ABSTRACT
The epidemiology of yeast infections and resistance to available antifungal drugs are rapidly increasing, and non-albicans Candida species and rare yeast species are increasingly emerging as major opportunistic pathogens. In order to identify new strategies to counter the threat of antimicrobial resistant microorganisms, essential oils (EOs) have become an important potential in the treatment of fungal infections. EOs and their bioactive pure compounds have been found to exhibit a wide range of remarkable biological activities. We investigated the in vitro antifungal activity of nine commercial EOs such as Thymus vulgaris (thyme red), Origanum vulgare (oregano), Lavandula vera (lavender), Pinus sylvestris (pine), Foeniculum vulgare (fennel), Melissa officinalis (lemon balm), Salvia officinalis (sage), Eugenia caryophyllata (clove) and Pelargonium asperum (geranium), and some of their main components (α-pinene, carvacrol, citronellal, eugenol, γ-terpinene, linalool, linalylacetate, terpinen-4-ol, thymol) against non-albicans Candida strains and uncommon yeasts. The EOs were analyzed by GC-MS, and their antifungal properties were evaluated by minimum inhibitory concentration and minimum fungicidal concentration parameters, in accordance with CLSI guidelines, with some modifications for EOs. Pine exhibited strong antifungal activity against the selected non-albicans Candida isolates and uncommon yeasts. In addition, lemon balm EOs and α-pinene exhibited strong antifungal activity against the selected non-albicans Candida yeasts. Thymol inhibited the growth of all uncommon yeasts. These data showed a promising potential application of EOs as natural adjuvant for management of infections by emerging non-albicans Candida species and uncommon pathogenic yeasts.
Subject(s)
Antifungal Agents/chemistry , Candida/drug effects , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Antifungal Agents/pharmacology , Candida/pathogenicity , Candida albicans/drug effects , Candida albicans/pathogenicity , Candidiasis/drug therapy , Candidiasis/microbiology , Drug Resistance, Fungal/drug effects , Foeniculum/chemistry , Humans , Lavandula/chemistry , Melissa/chemistry , Microbial Sensitivity Tests , Oils, Volatile/chemistry , Origanum/chemistry , Pinus sylvestris/chemistry , Plant Oils/chemistry , Salvia officinalis/chemistry , Syzygium/chemistry , Thymus Plant/chemistryABSTRACT
The widespread apicomplexan parasite Cryptosporidium parvum is responsible for severe gastrointestinal disease in humans and animals. The treatment options are limited, and the efficacy of available drugs is low. Bark contains condensed tannins (CT), which are bioactive compounds previously shown to inhibit parasite development. Here, we examined the anti-cryptosporidial properties of bark extract of Scots pine (Pinus sylvestris) against C. parvum by means of an in vitro growth inhibition test. We hypothesised that bark extracts would have dose-dependent inhibitory effects on the development of C. parvum in cell culture.Bark extracts from Scots pine extracted with acetone, methanol, and water as solvents were investigated using human colorectal adenocarcinoma cells infected with C. parvum. Oocysts were inoculated onto the cell monolayer and bark extract was added at seven different concentrations. Parasite growth inhibition was quantified by qPCR.The acetone and methanol extracts demonstrated a sigmoid dose-dependent inhibition of C. parvum. The IC50 values were 244.6 and 279.1 µg dry matter extract/mL, and 25.4 and 24.1 µg CT/mL, for acetone and methanol extracts, respectively. The IC50 for both extracts were similar, both with regard to the dry matter concentration of each extract and to CT concentrations.Given the limited treatment options available for Cryptosporidium spp., the evidence generated in our study encourages further investigation into the in vitro and in vivo effects of pine bark extracts against C. parvum.
Subject(s)
Cryptosporidium parvum , Pinus sylvestris , Plant Extracts , Cell Culture Techniques , Cell Line, Tumor , Cryptosporidium parvum/drug effects , Humans , Pinus sylvestris/chemistry , Plant Bark/chemistry , Plant Extracts/pharmacologyABSTRACT
Pinosylvin is a natural stilbenoid found particularly in Scots pine. Stilbenoids are a group of phenolic compounds identified as protective agents against pathogens for many plants. Stilbenoids also possess health-promoting properties in humans; for instance, they are anti-inflammatory through their suppressing action on proinflammatory M1-type macrophage activation. Macrophages respond to environmental changes by polarizing towards proinflammatory M1 phenotype in infection and inflammatory diseases, or towards anti-inflammatory M2 phenotype, mediating resolution of inflammation and repair. In the present study, we investigated the effects of pinosylvin on M2-type macrophage activation, aiming to test the hypothesis that pinosylvin could polarize macrophages from M1 to M2 phenotype to support resolution of inflammation. We used lipopolysaccharide (LPS) to induce M1 phenotype and interleukin-4 (IL-4) to induce M2 phenotype in J774 murine and U937 human macrophages, and we measured expression of M1 and M2-markers. Interestingly, along with inhibiting the expression of M1-type markers, pinosylvin had an enhancing effect on the M2-type activation, shown as an increased expression of arginase-1 (Arg-1) and mannose receptor C type 1 (MRC1) in murine macrophages, and C-C motif chemokine ligands 17 and 26 (CCL17 and CCL26) in human macrophages. In IL-4-treated macrophages, pinosylvin enhanced PPAR-γ expression but had no effect on STAT6 phosphorylation. The results show, for the first time, that pinosylvin shifts macrophage polarization from the pro-inflammatory M1 phenotype towards M2 phenotype, supporting resolution of inflammation and repair.
Subject(s)
Anti-Inflammatory Agents/pharmacology , Cell Polarity/drug effects , Macrophages/drug effects , Pinus sylvestris/chemistry , Plant Extracts/pharmacology , Stilbenes/pharmacology , Animals , Humans , Inflammation/drug therapy , Inflammation/immunology , Interleukin-4/pharmacology , Lipopolysaccharides/pharmacology , Macrophage Activation/drug effects , Macrophages/immunology , Mice , Phenotype , RNA, Messenger/genetics , Signal Transduction/drug effects , U937 CellsABSTRACT
Aqueous extracts from blackcurrant press cake (BC), Norway spruce bark (NS), Scots pine bark (SP), and sea buckthorn leaves (SB) were obtained using maceration and pressurized hot water and tested for their bioactivities. Maceration provided the extraction of higher dry matter contents, including total phenolics (TPC), anthocyanins, and condensed tannins, which also impacted higher antioxidant activity. NS and SB extracts presented the highest mean values of TPC and antioxidant activity. Individually, NS extract presented high contents of proanthocyanidins, resveratrol, and some phenolic acids. In contrast, SB contained a high concentration of ellagitannins, ellagic acid, and quercetin, explaining the antioxidant activity and antibacterial effects. SP and BC extracts had the lowest TPC and antioxidant activity. However, BC had strong antiviral efficacy, whereas SP can be considered a potential ingredient to inhibit α-amylase. Except for BC, the other extracts decreased reactive oxygen species (ROS) generation in HCT8 and A549 cells. Extracts did not inhibit the production of TNF-alpha in lipopolysaccharide-stimulated THP-1 macrophages but inhibited the ROS generation during the THP-1 cell respiratory burst. The recovery of antioxidant compounds from these by-products is incentivized for high value-added applications.
Subject(s)
Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Plant Extracts/pharmacology , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/toxicity , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/toxicity , Antioxidants/isolation & purification , Antioxidants/toxicity , Bacteria/drug effects , Candida albicans/drug effects , Cell Line, Tumor , Enterovirus B, Human/drug effects , Green Chemistry Technology , Hippophae/chemistry , Humans , Microbial Sensitivity Tests , Picea/chemistry , Pinus sylvestris/chemistry , Plant Bark/chemistry , Plant Extracts/isolation & purification , Plant Extracts/toxicity , Plant Leaves/chemistry , Ribes/chemistryABSTRACT
Chromatographic profiles of primary essential oils (EO) deliver valuable authentic information about composition and compound pattern. Primary EOs obtained from Pinus sylvestris L. (PS) from different global origins were analyzed using gas chromatography coupled to a flame ionization detector (GC-FID) and identified by GC hyphenated to mass spectrometer (GC-MS). A primary EO of PS was characterized by a distinct sesquiterpene pattern followed by a diterpene profile containing diterpenoids of the labdane, pimarane or abietane type. Based on their sesquiterpene compound patterns, primary EOs of PS were separated into their geographical origin using component analysis. Furthermore, differentiation of closely related pine EOs by partial least square discriminant analysis proved the existence of a primary EO of PS. The developed and validated PLS-DA model is suitable as a screening tool to assess the correct chemotaxonomic identification of a primary pine EOs as it classified all pine EOs correctly.
Subject(s)
Oils, Volatile/analysis , Pinus sylvestris/chemistry , Discriminant Analysis , Diterpenes/analysis , Diterpenes/chemistry , Gas Chromatography-Mass Spectrometry , Molecular Structure , Plant Oils/analysis , Sesquiterpenes/analysis , Sesquiterpenes/chemistryABSTRACT
Peroxynitrite is known as a strong deleterious species that may readily trigger several geriatric diseases via injuring cellular constituents. Proanthocyanidins, a biological flavonoids constituent of Pinus sylvestris L. bark, has been attributed a large variety of pharmacological functions to its antioxidant potential. The results revealed that peroxynitrite could cause the generation of hydroxyl radical, the breakage of φX-174 plasmid DNA brand as well as the nitration of L-tyrosine. However, pine (Pinus sylvestris L.) bark proanthocyanidins extracts at low concentration range markedly inhibited the peroxynitrite -induced the formation of open circular DNA form (IC50 = 5.03±0.39 mg/mL). The 3-Nitro-L-tyrosine generated by the reaction of peroxynitrite with L-tyrosine was reduced by PBP (IC50 = 1.01±0.01 mg/mL). Besides, electron spin resonance spectroscopy data indicates that the intensive signal of dimethyl pyridine N-oxide hydroxyl radical adduct from peroxynitrite was reversed by pine bark proanthocyanidins extracts (IC50 =1.02±0.04 mg/mL). Moreover, the obtained data shows that PBP provides more efficient protection against peroxynitrite than that of ascorbic acid. Together, the present study suggests that pine bark proanthocyanidins could exert potent preventive activity against peroxynitrite -elicited cytotoxicity on the biomacromolecules, a study-worthy finding with pharmacological importance.
Subject(s)
DNA Damage/drug effects , Hydroxyl Radical/antagonists & inhibitors , Peroxynitrous Acid/adverse effects , Pinus sylvestris/chemistry , Plant Extracts/pharmacology , Proanthocyanidins/pharmacology , Tyrosine/analogs & derivatives , Dose-Response Relationship, Drug , Electron Spin Resonance Spectroscopy , Plant Bark/chemistry , Plant Extracts/chemistry , Tyrosine/drug effects , Tyrosine/metabolismABSTRACT
Recording the causes, effects, and effect mechanisms of vegetation health is crucial to understand process-pattern interactions in ecosystem processes. NOX and SOX in the form of air pollution are both triggers and sources of vegetation health that can have an effect on the local or the global level and whose impacts need to be monitored. In this study, the growth patterns in Scots pines (Pinus sylvestris L.) were studied in the context of changing atmospheric depositions in the lowlands of north-eastern Germany. Under the influence of atmospheric sulfur (S) and nitrogen (N) depositions, pine stands showed temporal variations in their normal growth behavior. In such cases, the patterns of normal growth can be suppressed or accelerated. Pine stands which were influenced by high S deposition up until 1990 changed from suppressed growth to accelerated growth by decreasing S, but increasing N depositions between 1990 and 2003. The cause of these changes in pine growth patterns was imbalances in S and N nutrition, in particular, enrichments of sulfate, non-protein nitrogen or arginine, and finally, also imbalances and deficiencies in phosphorus, glucose, and adenosine triphosphate in the needles. Our long-term monitoring study shows that biochemical markers (traits) are crucial bioindicators for the qualitative and quantitative assessment of tree vitality and growth patterns in Scots pines. Furthermore, we were able to show that NOX and SOX depositions need to be monitored locally to be able to assess the local effects of biomolecular markers on the growth patterns in Scots pine stands.
Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Pinus sylvestris/chemistry , Pinus sylvestris/physiology , Air Pollution/statistics & numerical data , Biomarkers/chemistry , Ecosystem , Germany , Longitudinal Studies , Nitrogen/analysis , Phosphorus/analysis , PinusABSTRACT
Excessive alternative macrophage activation contributes to fibrosis. We studied the effects of nortrachelogenin, the major lignan component of Pinus sylvestris knot extract, on alternative (M2) macrophage activation. J774 murine and THP-1 human macrophages were cultured with IL-4+IL-13 to induce alternative activation, together with the extract and its components. Effects of nortrachelogenin were also studied in bleomycin-induced murine dermal fibrosis model. Knot extract significantly decreased the expression of alternative activation markers-arginase 1 in murine macrophages (97.4 ± 1.3% inhibition at 30 µg/mL) and CCL13 and PDGF in human macrophages-as did nortrachelogenin (94.9 ± 2.4% inhibition of arginase 1 at 10 µM). Nortrachelogenin also decreased PPARγ expression but had no effect on STAT6 phosphorylation. In vivo, nortrachelogenin reduced bleomycin-induced increase in skin thickness as well as the expression of collagens COL1A1, COL1A2, and COL3A1 (all by >50%). In conclusion, nortrachelogenin suppressed IL-4+IL-13-induced alternative macrophage activation and ameliorated bleomycin-induced fibrosis, indicating therapeutic potential in fibrosing conditions.
Subject(s)
Bleomycin/adverse effects , Furans/administration & dosage , Interleukin-13/immunology , Interleukin-4/immunology , Lignans/administration & dosage , Macrophage Activation/drug effects , Pinus sylvestris/chemistry , Plant Extracts/administration & dosage , Skin Diseases/drug therapy , Animals , Collagen/immunology , Fibrosis/chemically induced , Fibrosis/drug therapy , Fibrosis/etiology , Fibrosis/immunology , Humans , Interleukin-13/genetics , Interleukin-4/genetics , Macrophages/drug effects , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , Skin Diseases/chemically induced , Skin Diseases/genetics , Skin Diseases/immunologyABSTRACT
During industrial wood drying, extractives migrate towards the wood surfaces and make the material more susceptible to photo/biodegradation. The present work provides information about the distribution, quantity and nature of lipophilic substances beneath the surface in air- and kiln-dried Scots pine (Pinus sylvestris L.) sapwood boards. Samples were taken from knot-free sapwood surfaces and the composition of lipophilic extractives, phenols and low-molecular fatty/resin acids layers at different nominal depths below the surface was studied gravimetrically, by UV-spectrometry and by gas chromatography-mass spectrometry (GC-MS). The concentration of total extractives was significantly higher in kiln-dried than in air-dried samples and was higher close to the surface than in the layers beneath. The scatter in the values for the lipophilic extractives was high in both drying types, being highest for linoleic acid and slightly lower for palmitic, oleic and stearic acids. The amount of fatty acids was low in kiln-dried boards, probably due to a stronger degradation due to the high temperature employed. The most abundant resin acid was dehydroabietic acid followed by pimaric, isopimaric, and abietic acids in both drying types. It is concluded that during kiln-drying a migration front is created at a depth of 0.25 mm with a thickness of about 0.5 mm.
Subject(s)
Lipids/analysis , Pinus sylvestris/chemistry , Wood/analysis , Gas Chromatography-Mass Spectrometry , Industry , Linoleic Acid/analysis , Oleic Acids/analysis , Palmitic Acids/analysis , Plant Extracts/analysisABSTRACT
BACKGROUND: Cryptococcal infections, besides being a problem for immunocompromised patients, are occasionally being a problem for immunocompetent patients. In addition, the lower susceptibility of this yeast to azoles is a growing problem in health care. To date, there are very few molecules with any activity towards Cryptococcus neoformans, leading to heightened interest in finding new alternatives or adjuvants to conventional drugs for the treatment of mycosis caused by this yeast. Since the essential oils (EOs) are considered as a potential rich source of bioactive antimicrobial compounds, we evaluated the antifungal activity of Origanum vulgare (oregano), Pinus sylvestris (pine), and Thymus vulgaris (thyme red) EOs, and their components (α-pinene, carvacrol, thymol) compared with fluconazole, itraconazole, and voriconazole, against C.neoformans clinical strains. Then, we investigated the effect of EOs and components in combination with itraconazole. METHODS: EO composition was analysed by Gas chromatography-mass spectrometry (GC-MS). A broth microdilution method was used to evaluate the susceptibility of C.neoformans to azoles, EOs and components. Checkerboard tests, isobolograms and time-kill assays were carried out for combination studies. RESULTS: Six C.neoformans isolates were susceptible to azoles, while one C.neoformans exhibited a reduced susceptibility to all tested azole drugs. All EOs exerted a good inhibitory activity against all C.neoformans strains. Pine EO was the most effective. Among components, thymol exerted the most remarkable activity. By checkerboard testing and isobolographic analysis, combinations of itraconazole with oregano, pine, or thyme EOs, and carvacrol were found to be synergistic (FICI≤0.5) against azole susceptible C.neoformans. Regarding the azole not susceptible C.neoformans strain, the synergistic effect with itraconazole was observed with thyme EO (chemotype: thymol 26.52%; carvacrol 7.85%), and carvacrol. Time-kill assays confirmed the synergistic effects of itraconazole and oregano or thyme EO against azole susceptible C.neoformans. Binary mixtures of itraconazole/thyme EO or carvacrol yielded additive effects on the azole not susceptible C.neoformans. CONCLUSIONS: Our findings highlight the potential effectiveness of thyme, oregano EOs, and carvacrol as natural and cost-effective adjuvants when used in combination with itraconazole. Identification of EOs exerting these effects could be one of the feasible ways to overcome drug resistance, reducing drug concentration and side effects.
Subject(s)
Antifungal Agents/pharmacology , Cryptococcus neoformans/drug effects , Itraconazole/pharmacology , Oils, Volatile/pharmacology , Origanum/chemistry , Pinus sylvestris/chemistry , Thymus Plant/chemistry , Drug Synergism , Kinetics , Microbial Viability/drug effectsABSTRACT
Nortrachelogenin is a pharmacologically active lignan found in knot extracts of Pinus sylvestris. In previous studies, some lignans have been shown to have anti-inflammatory properties, which made nortrachelogenin an interesting candidate for our study. In inflammation, bacterial products and cytokines induce the expression of inducible nitric oxide synthase, cyclooxygenase-2, and microsomal prostaglandin E synthase-1. These enzymes synthesize factors, which, together with proinflammatory cytokines, are important mediators and drug targets in inflammatory diseases.The effects of nortrachelogenin on the expression of inducible nitric oxide synthase, cyclooxygenase-2, and microsomal prostaglandin E synthase-1 as well as on the production of nitric oxide, prostaglandin E2, and cytokines interleukin-6 and monocyte chemotactic protein-1 were investigated in the murine J774 macrophage cell line. In addition, we examined the effect of nortrachelogenin on carrageenan-induced paw inflammation in mice.Interestingly, nortrachelogenin reduced carrageenan-induced paw inflammation in mice and inhibited the production of inflammatory factors nitric oxide, prostaglandin E2, interleukin-6, and monocyte chemotactic protein-1 in J774 macrophages in vitro. Nortrachelogenin inhibited microsomal prostaglandin E synthase-1 protein expression but had no effect on cyclooxygenase-2 protein levels. Nortrachelogenin also had a clear inhibitory effect on inducible nitric oxide synthase protein expression but none on its mRNA levels, and the proteasome inhibitor lactacystin reversed the effect of nortrachelogenin on inducible nitric oxide synthase expression, suggesting a post-transcriptional mechanism of action.The results revealed hitherto unknown anti-inflammatory properties of nortrachelogenin, which could be utilized in the development of anti-inflammatory treatments.
Subject(s)
Anti-Inflammatory Agents/pharmacology , Edema/drug therapy , Furans/pharmacology , Lignans/pharmacology , Pinus sylvestris/chemistry , Proteasome Inhibitors/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Carrageenan/adverse effects , Cells, Cultured , Disease Models, Animal , Edema/chemically induced , Furans/chemistry , Lignans/chemistry , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/drug effects , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolismABSTRACT
Proanthocyanidins (PAC) are a class of plant secondary metabolites commonly found in the diet that have shown potential to control gastrointestinal nematode infections. The anti-parasitic mechanism(s) of PAC remain obscure, however the protein-binding properties of PAC suggest that disturbance of key enzyme functions may be a potential mode of action. Glutathione-S-transferases (GSTs) are essential for parasite detoxification and have been investigated as drug and vaccine targets. Here, we show that purified PAC strongly inhibit the activity of both recombinant and native GSTs from the parasitic nematode Ascaris suum. As GSTs are involved in detoxifying xenobiotic substances within the parasite, we hypothesised that this inhibition may render parasites hyper-susceptible to anthelmintic drugs. Migration inhibition assays with A. suum larvae demonstrated that the potency of levamisole (LEV) and ivermectin (IVM) were significantly increased in the presence of PAC purified from pine bark (4.6-fold and 3.2-fold reduction in IC50 value for LEV and IVM, respectively). Synergy analysis revealed that the relationship between PAC and LEV appeared to be synergistic in nature, suggesting a specific enhancement of LEV activity, whilst the relationship between PAC and IVM was additive rather than synergistic, suggesting independent actions. Our results demonstrate that these common dietary compounds may increase the efficacy of synthetic anthelmintic drugs in vitro, and also suggest one possible mechanism for their well-known anti-parasitic activity.
Subject(s)
Anthelmintics/pharmacology , Ascariasis/drug therapy , Ascaris suum/drug effects , Pinus sylvestris/chemistry , Proanthocyanidins/pharmacology , Trifolium/chemistry , Animals , Anthelmintics/chemistry , Anthelmintics/isolation & purification , Ascariasis/parasitology , Ascaris suum/cytology , Drug Synergism , Flowers/chemistry , Glutathione Transferase/antagonists & inhibitors , Glutathione Transferase/metabolism , Helminth Proteins/antagonists & inhibitors , Helminth Proteins/metabolism , Ivermectin/pharmacology , Larva , Levamisole/pharmacology , Plant Bark/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Proanthocyanidins/chemistry , Proanthocyanidins/isolation & purificationABSTRACT
Scots pine (Pinus sylvestris) is known to be rich in phenolic compounds, which may have anti-inflammatory properties. The present study investigated the anti-inflammatory effects of a knot extract from P. sylvestris and two stilbenes, pinosylvin and monomethylpinosylvin, isolated from the extract. Inflammation is characterized by increased release of pro-inflammatory and regulatory mediators including nitric oxide (NO) produced by the inducible nitric oxide synthase (iNOS) pathway. The knot extract (EC50 values of 3 and 3 µg/mL) as well as two of its constituents, pinosylvin (EC50 values of 13 and 15 µM) and monomethylpinosylvin (EC50 values of 8 and 12 µM), reduced NO production and iNOS expression in activated macrophages. They also inhibited the production of inflammatory cytokines IL-6 and MCP-1. More importantly, pinosylvin and monomethylpinosylvin exerted a clear anti-inflammatory effect (80% inhibition at the dose of 100 mg/kg) in the standard in vivo model, carrageenan-induced paw inflammation in the mouse, with the effect being comparable to that of a known iNOS inhibitor L-NIL. The results reveal that the Scots pine stilbenes pinosylvin and monomethylpinosylvin are potential anti-inflammatory compounds.
Subject(s)
Anti-Inflammatory Agents/pharmacology , Inflammation/genetics , Pinus sylvestris/chemistry , Plant Extracts/chemistry , Stilbenes/pharmacology , Animals , Carrageenan , Cell Line , Chemokine CCL2/antagonists & inhibitors , Gene Expression/drug effects , HEK293 Cells , Humans , Inflammation/chemically induced , Inflammation/drug therapy , Interleukin-6/antagonists & inhibitors , Macrophages/drug effects , Macrophages/enzymology , Mice , NF-kappa B/antagonists & inhibitors , Nitric Oxide/biosynthesis , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Plant Extracts/pharmacology , Stilbenes/isolation & purification , Wood/chemistryABSTRACT
BACKGROUND: We have previously demonstrated that an alkaline extract of shredded pinecones yields a polyphenylpropanoid polysaccharide complex (PPC) that functions as an orally active immune adjuvant. Specifically, oral PPC can boost the number of antigen-specific memory CD8+ T cells generated in response to a variety of vaccine types (DNA, protein, and dendritic cell) and bias the response towards one that is predominately a T helper 1 type. METHODS: An immune response was initiated by intraperitoneal injection of mice with Staphylococcus enterotoxin B (SEB). A group of mice received PPC by gavage three times per day on Days 0 and 1. The draining lymph nodes were analyzed 48-96 h post-injection for the numbers of reactive T cells, cytokine production, the generation of reactive oxygen species, and apoptotsis. RESULTS: In this study we examined whether the ability of PPC to boost a T cell response is due to an effect on the proliferative or contraction phases, or both, of the primary response. We present data to demonstrate that oral PPC significantly enhances the primary T cell response by affecting the expansion of T cells (both CD4 and CD8) during the proliferative phase, while having no apparent effects on the activation-induced cell death associated with the contraction phase. CONCLUSIONS: These findings suggest that PPC could potentially be utilized to enhance the T cell response generated by a variety of prophylactic and therapeutic vaccines designed to target a cellular response.
Subject(s)
Adjuvants, Immunologic/pharmacology , CD8-Positive T-Lymphocytes/drug effects , Phenylpropionates/pharmacology , Pinus sylvestris/chemistry , Polymers/pharmacology , Polysaccharides/pharmacology , Adjuvants, Immunologic/analysis , Animals , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Bcl-2-Like Protein 11 , CD8-Positive T-Lymphocytes/metabolism , Drug Evaluation, Preclinical , Enterotoxins , Female , Interferon-gamma/blood , Interleukin-2/blood , Lymph Nodes/drug effects , Membrane Proteins/metabolism , Mice , Mice, Inbred BALB C , Phenylpropionates/analysis , Polymers/analysis , Polysaccharides/analysis , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Reactive Oxygen Species/metabolism , VaccinesABSTRACT
OBJECTIVE: To assess the chemical composition and mosquito larvicidal potentials of essential oils of locally sourced Pinus sylvestris (P. sylvestris) and Syzygium aromaticum (S. aromaticum) against Aedes aegypti (A. aegypti) and Culex quinquefasciatus (C. quinquefasciatus). METHODS: The chemical composition of the essential oils of both plants was determined using GC-MS while the larvicidal bioassay was carried out using different concentrations of the oils against the larvae of A. aegypti and C. quinquefasciatus in accordance with the standard protocol. RESULTS: The results as determined by GC-MS showed that oil of S. aromaticum has eugenol (80.5%) as its principal constituent while P. sylvestris has 3-Cyclohexene-1-methanol, .alpha., .alpha.4-trimethyl (27.1%) as its dominant constituent. Both oils achieved over 85% larval mortality within 24 h. The larvae of A. aegypti were more susceptible to the oils [LC50 (S. aromaticum)=92.56 mg/L, LC50(P. sylvestris)=100.39 mg/L] than C. quinquefasciatus [LC50(S. aromaticum)=124.42 mg/L; LC50(P. sylvestris)=128.00 mg/L]. S. aromaticum oil was more toxic to the mosquito larvae than oil of P. sylvestris but the difference in lethal concentrations was insignificant (P>0.05). CONCLUSION: The results justify the larvicidal potentials of both essential oils and the need to incorporate them in vector management and control.
Subject(s)
Culicidae/drug effects , Insecticides/pharmacology , Larva/drug effects , Oils, Volatile/pharmacology , Pinus sylvestris/chemistry , Syzygium/chemistry , Animals , Oils, Volatile/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacologyABSTRACT
AIM: To investigate the effects of the naturally occurring stilbenoid pinosylvin on neutrophil activity in vitro and in experimental arthritis, and to examine whether protein kinase C (PKC) activation served as an assumed target of pinosylvin action. METHODS: Fresh human blood neutrophils were isolated. The oxidative burst of neutrophils was evaluated on the basis of enhanced chemiluminescence. Neutrophil viability was evaluated with flow cytometry, and PKC phosphorylation was assessed by Western blotting analysis. Adjuvant arthritis was induced in Lewis rats with heat-killed Mycobacterium butyricum, and the animals were administered with pinosylvin (30 mg/kg, po) daily for 21 d after arthritis induction. RESULTS: In isolated human neutrophils, pinosylvin (10 and 100 µmol/L) significantly decreased the formation of oxidants, both extra- and intracellularly, and effectively inhibited PKC activation stimulated by phorbol myristate acetate (0.05 µmol/L). The inhibition was not due to neutrophil damage or increased apoptosis. In arthritic rats, the number of neutrophils in blood was dramatically increased, and whole blood chemiluminescence (spontaneous and PMA-stimulated) was markedly enhanced. Pinosylvin administration decreased the number of neutrophils (from 69 671 ± 5588/µL to 51 293 ± 3947/µL, P=0.0198) and significantly reduced the amount of reactive oxygen species in blood. CONCLUSION: Pinosylvin is an effective inhibitor of neutrophil activity, and is potentially useful as a complementary medicine in states associated with persistent inflammation.
Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Apoptosis/drug effects , Arthritis, Experimental/drug therapy , Neutrophil Activation/drug effects , Neutrophils/drug effects , Protein Kinase C/metabolism , Respiratory Burst/drug effects , Stilbenes/therapeutic use , Adult , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Arthritis, Experimental/blood , Arthritis, Experimental/enzymology , Arthritis, Experimental/immunology , Blotting, Western , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Flow Cytometry , Humans , Leukocyte Count , Luminescent Measurements , Male , Middle Aged , Neutrophils/cytology , Neutrophils/metabolism , Pinus sylvestris/chemistry , Rats , Rats, Inbred Lew , Reactive Oxygen Species/metabolism , Stilbenes/administration & dosage , Stilbenes/pharmacology , Young AdultABSTRACT
Essential oils are one of nature's most precious gifts with surprisingly potent and outstanding properties. Coniferous oils, for instance, are nowadays being used extensively to treat or prevent many types of infections, modify immune responses, soothe inflammations, stabilize moods, and to help ease all forms of non-acute pain. Given the broad spectrum of usage of coniferous essential oils, a fast, safe, simple, and efficient sample-preparation method is needed in the estimation procedure of essential oil components in fresh plant material. Generally, the time- and energy-consuming steam distillation (SD) is applied for this purpose. This paper will compare SD, pressurized liquid extraction (PLE), matrix solid-phase dispersion (MSPD), and the sea sand disruption method (SSDM) as isolation techniques to obtain aroma components from Scots pine (Pinus sylvestris), spruce (Picea abies), and Douglas fir (Pseudotsuga menziesii). According to the obtained data, SSDM is the most efficient sample preparation method in determining the essential oil composition of conifers. Moreover, SSDM requires small organic solvent amounts and a short extraction time, which makes it an advantageous alternative procedure for the routine analysis of coniferous oils. The superiority of SSDM over MSPD efficiency is ascertained, as there are no chemical interactions between the plant cell components and the sand. This fact confirms the reliability and efficacy of SSDM for the analysis of volatile oil components.
Subject(s)
Chemical Fractionation/methods , Oils, Volatile/isolation & purification , Plant Oils/isolation & purification , Silicon Dioxide , Tracheophyta/chemistry , Picea/chemistry , Pinus sylvestris/chemistry , Pseudotsuga/chemistry , SteamABSTRACT
This paper presents the experimentally determined retention indices (RI(TMS)) for a set of 75 silylated terpenols (33 monoterpenols and 42 sesquiterpenols). The attempt was made to assess the dependence of RI(TMS) on RI (for non-silylated terpenols) and on RI(Ac) (for acetylated terpenols). Satisfactory linear regression parameters (RI(TMS)=b(0)+b(1)RI) were observed for tertiary substituted monoterpenols and primary or secondary substituted sesquiterpenols. The mass spectra of silylated terpenols that were not found in the available literature are in Supplementary information.
Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Monoterpenes/chemistry , Sesquiterpenes/chemistry , Trimethylsilyl Compounds/chemistry , Betula/chemistry , Linear Models , Monoterpenes/isolation & purification , Oils, Volatile/chemistry , Pinus sylvestris/chemistry , Plant Extracts/chemistry , Populus/chemistry , Sesquiterpenes/isolation & purification , Thuja/chemistryABSTRACT
INTRODUCTION: A myriad of volatile organic compounds (VOCs) released by terrestrial vegetation plays an important role in environmental sciences. A thorough chemical identification of these species at the molecular level is essential in various fields, ranging from atmospheric chemistry to ecology of forest ecosystems. In particular, the recognition of VOCs profiles in a context of plant-insect communication is a key issue for the development of forest protection tools. PURPOSE: This work was aimed at the development of a simple, robust and reliable method for the identification of volatiles emitted from plant materials, which can attract or deter pest insects. Specifically, volatiles emitted from the bark of Pinus sylvestris were studied, which might attract the black pine sawyer beetle Monochamus galloprovincialis-a serious pest of the tree and a vector of a parasitic nematode Bursaphelenchus xylophius. METHOD: The volatiles from bark samples were collected using a solid-phase micro-extraction technique, and subsequently analysed by gas-chromatography/mass-spectrometry (GC/MS). The characterisation of the volatile fraction was based on the comparison with data in mass spectral libraries, and in most cases, with the available authentic standards. The identified compounds were screened against the available entomological data to select insect attractors. RESULTS: The identified components included terpenes (α-pinene, ∆-3-carene, and para-cymenene), oxygenated terpenes (α-terpineol and verbenone), sesquiterpenes (α-longipinene, longifolene, E-ß-farnesene, γ-cadinene and pentadecane), and diterpenes (manoyl oxide and (+)-pimaral). Of these, longifolene and (+)-pimaral are of particular interest as plausible attractors for the M. galloprovincialis beetle that might find application in the construction of insect bait traps.
Subject(s)
Coleoptera/drug effects , Pinus sylvestris/chemistry , Plant Bark/chemistry , Plant Extracts/pharmacology , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/pharmacology , Animals , Behavior, Animal/drug effects , Chemical Fractionation/methods , Gas Chromatography-Mass Spectrometry , Molecular Structure , Plant Extracts/chemistryABSTRACT
Needle chemical composition was measured, and nutrient resorption, nutrient-use efficiency (NUE), and other indexes were estimated for 24 months in two contrasting natural Pinus sylvestris L. forests in the western Pyrenees in Spain. For each location (Aspurz, 650 m elevation, 7% slope; Garde, 1335 m elevation, 40% slope), there were three reference plots (P0), three plots with 20% of the basal area removed (P20), and three with 30% of the basal area removed (P30). Needle P, Ca, and Mg concentrations were higher in Garde, but N concentration was higher for Aspurz, without differences for K. Nutrient-resorption efficiency of P was higher in Aspurz, of Mg higher in Garde, and there were no differences between sites in N and K. Nutrient-resorption proficiency was significantly higher in the site with lower soil nutrient availability, i.e., for P, Ca, and Mg in Aspurz, but N in Garde (no differences in K); this may be an indicator of nutrient conservation strategy. Annual nutrient productivity (A) was higher for all nutrients in Aspurz, whereas the mean residence time (MRT) was higher in Garde in all nutrients but P. NUE was significantly higher in Garde for all nutrients but P, which was more efficiently used in Aspurz. In both sites, N, P, and K concentrations were higher in the 2002 cohort, Ca in the 2000 cohort, and maximum Mg was found in the 2001 cohort. Thinning caused a reduction of Mg concentration in the 2001 cohort in Aspurz, an increase of Ca resorption proficiency in Aspurz and Mg resorption at both sites, and reduction of P, K, and Mg nutrient response efficiency (NRE) in Garde. Thinning may have caused an increase of the C:Mg ratio through facilitating the development of more biosynthesis apparatus in a more illuminated canopy, but it seemed not to affect resorption in a significant way. Changes in NRE in Garde after thinning show that forest management can affect how trees use nutrients. Our results indicate that the strategy to optimize NUE is different in each stand. In Aspurz (a Mediterranean ecosystem), pine trees carried out resorption more efficiently, while in Garde (a continental forest), trees used nutrients for longer periods of time and reduced their efficiency in using the available soil nutrients after reduced competition by thinning.