Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 404
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Hazard Mater ; 470: 134234, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38608584

ABSTRACT

Agricultural waste management poses a significant challenge in circular economy strategies. Olive mill wastes (OMW) contain valuable biomolecules, especially phenolic compounds, with significant agricultural potential. Our study evaluate the effects of phenolic extract (PE) derived from olive mill solid wastes (OMSW) on pomegranate agro-physiological and biochemical responses, as well as soil-related attributes. Pomegranate plants were treated with PE at doses of 100 ppm and 200 ppm via foliar spray (L100 and L200) and soil application (S100 and S200). Results showed increased biomass with PE treatments, especially with soil application (S100 and S200). Proline and soluble sugar accumulation in leaves suggested plant adaptation to PE with low-level stress. Additionally, PE application reduced malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents. Higher doses of PE (S200) significantly improved net photosynthesis (Pn), transpiration rate (E), water use efficiency (WUEi), and photosynthetic efficiency (fv/fm and PIabs). Furthermore, PE treatments enhanced levels of chlorophylls, carotenoids, polyphenols, flavonoids, and antioxidant activity. Soil application of PE also increased soil enzyme activities and microbial population. Our findings suggest the beneficial impact of PE application on pomegranate agro-physiological responses, laying the groundwork for further research across various plant species and soil types to introduce nutrient-enriched PE as an eco-friendly biostimulant.


Subject(s)
Olea , Phenols , Pomegranate , Pomegranate/chemistry , Phenols/analysis , Olea/chemistry , Soil/chemistry , Industrial Waste , Solid Waste , Rhizosphere , Photosynthesis/drug effects , Antioxidants/metabolism , Antioxidants/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Soil Microbiology , Hydrogen Peroxide/metabolism , Plant Leaves/drug effects , Plant Leaves/chemistry , Agriculture
2.
J Hazard Mater ; 470: 134263, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38613951

ABSTRACT

Nanotechnology offers a promising and innovative approach to mitigate biotic and abiotic stress in crop production. In this study, the beneficial role and potential detoxification mechanism of biogenic selenium nanoparticles (Bio-SeNPs) prepared from Psidium guajava extracts in alleviating antimony (Sb) toxicity in rice seedlings (Oryza sativa L.) were investigated. The results revealed that exogenous addition of Bio-SeNPs (0.05 g/L) into the hydroponic-cultured system led to a substantial enhancement in rice shoot height (73.3%), shoot fresh weight (38.7%) and dry weight (28.8%) under 50 µM Sb(III) stress conditions. Compared to Sb exposure alone, hydroponic application of Bio-SeNPs also greatly promoted rice photosynthesis, improved cell viability and membrane integrity, reduced reactive oxygen species (ROS) levels, and increased antioxidant activities. Meanwhile, exogenous Bio-SeNPs application significantly lowered the Sb accumulation in rice roots (77.1%) and shoots (35.1%), and reduced its root to shoot translocation (55.3%). Additionally, Bio-SeNPs addition were found to modulate the subcellular distribution of Sb and the expression of genes associated with Sb detoxification in rice, such as OsCuZnSOD2, OsCATA, OsGSH1, OsABCC1, and OsWAK11. Overall, our findings highlight the great potential of Bio-SeNPs as a promising alternative for reducing Sb accumulation in crop plants and boosting crop production under Sb stress conditions.


Subject(s)
Antimony , Antioxidants , Gene Expression Regulation, Plant , Nanoparticles , Oryza , Selenium , Oryza/drug effects , Oryza/metabolism , Oryza/growth & development , Oryza/genetics , Antimony/toxicity , Antioxidants/metabolism , Selenium/toxicity , Gene Expression Regulation, Plant/drug effects , Nanoparticles/toxicity , Nanoparticles/chemistry , Reactive Oxygen Species/metabolism , Stress, Physiological/drug effects , Photosynthesis/drug effects , Plant Roots/drug effects , Plant Roots/metabolism , Seedlings/drug effects , Seedlings/metabolism , Seedlings/growth & development
3.
Sci Total Environ ; 930: 172413, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38631632

ABSTRACT

Nanotechnology is a new scientific area that promotes unique concepts to comprehend the optimal mechanics of nanoparticles (NPs) in plants under heavy metal stress. The present investigation focuses on effects of synthetic and green synthesized titanium dioxide nanoparticles (TiO2 NPs and gTiO2 NPs) against Cr(VI). Green TiO2 NPs have been produced from plant leaf extract (Ricinus communis L.). Synthesis was confirmed employing an array of optical spectroscopic and electron microscopic techniques. Chromium strongly accelerated H2O2 and MDA productions by 227 % and 266 % at highest chromium concentration (60 mg/kg of soil), respectively, and also caused DNA damage, and decline in photosynthesis. Additionally, anomalies were observed in stomatal cells with gradual increment in chromium concentrations. Conversely, foliar applications of TiO2 NPs and gTiO2 NPs considerably mitigated chromium stress. Sunflower plants treated with modest amounts of green TiO2 NPs had significantly better growth index compared to chemically synthesized ones. Principal component analysis highlighted the variations among photosynthetic attributes, oxidative stress markers, and antioxidant defense systems. Notably, gTiO2 supplementation to the Cr(VI) strained plants minimized PC3 production which is a rare report so far. Conclusively, gTiO2 NPs have been identified to be promising nano-based nutrition resource for farming applications.


Subject(s)
Chromium , Green Chemistry Technology , Helianthus , Titanium , Titanium/toxicity , Helianthus/drug effects , Chromium/toxicity , Metal Nanoparticles/toxicity , Soil Pollutants , Oxidative Stress/drug effects , Photosynthesis/drug effects , Nanoparticles
4.
Plant Physiol Biochem ; 210: 108598, 2024 May.
Article in English | MEDLINE | ID: mdl-38608503

ABSTRACT

Nanopollution (NPOs), a burgeoning consequence of the widespread use of nanoparticles (NPs) across diverse industrial and consumer domains, has emerged as a critical environmental issue. While extensive research has scrutinized the repercussions of NPs pollution on ecosystems and human health, scant attention has been directed towards unraveling its implications for plant life. This comprehensive review aims to bridge this gap by delving into the nuanced interplay between NPOs and plant metabolism, encompassing both primary and secondary processes. Our exploration encompasses an in-depth analysis of the intricate mechanisms governing the interaction between plants and NPs. This involves a thorough examination of how physicochemical properties such as size, shape, and surface characteristics influence the uptake and translocation of NPs within plant tissues. The impact of NPOs on primary metabolic processes, including photosynthesis, respiration, nutrient uptake, and water transport. Additionally, this study explored the multifaceted alterations in secondary metabolism, shedding light on the synthesis and modulation of secondary metabolites in response to NPs exposure. In assessing the consequences of NPOs for plant life, we scrutinize the potential implications for plant growth, development, and environmental interactions. The intricate relationships revealed in this review underscore the need for a holistic understanding of the plant-NPs dynamics. As NPs become increasingly prevalent in ecosystems, this investigation establishes a fundamental guide that underscores the importance of additional research to shape sustainable environmental management strategies and address the extensive effects of NPs on the development of plant life and environmental interactions.


Subject(s)
Ecosystem , Nanoparticles , Plants , Plants/metabolism , Plants/drug effects , Nanoparticles/metabolism , Photosynthesis/drug effects
5.
Sci Rep ; 14(1): 9508, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664476

ABSTRACT

Foxtail millet is a highly nutritious crop, which is widely cultivated in arid and semi-arid areas worldwide. Humic acid (HA), as a common plant growth regulator, is used as an organic fertilizer and feed additive in agricultural production. However, the impact of potassium humate KH on the photosynthetic rate and yield of foxtail millet has not yet been studied. We explored the effects of KH application on the morphology, photosynthetic ability, carbon and nitrogen metabolism, and yield of foxtail millet. A field experiment was performed using six concentrations of KH (0, 20, 40, 80, 160, and 320 kg ha-1) supplied foliarly at the booting stage in Zhangza 10 cultivar (a widely grown high-yield variety). The results showed that KH treatment increased growth, chlorophyll content (SPAD), photosynthetic rate (Pn), transpiration rate (Tr), and stomatal conductance (Gs). In addition, soluble protein content, sugar content, and nitrate reductase activity increased in KH-treated plants. With increased KH concentration, the effects became more evident and the peak values of each factor were achieved at 80 kg ha-1. Photosynthetic rate showed significant correlation with SPAD, Tr, Gs, and soluble protein content, but was negatively correlated with intercellular CO2 concentration. Compared to that of the control, the yield of foxtail millet under the T2, T3, T4, and T5 (40, 80, 160, and 320 kg ha-1 of KH) treatments significantly increased by 6.0%, 12.7%, 10.5%, and 8.6%, respectively. Yield exhibited a significant positive correlation with Tr, Pn, and Gs. Overall, KH enhances photosynthetic rate and yield of foxtail millet, therefore it may be conducive to stable millet production. These findings may provide a theoretical basis for the green and efficient production of millet fields.


Subject(s)
Chlorophyll , Fertilizers , Humic Substances , Photosynthesis , Setaria Plant , Photosynthesis/drug effects , Setaria Plant/metabolism , Setaria Plant/drug effects , Setaria Plant/growth & development , Chlorophyll/metabolism , Nitrogen/metabolism , Carbon/metabolism
6.
Cells ; 10(11)2021 11 13.
Article in English | MEDLINE | ID: mdl-34831377

ABSTRACT

Hydrangea macrophylla is a popular perennial ornamental shrub commercially grown as potted plants, landscape plants, and cut flowers. In the process of reproduction and production of ornamental plants, the absorption of nutrients directly determines the value of the ornamental plants. Hydrangea macrophylla is very sensitive to the content and absorption of the micronutrient iron (Fe) that affects growth of its shoots. However, the physiological activity of Fe as affected by deficiency or supplementation is unknown. This work aimed at preliminary exploring the relationship between Fe and photosynthesis, and also to find the most favorable iron source and level of pH for the growth of H. macrophylla. Two Fe sources, non-chelated iron sulfate (FeSO4) and iron ethylenediaminetetraacetic acid (Fe-EDTA), were supplemented to the multipurpose medium with a final Fe concentration of 2.78 mg·L-1. The medium without any Fe supplementation was used as the control. The pH of the agar-solidified medium was adjusted to either 4.70, 5.70, or 6.70, before autoclaving. The experiment was conducted in a culture room for 60 days with 25/18 °C day and night temperatures, and a 16-hour photoperiod provided at a light intensity of 50 mmol·m-2·s-1 photosynthetic photon flux density (PPFD) from white light-emitting diodes. Supplementary Fe increased the tissue Fe content, and leaves were greener with the medium pH of 4.70, regardless of the Fe source. Compared to the control, the number of leaves for plantlets treated with FeSO4 and Fe-EDTA were 2.0 and 1.5 times greater, respectively. The chlorophyll, macronutrient, and micronutrient contents were the greatest with Fe-EDTA at pH 4.70. Furthermore, the Fe in the leaf affected the photosynthesis by regulating stomata development, pigment content, and antioxidant system, and also by adjusting the expression of genes related to Fe absorption, transport, and redistribution. Supplementation of Fe in a form chelated with EDTA along with a medium pH of 4.70 was found to be the best for the growth and development of H. macrophylla plantlets cultured in vitro.


Subject(s)
Hydrangea/growth & development , Iron/pharmacology , Antioxidants/metabolism , Arabidopsis Proteins/genetics , Base Sequence , FMN Reductase/metabolism , Fluorescence , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Hydrangea/anatomy & histology , Hydrangea/drug effects , Hydrangea/enzymology , Hydrogen-Ion Concentration , Micronutrients/analysis , Models, Biological , Nutrients/analysis , Photosynthesis/drug effects , Pigmentation/drug effects , Pigments, Biological/metabolism , Plant Proteins/genetics , Plant Stomata/drug effects , Plant Stomata/physiology , Plant Stomata/ultrastructure , Solubility
7.
PLoS One ; 16(9): e0256905, 2021.
Article in English | MEDLINE | ID: mdl-34495993

ABSTRACT

Nanoscience paves the way for producing highly potent fertilizers and pesticides to meet farmer's expectations. This study investigated the physiological and molecular responses of soybean seedlings to the long-time application of zinc oxide nanoparticles (ZnO NPs) and their bulk type (BZnO) at 5 mg L-1 under the two application methods (I- foliar application; II- soil method). The ZnO NPs/BZnO treatments in a substance type- and method-dependent manner improved plant growth performance and yield. ZnO NPs transactionally upregulated the EREB gene. However, the expression of the bHLH gene displayed a contrary downward trend in response to the supplements. ZnO NPs moderately stimulated the transcription of R2R3MYB. The HSF-34 gene was also exhibited a similar upward trend in response to the nano-supplements. Moreover, the ZnONP treatments mediated significant upregulation in the WRKY1 transcription factor. Furthermore, the MAPK1 gene displayed a similar upregulation trend in response to the supplements. The foliar application of ZnONP slightly upregulated transcription of the HDA3 gene, while this gene showed a contrary slight downregulation trend in response to the supplementation of nutrient solution. The upregulation in the CAT gene also resulted from the nano-supplements. The concentrations of photosynthetic pigments exhibited an increasing trend in the ZnONP-treated seedlings. The applied treatments contributed to the upregulation in the activity of nitrate reductase and the increase in the proline concentrations. ZnO NPs induced the activity of antioxidant enzymes, including peroxidase and catalase by averages of 48.3% and 41%, respectively. The utilization of ZnO NPs mediated stimulation in the activity of phenylalanine ammonia-lyase and increase in soluble phenols. The findings further underline this view that the long-time application of ZnO NPs at low concentrations is a safe low-risk approach to meet agricultural requirements.


Subject(s)
Antioxidants/metabolism , Carbon/metabolism , Glycine max/drug effects , Glycine max/metabolism , Histone Deacetylases/metabolism , Nanoparticles/chemistry , Nitrogen/metabolism , Secondary Metabolism/drug effects , Signal Transduction/drug effects , Transcription Factors/metabolism , Zinc Oxide/pharmacology , Biomarkers/metabolism , Fertilizers , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Histone Deacetylases/genetics , Photosynthesis/drug effects , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Seedlings/drug effects , Seedlings/genetics , Seedlings/growth & development , Seedlings/metabolism , Signal Transduction/genetics , Glycine max/genetics , Glycine max/growth & development , Transcription Factors/genetics , Up-Regulation/drug effects , Zinc Oxide/adverse effects
8.
Molecules ; 26(16)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34443651

ABSTRACT

Caraway (Carum carvi L.) essential oil is a candidate for botanical herbicides. A hypothesis was formulated that the sand-applied maltodextrin-coated caraway oil (MCEO) does not affect the growth of maize (Zea mays L.). In the pot experiment, pre-emergence application of five doses of MCEO was tested on four maize cultivars up to the three-leaf growth stage. The morphological analyses were supported by the measurements of relative chlorophyll content (SPAD), two parameters of chlorophyll a fluorescence, e.g., Fv/Fm and Fv/F0, and fluorescence emission spectra. The analyzed MCEO contained 6.5% caraway EO with carvone and limonene as the main compounds, constituting 95% of the oil. The MCEO caused 7-day delays in maize emergence from the dose of 0.9 g per pot (equal to 96 g m-2). Maize development at the three-leaf growth stage, i.e., length of roots, length of leaves, and biomass of shoots and leaves, was significantly impaired already at the lowest dose of MCEO: 0.4 g per pot, equal to 44 g m-2. A significant drop of both chlorophyll a fluorescence parameters was noted, on average, from the dose of 0.7 g per pot, equal to 69 g m-2. Among the tested cultivars, cv. Rywal and Pomerania were less susceptible to the MCEO compared to the cv. Kurant and Podole. In summary, maize is susceptible to the pre-emergence, sand-applied MCEO from the dose of 44 g m-2.


Subject(s)
Oils, Volatile/pharmacology , Plant Oils/pharmacology , Zea mays/drug effects , Zea mays/growth & development , Biomass , Carum/chemistry , Chlorophyll A/metabolism , Cyclohexane Monoterpenes/chemistry , Cyclohexane Monoterpenes/pharmacology , Fluorescence , Herbicides/pharmacology , Limonene/chemistry , Limonene/pharmacology , Photosynthesis/drug effects , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Zea mays/metabolism
9.
Sci Rep ; 11(1): 14665, 2021 07 19.
Article in English | MEDLINE | ID: mdl-34282251

ABSTRACT

Nutritional deficiency is common in several regions of quinoa cultivation. Silicon (Si) can attenuate the stress caused by nutritional deficiency, but studies on the effects of Si supply on quinoa plants are still scarce. Given this scenario, our objective was to evaluate the symptoms in terms of tissue, physiological and nutritional effects of quinoa plants submitted to nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) deficiencies under Si presence. The experiment consisted of a factorial scheme 6 × 2, using a complete solution (CS), -N, -P, -K, -Ca, -Mg combined with absence and presence of Si (1.5 mmol L-1). Symptomatic, physiological, nutritional and evaluation vegetative were performed in quinoa crop. The deficiencies of N, P, K, Ca and Mg in quinoa cultivation caused visual symptoms characteristic of the deficiency caused by respective nutrients, hence decreasing the plant dry mass. However, Si supply attenuated the deficiency effects by preserving the photosynthetic apparatus, increasing the chlorophyll production, increasing the membrane integrity, and decreasing the electrolyte leakage. Thus, the Si supply attenuated the visual effects provided by deficiency of all nutrients, but stood out for N and Ca, because it reflected in a higher dry mass production. This occurred because, the Si promoted higher synthesis and protection of chlorophylls, and lower electrolyte leakage under Ca restriction, as well as decreased electrolyte leakage under N restriction.


Subject(s)
Chenopodium quinoa/drug effects , Silicon/pharmacology , Stress, Physiological/drug effects , Agriculture , Chenopodium quinoa/growth & development , Chenopodium quinoa/metabolism , Nitrogen/metabolism , Nutrients , Phosphorus/metabolism , Photosynthesis/drug effects , Seeds/drug effects , Seeds/growth & development , Seeds/metabolism
10.
PLoS One ; 16(6): e0249230, 2021.
Article in English | MEDLINE | ID: mdl-34157031

ABSTRACT

Cytokinins (CKs) plays a key role in plant adaptation over a range of different stress conditions. Here, we analyze the effects of a cytokinin (i.e., kinetin, KN) on the growth, photosynthesis (rate of O2 evolution), PS II photochemistry and AsA-GSH cycle in Trigonella seedlings grown under cadmium (Cd) stress. Trigonella seeds were sown in soil amended with 0, 3 and 9 mg Cd kg-1 soil, and after 15 days resultant seedlings were sprayed with three doses of KN, i.e.,10 µM (low, KNL), 50 µM (medium, KNM) and 100 µM (high, KNH); subsequent experiments were performed after 15 days of KN application, i.e., 30 days after sowing. Cadmium toxicity induced oxidative damage as shown by decreased seedling growth and photosynthetic pigment production (Chl a, Chl b and Car), rates of O2-evolution, and photochemistry of PS II of Trigonella seedlings, all accompanied by an increase in H2O2 accumulation. Supplementation with doses of KN at KNL and KNM significantly improved the growth and photosynthetic activity by reducing H2O2 accumulation through the up-regulation AsA-GSH cycle. Notably, KNL and KNM doses stimulated the rate of enzyme activities of APX, GR and DHAR, involved in the AsA-GSH cycle thereby efficiently regulates the level of AsA and GSH in Trigonella grown under Cd stress. The study concludes that KN can mitigate the damaging effects of Cd stress on plant growth by maintaining the redox status (>ratios: AsA/DHA and GSH/GSSG) of cells through the regulation of AsA-GSH cycle at 10 and 50 µM KN under Cd stress conditions. At 100 µM KN, the down-regulation of AsA-GSH cycle did not support the growth and PS II activity of the test seedlings.


Subject(s)
Kinetin/metabolism , Stress, Physiological/physiology , Trigonella/metabolism , Antioxidants/pharmacology , Ascorbic Acid/metabolism , Cadmium/adverse effects , Carbohydrate Metabolism/drug effects , Glutathione/metabolism , Hydrogen Peroxide/metabolism , Kinetin/pharmacology , Lipid Peroxidation/drug effects , Oxidation-Reduction , Oxidative Stress/physiology , Photosynthesis/drug effects , Photosynthesis/physiology , Photosystem II Protein Complex/drug effects , Photosystem II Protein Complex/physiology , Reactive Oxygen Species/metabolism , Seedlings/metabolism , Trigonella/growth & development
11.
Sci Rep ; 11(1): 13226, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34168171

ABSTRACT

Lignosulfonate (LS) is a by-product obtained during sulfite pulping process and is commonly used as a growth enhancer in plant growth. However, the underlying growth promoting mechanism of LS on shoot growth remains largely unknown. Hence, this study was undertaken to determine the potential application of eco-friendly ion-chelated LS complex [sodium LS (NaLS) and calcium LS (CaLS)] to enhance recalcitrant indica rice MR 219 shoot growth and to elucidate its underlying growth promoting mechanisms. In this study, the shoot apex of MR 219 rice was grown on Murashige and Skoog medium supplemented with different ion chelated LS complex (NaLS and CaLS) at 100, 200, 300 and 400 mg/L The NaLS was shown to be a better shoot growth enhancer as compared to CaLS, with optimum concentration of 300 mg/L. Subsequent comparative proteomic analysis revealed an increase of photosynthesis-related proteins [photosystem II (PSII) CP43 reaction center protein, photosystem I (PSI) iron-sulfur center, PSII CP47 reaction center protein, PSII protein D1], ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), carbohydrate metabolism-related proteins (glyceraldehyde-3-phosphate dehydrogenase 3, fructose-bisphosphate aldolase) and stress regulator proteins (peptide methionine sulfoxide reductase A4, delta-1-pyrroline-5-carboxylate synthase 1) abundance in NaLS-treated rice as compared to the control (MSO). Consistent with proteins detected, a significant increase in biochemical analyses involved in photosynthetic activities, carbohydrate metabolism and protein biosynthesis such as total chlorophyll, rubisco activity, total sugar and total protein contents were observed in NaLS-treated rice. This implies that NaLS plays a role in empowering photosynthesis activities that led to plant growth enhancement. In addition, the increased in abundance of stress regulator proteins were consistent with low levels of peroxidase activity, malondialdehyde content and phenylalanine ammonia lyase activity observed in NaLS-treated rice. These results suggest that NaLS plays a role in modulating cellular homeostasis to provide a conducive cellular environment for plant growth. Taken together, NaLS improved shoot growth of recalcitrant MR 219 rice by upregulation of photosynthetic activities and reduction of ROS accumulation leading to better plant growth.


Subject(s)
Lignin/analogs & derivatives , Oryza/drug effects , Photosynthesis/drug effects , Plant Shoots/drug effects , Reactive Oxygen Species/metabolism , Sodium/pharmacology , Antioxidants/metabolism , Carbohydrate Metabolism/drug effects , Chlorophyll/metabolism , Lignin/pharmacology , Oryza/metabolism , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Plant Proteins/metabolism , Plant Shoots/metabolism , Proteomics/methods , Ribulose-Bisphosphate Carboxylase/metabolism , Sulfur/metabolism
12.
Ecotoxicol Environ Saf ; 220: 112401, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34118747

ABSTRACT

Cadmium (Cd) is a trace element causing severe toxicity symptoms in plants, besides posing hazardous fitness issue due to its buildup in the human body through food chain. Nanoparticles (NPs) are recently employed as a novel strategy to directly ameliorate the Cd stress and acted as nano-fertilizers. The intend of the current study was to explore the effects of zinc oxide nanoparticles (ZnO-NPs; 50 mg/L) on plant growth, photosynthetic activity, elemental status and antioxidant activity in Oryza sativa (rice) under Cd (0.8 mM) stress. To this end, the rice plants are treated by Cd stress at 15 days after sowing (DAS), and the treatment was given directly into the soil. Supply of ZnO-NPs as foliar spray was given for five consecutive days from 30 to 35 DAS, and sampling was done at 45 DAS. However, rice plants supplemented with ZnO-NPs under the Cd toxicity revealed significantly increased shoot length (SL; 34.0%), root fresh weight (RFW; 30.0%), shoot dry weight (SDW; 23.07%), and root dry weight (RDW; 12.24%). Moreover, the ZnO-NPs supplement has also positive effects on photosynthesis related parameters, SPAD value (40%), chloroplast structure, and qualitatively high fluorescence observed by confocal microscopy even under Cd stress. ZnO-NPs also substantially prevented the increases of hydrogen peroxide (H2O2) and malondialdehyde (MDA) triggered by Cd. Physiological and biochemical analysis showed that ZnO-NPs increased enzymatic activities of superoxide dismutase (SOD; 59%), catalase (CAT; 52%), and proline (17%) that metabolize reactive oxygen species (ROS); these increases coincided with the changes observed in the H2O2 and MDA accumulation after ZnO-NPs application. In conclusion, ZnO-NPs application to foliage has great efficiency to improve biomass, photosynthesis, protein, antioxidant enzymes activity, mineral nutrient contents and reducing Cd levels in rice. This can be attributed mainly from reduced oxidative damage resulted due to the ZnO-NPs application.


Subject(s)
Antioxidants/metabolism , Cadmium/adverse effects , Nanoparticles , Oryza/drug effects , Photosynthesis/drug effects , Soil Pollutants/adverse effects , Zinc Oxide/pharmacology , Biomass , Catalase/metabolism , Crops, Agricultural/adverse effects , Crops, Agricultural/physiology , Fertilizers , Humans , Hydrogen Peroxide/metabolism , Malondialdehyde/metabolism , Oryza/growth & development , Oryza/metabolism , Oryza/physiology , Oxidative Stress/drug effects , Plant Leaves , Soil/chemistry , Superoxide Dismutase/metabolism , Zinc Oxide/administration & dosage
13.
Aquat Toxicol ; 236: 105866, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34052718

ABSTRACT

Herbicides are among the most detected pesticides in coastal environments. Herbicides may impact non-target organisms, but invertebrates that have a symbiotic relationship with microalgae (zooxanthellae) may be particularly susceptible. How zooxanthellae influence the response of organisms to herbicides, however, remains untested. We exposed zooxanthellate and azooxanthellate Cassiopea xamachana medusae to environmentally relevant concentrations of the herbicide atrazine (0 µg L - 1, 7 µg L - 1 and 27 µg L - 1) for 20 days. We hypothesised that atrazine would have adverse effects on the size, rate of bell contractions and, respiration of medusae, but that effects would be more severe in zooxanthellate than azooxanthellate medusae. We also predicted that photosynthetic efficiency, chlorophyll a (Chla) content and zooxanthellae density would decrease in zooxanthellate medusae exposed to atrazine. Both zooxanthellate and azooxanthellate medusae shrank, yet the size-specific respiration rates were not constant during the experiment. Photosynthetic efficiency of zooxanthellate medusae significantly decreased at 7 and 27 µgL-1 atrazine, but atrazine did not affect the Chla content or zooxanthellae density. Our results showed that even though atrazine inhibited photosynthesis, zooxanthellae were not expelled from the host. We conclude that the presence of zooxanthellae did not increase the susceptibility of C. xamachana medusae to atrazine.


Subject(s)
Herbicides/toxicity , Scyphozoa/physiology , Water Pollutants, Chemical/toxicity , Animals , Atrazine , Chlorophyll A , Microalgae , Photosynthesis/drug effects , Scyphozoa/drug effects , Symbiosis
14.
Aquat Toxicol ; 236: 105839, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34015754

ABSTRACT

Selenium, an essential trace element for animals, poses a threat to all forms of life above a threshold concentration. The ubiquitously present cyanobacteria, a major photosynthetic biotic component of aquatic and other ecosystems, are excellent systems to study the effects of environmental toxicants. The molecular changes that led to beneficial or detrimental effects in response to different doses of selenium oxyanion Se(IV) were analyzed in the filamentous cyanobacterium Anabaena PCC 7120. This organism showed no inhibition in growth up to 15 mg/L sodium selenite, but above this dose i.e. 20-100 mg/L of Se(IV), both growth and photosynthesis were substantially inhibited. Along with the increased accumulation of non-protein thiols, a consistent reduction in levels of ROS was observed at 10 mg/mL dose of Se(IV). High dose of Se(IV) (above 20 mg/L) enhanced endogenous reactive oxygen species (ROS)/lipid peroxidation, and decreased photosynthetic capability. Treatment with 100 mg/L Se(IV) downregulated transcription of several photosynthesis pathways-related genes such as those encoding photosystem I and II proteins, phycobilisome rod-core linker protein, phycocyanobilin, phycoerythrocyanin-associated proteins etc. Interestingly, at a dose range of 10-15 mg/L Se(IV), Anabaena showed an increase in PSII photosynthetic yield and electron transport rate (at PSII), suggesting improved photosynthesis. Se was incorporated into the Anabaena cells, and Se-enriched thylakoid membranes showed higher redox conductivity than the thylakoid membranes from untreated cells. Overall, the data supports that modulation of photosynthetic machinery is one of the crucial mechanisms responsible for the dose-dependent contrasting effect of Se(IV) observed in Anabaena.


Subject(s)
Cnidarian Venoms/toxicity , Anabaena/metabolism , Cyanobacteria/metabolism , Ecosystem , Electron Transport , Oxidation-Reduction , Photosynthesis/drug effects , Photosystem I Protein Complex/metabolism , Phycobilins , Phycocyanin , Reactive Oxygen Species/metabolism , Water Pollutants, Chemical/toxicity
15.
Biomolecules ; 11(3)2021 03 21.
Article in English | MEDLINE | ID: mdl-33801090

ABSTRACT

For maize, the potential preventive role of foliar spraying with an extract derived from maize grain (MEg, 2%), silymarin (Sm, 0.5 mM), or silymarin-enriched MEg (MEg-Sm) in attenuating the stress effects of cadmium (Cd, 0.5 mM) was examined using a completely randomized design layout. Under normal conditions, foliar spraying with MEg, Sm, or MEg-Sm was beneficial (with MEg-Sm preferred) for maize plants, whereas the benefit was more pronounced under Cd stress. The use of Cd through irrigation water decreased plant growth traits, photosynthetic efficiency, including instantaneous carboxylation efficiency, Fv/Fm, and pigment contents, and hormonal contents (e.g., auxin, gibberellins, cytokinins including trans-zeatin, and salicylic acid). These undesired findings were due to an increase in Cd content, leading to increased levels of oxidative stress (O2•- and H2O2), ionic leakage, and lipid peroxidation. Therefore, this damage resulted in an increase in the activities of nonenzymatic antioxidants, Sm, antioxidative enzymes, and enzyme gene expression. However, under Cd stress, although foliar spray with MEg or Sm had better findings than control, MEg-Sm had better findings than MEg or Sm. Application of MEg-Sm greatly increased photosynthesis efficiency, restored hormonal homeostasis, and further increased the activities of various antioxidants, Sm, antioxidative enzymes, and enzyme gene expression. These desired findings were due to the suppression of the Cd content, and thus the levels of O2•-, H2O2, ionic leakage, and lipid peroxidation, which were positively reflected in the growth and accumulation of dry matter in maize plants. The data obtained in this study recommend applying silymarin-enriched maize grain extract (MEg-Sm at 0.24 g Sm L-1 of MEg) as a spray solution to maize plants when exposed to excess Cd in soil or irrigation water.


Subject(s)
Cadmium/toxicity , Plant Extracts/pharmacology , Silymarin/pharmacology , Zea mays/drug effects , Zea mays/metabolism , Antioxidants/metabolism , Chlorophyll/metabolism , Lipid Peroxidation/drug effects , Oxidative Stress/drug effects , Photosynthesis/drug effects
16.
J Virol ; 95(12)2021 05 24.
Article in English | MEDLINE | ID: mdl-33827953

ABSTRACT

Sweet potato virus disease (SPVD), caused by synergistic infection of Sweet potato chlorotic stunt virus (SPCSV) and Sweet potato feathery mottle virus (SPFMV), is responsible for substantial yield losses all over the world. However, there are currently no approved treatments for this severe disease. The crucial role played by RNase III of SPCSV (CSR3) as an RNA silencing suppressor during the viruses' synergistic interaction in sweetpotato makes it an ideal drug target for developing antiviral treatment. In this study, high-throughput screening (HTS) of small molecular libraries targeting CSR3 was initiated by a virtual screen using Glide docking, allowing the selection of 6,400 compounds out of 136,353. We subsequently developed and carried out kinetic-based HTS using fluorescence resonance energy transfer technology, which isolated 112 compounds. These compounds were validated with dose-response assays including kinetic-based HTS and binding affinity assays using surface plasmon resonance and microscale thermophoresis. Finally, the interference of the selected compounds with viral accumulation was verified in planta In summary, we identified five compounds belonging to two structural classes that inhibited CSR3 activity and reduced viral accumulation in plants. These results provide the foundation for developing antiviral agents targeting CSR3 to provide new strategies for controlling sweetpotato virus diseases.IMPORTANCE We report here a high-throughput inhibitor identification method that targets a severe sweetpotato virus disease caused by coinfection with two viruses (SPCSV and SPFMV). The disease is responsible for up to 90% yield losses. Specifically, we targeted the RNase III enzyme encoded by SPCSV, which plays an important role in suppressing the RNA silencing defense system of sweetpotato plants. Based on virtual screening, laboratory assays, and confirmation in planta, we identified five compounds that could be used to develop antiviral drugs to combat the most severe sweetpotato virus disease.


Subject(s)
Antiviral Agents/pharmacology , Crinivirus/drug effects , Enzyme Inhibitors/pharmacology , Ipomoea batatas/virology , Plant Diseases/virology , Ribonuclease III/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Crinivirus/enzymology , Crinivirus/physiology , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , High-Throughput Screening Assays , Molecular Docking Simulation , Photosynthesis/drug effects , RNA Interference , Ribonuclease III/chemistry , Ribonuclease III/metabolism , Small Molecule Libraries/chemistry , Viral Proteins/antagonists & inhibitors
17.
J Photochem Photobiol B ; 219: 112186, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33892284

ABSTRACT

Harmful algal blooms in inland waters are widely linked to excess phosphorus (P) loading, but increasing evidence shows that their growth and formation can also be influenced by nitrogen (N) and iron (Fe). Deficiency in N, P, and Fe differentially affects cellular photosystems and is manifested as changes in photosynthetic yield (Fv/Fm). While Fv/Fm has been increasingly used as a rapid and convenient in situ gauge of nutrient deficiency, there are few rigorous comparisons of instrument sensitivity and ability to resolve specific nutrient stresses. This study evaluated the application of Fv/Fm to cyanobacteria using controlled experiments on a single isolate and tested three hypotheses: i) single Fv/Fm measurements taken with different PAM fluorometers can distinguish among limitation by different nutrients, ii) measurements of Fv/Fm made by the addition of DCMU are comparable to PAM fluorometers, and iii) dark adaptation is not necessary for reliable Fv/Fm measurements. We compared Fv/Fm taken from the bloom-forming Microcystis aeruginosa (UTEX LB 3037) grown in nutrient-replete treatment (R) and N-, P-, and Fe-limited treatments (LN, LP, LFe, respectively), using three pulse-amplitude modulated (PAM) fluorometers and the chemical photosynthesis inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), and evaluated the effects of dark adaptation prior to PAM measurement. There were significant differences in Fv/Fm estimates among PAM fluorometers for light- versus dark-adapted cell suspensions over the whole experiment (21 days), which were all significantly higher than the DCMU-based measurements. However, dark adaptation had no effect on Fv/Fm when comparing PAM-based values across a single nutrient treatment. All Fv/Fm methods could distinguish LN and LP from R and LFe treatments but none were able to resolve LFe from R, or LN from LP cultures. These results indicated that for most PAM applications, dark adaptation is not necessary, and furthermore that single measurements of Fv/Fm do not provide a robust measurement of nutrient limitation in Microcystis aeruginosa UTEX LB 3037, and potentially other, common freshwater cyanobacteria.


Subject(s)
Fluorometry/methods , Microcystis/metabolism , Nutrients/chemistry , Chlorophyll/chemistry , Diuron/pharmacology , Harmful Algal Bloom/drug effects , Harmful Algal Bloom/radiation effects , Iron/chemistry , Light , Microcystis/growth & development , Microcystis/radiation effects , Nitrogen/chemistry , Nutrients/pharmacology , Phosphorus/chemistry , Photosynthesis/drug effects , Photosynthesis/radiation effects
18.
Plant Mol Biol ; 106(1-2): 85-108, 2021 May.
Article in English | MEDLINE | ID: mdl-33629224

ABSTRACT

KEY MESSAGE: Overexpression of StCaM2 in tobacco promotes plant growth and confers increased salinity and drought tolerance by enhancing the photosynthetic efficiency, ROS scavenging, and recovery from membrane injury. Calmodulins (CaMs) are important Ca2+ sensors that interact with effector proteins and drive a network of signal transduction pathways involved in regulating the growth and developmental pattern of plants under stress. Herein, using in silico analysis, we identified 17 CaM isoforms (StCaM) in potato. Expression profiling revealed different temporal and spatial expression patterns of these genes, which were modulated under abiotic stress. Among the identified StCaM genes, StCaM2 was found to have the largest number of abiotic stress responsive promoter elements. In addition, StCaM2 was upregulated in response to some of the selected abiotic stress in potato tissues. Overexpression of StCaM2 in transgenic tobacco plants enhanced their tolerance to salinity and drought stress. Accumulation of reactive oxygen species was remarkably decreased in transgenic lines compared to that in wild type plants. Chlorophyll a fluorescence analysis suggested better performance of photosystem II in transgenic plants under stress compared to that in wild type plants. The increase in salinity stress tolerance in StCaM2-overexpressing plants was also associated with a favorable K+/Na+ ratio. The enhanced tolerance to abiotic stresses correlated with the increase in the activities of anti-oxidative enzymes in transgenic tobacco plants. Overall, our results suggest that StCaM2 can be a novel candidate for conferring salt and drought tolerance in plants.


Subject(s)
Calcium-Binding Proteins/metabolism , Droughts , Nicotiana/genetics , Nicotiana/physiology , Plant Proteins/metabolism , Salinity , Solanum tuberosum/metabolism , Stress, Physiological , Antioxidants/metabolism , Calcium-Binding Proteins/genetics , Calmodulin/genetics , Calmodulin/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Genome, Plant , Germination/drug effects , Germination/genetics , Ions , Membranes , Photosynthesis/drug effects , Plant Growth Regulators/pharmacology , Plant Proteins/genetics , Plants, Genetically Modified , Proline/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Regulatory Sequences, Nucleic Acid/genetics , Seedlings/drug effects , Seedlings/genetics , Seedlings/growth & development , Stress, Physiological/drug effects , Stress, Physiological/genetics , Nicotiana/enzymology , Nicotiana/growth & development , Transcription Factors/metabolism , Water/metabolism
19.
Ecotoxicol Environ Saf ; 208: 111739, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33396067

ABSTRACT

Ultraviolet-B is an important fraction of sunlight which influences the plant performance either positively or adversely in terms of growth, physiology, biochemistry, and major active compounds. The static nature of plants constrains them to be subjected to various adverse environmental conditions. Several studies performed with plants and UV-B with fewer reports are available on medicinal plants having rhizome. The present study focuses on transformation induced in two Curcuma spp. (C. caesia and C. longa) under the influence of elevated UV-B (eUV-B) (ambient ±9.6 kJ m-2 d-1) under natural field conditions to analyse the changes in physiological, biochemical and essential oil of the test plants. eUV-B significantly reduced the photosynthetic activities such as photosynthetic rate (Ps), stomatal conductance (gs), transpiration (Tr), internal CO2 (Ci), and photochemical efficiency (Fv/Fm) with higher reductions in C. longa as compared to C. caesia. The enzymatic activities of PAL, CHI, and CAD showed higher stimulation in C. caesia whereas C. longa showed increment only in CAD. The essential oil content was increased by 16% and 9% in C. caesia and C. longa, respectively. C. caesia showed increased monoterpenes than sesquiterpenes, whereas almost equal increase of both the terpenoid found in C. longa. C. caesia showed induction of aromatic compounds (epiglobulol, germacrene, 4-terpineol), whereas anticancerous compounds; aphla-terpinolene (61%), beta-caryophyllene (60%), and beta-sesquiphellandrene (32%) were increased in C. longa. C. caesia acted well in terms of both physiology and major active compound (1, 8-cineole), but overall most of the compounds increased in C. longa under eUV-B.


Subject(s)
Curcuma/radiation effects , Ultraviolet Rays , Curcuma/chemistry , Curcuma/physiology , Oils, Volatile/pharmacology , Photosynthesis/drug effects , Plant Extracts , Plants/drug effects , Rhizome/chemistry , Terpenes
20.
Ecotoxicol Environ Saf ; 208: 111758, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33396081

ABSTRACT

The cultivation of leafy vegetables on metal contaminated soil embodies a serious threat to yield and quality. In the present study, the potential role of exogenous jasmonic acid (JA; 0, 5, 10, and 20 µM) on mitigating chromium toxicity (Cr; 0, 150, and 300 µM) was investigated in choysum (Brassica parachinensis L.). With exposure to increasing Cr stress levels, a dose-dependent decline in growth, photosynthesis, and physio-biochemical attributes of choysum plants was observed. An increase in Cr levels also resulted in oxidative stress closely associated with higher lipoxygenase activity (LOX), hydrogen peroxide (H2O2) generation, lipid peroxidation (MDA), and methylglyoxal (MG) levels. Exogenous application of JA alleviated the Cr-induced phytotoxic effects on photosynthetic pigments, gas exchange parameters, and restored growth of choysum plants. While exposed to Cr stress, JA supplementation induced plant defense system via enhanced regulation of antioxidant enzymes, ascorbate and glutathione pool, and the glyoxalase system enzymes. The coordinated regulation of antioxidant and glyoxalase systems expressively suppressed the oxidative and carbonyl stress at both Cr stress levels. More importantly, JA restored the mineral nutrient contents, restricted Cr uptake, and accumulation in roots and shoots of choysum plants when compared to the only Cr-stressed plants. Overall, the application of JA2 treatment (10 µM JA) was more effective and counteracted the detrimental effects of 150 µM Cr stress by restoring the growth and physio-biochemical attributes to the level of control plants, while partially mitigated the detrimental effects of 300 µM Cr stress. Hence, JA application might be considered as an effective approach for minimizing Cr uptake and its detrimental effects in choysum plants grown on contaminated soils.


Subject(s)
Antioxidants/pharmacology , Brassica/physiology , Chromium/toxicity , Cyclopentanes/pharmacology , Oxylipins/pharmacology , Soil Pollutants/toxicity , Antioxidants/metabolism , Ascorbic Acid/metabolism , Brassica/drug effects , Brassica/metabolism , Glutathione/metabolism , Hydrogen Peroxide/metabolism , Oxidation-Reduction , Oxidative Stress/physiology , Photosynthesis/drug effects , Plant Leaves/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL