
Memory Consolidation/physiology , Memory Disorders/enzymology , Nerve Tissue Proteins/physiology , Phospholipase C beta/physiology , Sleep Stages/physiology , Thalamus/enzymology , Animals , Cerebral Cortex/enzymology , Conditioning, Classical/physiology , Delta Rhythm/physiology , Electroencephalography , Electromyography , Exons/genetics , Exploratory Behavior , Fear/physiology , Male , Memory Disorders/physiopathology , Mice , Mice, Knockout , Mice, Transgenic , Nerve Tissue Proteins/deficiency , Neurons/enzymology , Phospholipase C beta/deficiency , Recognition, Psychology , Sequence Deletion , Sleep, Slow-Wave/physiology , Time Factors
2.
Mol Brain ; 9(1): 100, 2016 12 21.
Article in English | MEDLINE | ID: mdl-27998287

ABSTRACT

The transition from wakefulness to a nonrapid eye movement (NREM) sleep state at the onset of sleep involves a transition from low-voltage, high-frequency irregular electroencephalography (EEG) waveforms to large-amplitude, low-frequency EEG waveforms accompanying synchronized oscillatory activity in the thalamocortical circuit. The thalamocortical circuit consists of reciprocal connections between the thalamus and cortex. The cortex sends strong excitatory feedback to the thalamus, however the function of which is unclear. In this study, we investigated the role of the thalamic metabotropic glutamate receptor 1 (mGluR1)-phospholipase C ß4 (PLCß4) pathway in sleep control in PLCß4-deficient (PLCß4-/-) mice. The thalamic mGluR1-PLCß4 pathway contains synapses that receive corticothalamic inputs. In PLCß4-/- mice, the transition from wakefulness to the NREM sleep state was stimulated, and the NREM sleep state was stabilized, which resulted in increased NREM sleep. The power density of delta (δ) waves increased in parallel with the increased NREM sleep. These sleep phenotypes in PLCß4-/- mice were consistent in TC-restricted PLCß4 knockdown mice. Moreover, in vitro intrathalamic oscillations were greatly enhanced in the PLCß4-/- slices. The results of our study showed that thalamic mGluR1-PLCß4 pathway was critical in controlling sleep architecture.


Subject(s)
Phospholipase C beta/metabolism , Receptors, Metabotropic Glutamate/metabolism , Sleep/physiology , Thalamus/metabolism , Animals , Cerebral Cortex/physiology , Delta Rhythm/physiology , Mice, Inbred C57BL , Mice, Knockout , Phospholipase C beta/deficiency , Thalamus/physiology
3.
Nat Neurosci ; 15(2): 308-14, 2011 Dec 25.
Article in English | MEDLINE | ID: mdl-22197828

ABSTRACT

The mediodorsal thalamic nucleus has been implicated in the control of memory processes. However, the underlying neural mechanism remains unclear. Here we provide evidence for bidirectional modulation of fear extinction by the mediodorsal thalamic nucleus. Mice with a knockout or mediodorsal thalamic nucleus-specific knockdown of phospholipase C ß4 exhibited impaired fear extinction. Mutant mediodorsal thalamic nucleus neurons in slices showed enhanced burst firing accompanied by increased T-type Ca(2+) currents; blocking of T channels in vivo rescued the fear extinction. Tetrode recordings in freely moving mice revealed that, during extinction, the single-spike (tonic) frequency of mediodorsal thalamic nucleus neurons increased in wild-type mice, but was static in mutant mice. Furthermore, tonic-evoking microstimulations of the mediodorsal thalamic nucleus, contemporaneous with the extinction tones, rescued fear extinction in mutant mice and facilitated it in wild-type mice. In contrast, burst-evoking microstimulation suppressed extinction in wild-type mice, mimicking the mutation. These results suggest that the firing mode of the mediodorsal thalamic nucleus is critical for the modulation of fear extinction.


Subject(s)
Action Potentials/physiology , Conditioning, Psychological/physiology , Extinction, Psychological/physiology , Fear , Neurons/physiology , Thalamus/cytology , Acoustic Stimulation/adverse effects , Action Potentials/genetics , Animals , Anxiety/genetics , Anxiety/psychology , Behavior, Animal , Calcium Channels/metabolism , Dose-Response Relationship, Drug , Drug Delivery Systems , Electric Stimulation , Electroencephalography , In Vitro Techniques , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Activity/genetics , Patch-Clamp Techniques , Phospholipase C beta/deficiency , Phospholipase C beta/metabolism , Phosphopyruvate Hydratase/metabolism , RNA, Small Interfering/pharmacology , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL