Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
Add more filters

Complementary Medicines
Therapeutic Methods and Therapies TCIM
Country/Region as subject
Publication year range
1.
Int J Mol Sci ; 22(21)2021 Nov 07.
Article in English | MEDLINE | ID: mdl-34769466

ABSTRACT

Thaxtomin A (TA) is a phytotoxin secreted by Streptomyces scabies that causes common scab in potatoes. However, the mechanism of potato proteomic changes in response to TA is barely known. In this study, the proteomic changes in potato leaves treated with TA were determined using the Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) technique. A total of 693 proteins were considered as differentially expressed proteins (DEPs) following a comparison of leaves treated with TA and sterile water (as a control). Among the identified DEPs, 460 and 233 were upregulated and downregulated, respectively. Based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, many DEPs were found to be involved in defense and stress responses. Most DEPs were grouped in carbohydrate metabolism, amino acid metabolism, energy metabolism, and secondary metabolism including oxidation-reduction process, response to stress, plant-pathogen interaction, and plant hormone signal transduction. In this study, we analyzed the changes in proteins to elucidate the mechanism of potato response to TA, and we provided a molecular basis to further study the interaction between plant and TA. These results also offer the option for potato breeding through analysis of the resistant common scab.


Subject(s)
Indoles/pharmacology , Piperazines/pharmacology , Plant Proteins/drug effects , Proteome/drug effects , Solanum tuberosum/drug effects , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/immunology , Indoles/isolation & purification , Piperazines/isolation & purification , Plant Immunity/drug effects , Plant Immunity/genetics , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Proteome/genetics , Proteome/metabolism , Proteomics/methods , Solanum tuberosum/genetics , Solanum tuberosum/immunology , Solanum tuberosum/metabolism , Streptomyces/chemistry
2.
Mol Plant Pathol ; 22(7): 829-842, 2021 07.
Article in English | MEDLINE | ID: mdl-33951264

ABSTRACT

Sugar beet cultivation is dependent on an effective control of beet necrotic yellow vein virus (BNYVV, family Benyviridae), which causes tremendous economic losses in sugar production. As the virus is transmitted by a soilborne protist, the use of resistant cultivars is currently the only way to control the disease. The Rz2 gene product belongs to a family of proteins conferring resistance towards diverse pathogens in plants. These proteins contain coiled-coil and leucine-rich repeat domains. After artificial inoculation of homozygous Rz2 resistant sugar beet lines, BNYVV and beet soilborne mosaic virus (BSBMV, family Benyviridae) were not detected. Analysis of the expression of Rz2 in naturally infected plants indicated constitutive expression in the root system. In a transient assay, coexpression of Rz2 and the individual BNYVV-encoded proteins revealed that only the combination of Rz2 and triple gene block protein 1 (TGB1) resulted in a hypersensitive reaction (HR)-like response. Furthermore, HR was also triggered by the TGB1 homologues from BSBMV as well as from the more distantly related beet soilborne virus (family Virgaviridae). This is the first report of an R gene providing resistance across different plant virus families.


Subject(s)
Beta vulgaris/genetics , Disease Resistance/genetics , Plant Diseases/immunology , Plant Proteins/metabolism , Plant Viruses/physiology , Amino Acid Sequence , Beta vulgaris/immunology , Beta vulgaris/virology , Cell Death , Gene Expression , Genes, Dominant , Genetic Variation , Organ Specificity , Plant Diseases/virology , Plant Leaves/immunology , Plant Leaves/virology , Plant Proteins/genetics , Protein Domains , Sequence Alignment , Nicotiana/genetics , Nicotiana/immunology , Nicotiana/virology , Virulence
3.
Mol Plant Pathol ; 22(6): 644-657, 2021 06.
Article in English | MEDLINE | ID: mdl-33764635

ABSTRACT

A cascade formed by phosphorylation events of mitogen-activated protein kinases (MAPKs) takes part in plant stress responses. However, the roles of these MAPKs in resistance of potato (Solanum tuberosum) against Phytophthora pathogens is not well studied. Our previous work showed that a Phytophthora infestans RXLR effector targets and stabilizes the negative regulator of MAPK kinase 1 of potato (StMKK1). Because in Arabidopsis thaliana the AtMPK4 is the downstream phosphorylation target of AtMKK1, we performed a phylogenetic analysis and found that potato StMPK4/6/7 are closely related and are orthologs of AtMPK4/5/11/12. Overexpression of StMPK4/7 enhances plant resistance to P. infestans and P. parasitica. Yeast two-hybrid analysis revealed that StMPK7 interacts with StMKK1, and StMPK7 is phosphorylated on flg22 treatment and by expressing constitutively active StMKK1 (CA-StMKK1), indicating that StMPK7 is a direct downstream signalling partner of StMKK1. Overexpression of StMPK7 in potato enhances potato resistance to P. infestans. Constitutively active StMPK7 (CA-StMPK7; StMPK7D198G, E202A ) was found to promote immunity to Phytophthora pathogens and to trigger host cell death when overexpressed in Nicotiana benthamiana leaves. Cell death triggered by CA-StMPK7 is SGT1/RAR1-dependent. Furthermore, cell death triggered by CA-StMPK7 is suppressed on coexpression with the salicylate hydroxylase NahG, and StMPK7 activation promotes salicylic acid (SA)-responsive gene expression. We conclude that potato StMPK7 is a downstream signalling component of the phosphorelay cascade involving StMKK1 and StMPK7 plays a role in immunity to Phytophthora pathogens via an SA-dependent signalling pathway.


Subject(s)
Disease Resistance , MAP Kinase Signaling System , Mitogen-Activated Protein Kinases/metabolism , Phytophthora infestans/physiology , Plant Diseases/immunology , Solanum tuberosum/genetics , Cell Death , Gene Expression , Mitogen-Activated Protein Kinases/genetics , Phylogeny , Plant Diseases/parasitology , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/parasitology , Plant Proteins/genetics , Plant Proteins/metabolism , Salicylic Acid/metabolism , Solanum tuberosum/immunology , Solanum tuberosum/parasitology , Nicotiana/genetics , Nicotiana/immunology , Nicotiana/parasitology
4.
Mol Plant Pathol ; 22(5): 495-507, 2021 05.
Article in English | MEDLINE | ID: mdl-33709540

ABSTRACT

TAXONOMY: Phylum Nematoda; class Chromadorea; order Rhabditida; suborder Tylenchina; infraorder Tylenchomorpha; superfamily Tylenchoidea; family Heteroderidae; subfamily Heteroderinae; Genus Globodera. BIOLOGY: Potato cyst nematodes (PCN) are biotrophic, sedentary endoparasitic nematodes. Invasive (second) stage juveniles (J2) hatch from eggs in response to the presence of host root exudates and subsequently locate and invade the host. The nematodes induce the formation of a large, multinucleate syncytium in host roots, formed by fusion of up to 300 root cell protoplasts. The nematodes rely on this single syncytium for the nutrients required to develop through a further three moults to the adult male or female stage. This extended period of biotrophy-between 4 and 6 weeks in total-is almost unparalleled in plant-pathogen interactions. Females remain at the root while adult males revert to the vermiform body plan of the J2 and leave the root to locate and fertilize the female nematodes. The female body forms a cyst that contains the next generation of eggs. HOST RANGE: The host range of PCN is limited to plants of the Solanaceae family. While the most economically important hosts are potato (Solanum tuberosum), tomato (Solanum lycopersicum), and aubergine (Solanum melongena), over 170 species of Solanaceae are thought to be potential hosts for PCN (Sullivan et al., 2007). DISEASE SYMPTOMS: Symptoms are similar to those associated with nutrient deficiency, such as stunted growth, yellowing of leaves and reduced yields. This absence of specific symptoms reduces awareness of the disease among growers. DISEASE CONTROL: Resistance genes (where available in suitable cultivars), application of nematicides, crop rotation. Great effort is put into reducing the spread of PCN through quarantine measures and use of certified seed stocks. USEFUL WEBSITES: Genomic information for PCN is accessible through WormBase ParaSite.


Subject(s)
Genome, Helminth/genetics , Host-Parasite Interactions , Plant Diseases/parasitology , Solanum lycopersicum/parasitology , Solanum tuberosum/parasitology , Tylenchoidea/physiology , Animals , Disease Resistance/genetics , Female , Genomics , Host Specificity/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/immunology , Male , Plant Diseases/prevention & control , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/parasitology , Plant Roots/genetics , Plant Roots/immunology , Plant Roots/parasitology , Solanum tuberosum/genetics , Solanum tuberosum/immunology , Tylenchoidea/genetics
5.
Sci Rep ; 11(1): 628, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33436688

ABSTRACT

This study was conducted to determine the root system architecture and biochemical responses of three potato (Solanum tuberosum L.) cultivars to drought and aphid (Myzus persicae Sulzer) infestation under greenhouse conditions. A factorial experiment comprising three potato cultivars (Qingshu 9, Longshu 3, and Atlantic), two levels of water (Well watered and drought) application and aphid infestation (Aphids and no aphids) was conducted. The results show that drought stress and aphid infestation significantly increased the root-projected area, root surface area, number of root tips, and number of root forks of all cultivars, relative to their corresponding control plants. The least root projected area, root surface area, number of root tips, and number of root forks occurred on DXY under both drought and aphid infestation. Nevertheless, the greatest root projected area, root surface area, number of root tips and number of root forks occurred on QS9 plants. Moreover, increased SOD, CAT, and POD activities were observed across all cultivars, under drought and aphid stress. The highest SOD, POD, and CAT activities occurred in QS9; under drought and aphid stress, while the least SOD, POD, and CAT activities was observed in DXY. The Atlantic cultivar, which possesses a root system sensitive to water deficit, demonstrated greater resistance to aphid infestation under well-watered and drought-stressed conditions. Conversely, Qingshu 9, which possesses a root system tolerant to water deficit, was highly susceptible to aphids. This study shows that the root architectural and biochemical traits that enhance potato tolerance to drought do not necessarily correlate to a plant's tolerance to aphids.


Subject(s)
Antioxidants/metabolism , Aphids/physiology , Droughts , Gene Expression Regulation, Enzymologic , Plant Leaves/immunology , Solanum tuberosum/immunology , Stress, Physiological , Animals , Plant Leaves/parasitology , Solanum tuberosum/enzymology , Solanum tuberosum/parasitology
6.
Plant Cell Rep ; 40(2): 351-359, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33247387

ABSTRACT

KEY MESSAGE: Identification of an EST-SSR molecular marker associated with Blister blight, a common fungal disease of tea, facilitating marker-assisted selection, marking a milestone in tea molecular breeding. lister blight (BB) leaf disease of tea, caused by the fungus Exobasidium vexans, results in 25-30% crop loss annually. BB is presently controlled by Cu based fungicides, but genetic resistance is the most viable option in disease management. Tea is a naturally out-crossing, woody perennial necessitating a long time for completion of a breeding programme. Marker-assisted selection (MAS) is vital to expedite breeding programmes and also for better accuracy in gene identification. The aim of the current research was to derive marker-trait associations using an F1 population segregating for BB. The population was genotyped at 11 expressed sequence tag simple sequence repeat loci followed by detecting the alleles by fragment analysis. The genotypic and phenotypic data were subjected to single-marker analysis resulting in the identification of EST-SSR073 as a diagnostic marker amplifying three alleles of the sizes, 168, 170 and 190 bp in F1. Of them, alleles 190 and 168 bp were confirmed to concur BB resistance and susceptibility, respectively. The alleles were validated in a panel of 64 tea cultivars, resulting in the amplification of 12 alleles at EST-SSR073. The EST-SSR073 allele sequences matched with Camellia sinensis photosystem-I reaction center subunit-II. The marker EST-SSR073 can be effectively used in breeding tea against BB, recording a milestone in MAS in tea.


Subject(s)
Basidiomycota/physiology , Camellia sinensis/genetics , Disease Resistance/genetics , Genetic Markers/genetics , Microsatellite Repeats/genetics , Plant Diseases/immunology , Alleles , Camellia sinensis/immunology , Camellia sinensis/microbiology , DNA Shuffling , Expressed Sequence Tags , Genetic Loci/genetics , Genotype , Phenotype , Plant Breeding , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/microbiology , Tea
7.
J Plant Physiol ; 253: 153249, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32829122

ABSTRACT

ROP GTPases (Rho-related GTPases from plant), a unique subgroup of the Rho family in plants, is a group of key regulators of different signaling pathways controlling plant growth and development, cell polarity and differentiation, and plant response against biotic and abiotic stresses. The present study determined the potential regulatory mechanism of potato ROP GTPase (StRac1) against Phytophthora infestans (P. infestans) infection. Protein secondary structure analysis indicated that StRAC1 is a Rho GTPase. The expression level of StRac1 was variable in different tissues of potato, with the highest expression in young leaves of both Shepody and Hutou potato varieties. After challenging with P. infestans, the expression level of StRac1was higher in resistance varieties Zihuabai and Longshu 7 than in susceptible varieties Shepody and Desiree. StRAC1 fusion with GFP subcellularly localized at the plasma membrane (PM) in tobacco epidermal cells. The potato with transient or stable over-expression of CA-StRac1 (constitutively active form of StRac1)exhibited a dramatic enhancement of its resistance against P. infestans infections. The increased resistance level in transgenic potato was accompanied with elevated H2O2 levels. Importantly, silencing StRac1 via virus-induced gene silencing (VIGS) in potato resulted in higher susceptibility to P. infestans infection than in control plants. In summary, our data reveal that StRac1 regulates potato resistance against P. infestans via positively modulating the accumulation of H2O2.


Subject(s)
Disease Resistance/genetics , Hydrogen Peroxide/metabolism , Phytophthora infestans/physiology , Plant Diseases/immunology , Solanum tuberosum/genetics , rac1 GTP-Binding Protein/metabolism , Gene Silencing , Genes, Reporter , Plant Diseases/parasitology , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/parasitology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Solanum tuberosum/immunology , Solanum tuberosum/parasitology , Nicotiana/genetics , Nicotiana/metabolism , rac1 GTP-Binding Protein/genetics
8.
Int J Mol Sci ; 21(5)2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32155845

ABSTRACT

Jasmonates (JAs), the group of lipid-derived hormones, were found to control the defense responses in a myriad of plants. Meaningfully, the macrolactones of 12-hydroxy jasmonate isoleucine (12OH-JA-Ile) were reported to induce the defensive response of wild tobacco. However, little to nothing has been known about the elicitation effect of JA-Ile-macrolactones on woody plants to harmful organisms, let alone its underlying mechanisms. Here, we first optimized the synthetic routine using mild toxic reagent isobutyl chloroformate instead of ethyl chloroformate for conjugation, and we used acetonitrile (MeCN) instead of ethyl alcohol for the better dissolution of p-toluenesulfonic acid (p-TsOH) to gain JA-Ile-macrolactones. JA-Ile-macrolactone 5b-treated tea plants significantly inhibited the larvae weight gain of Ectropis obliqua larvae and the lesions caused by Colletotrichum camelliae. Furthermore, the expression level of CsOPR3 was significantly upregulated in 5b-treated leaves. Meanwhile, 5b reduced the accumulation of eriodictyol 7-O-glucuronide (EDG) in tea plants, which was confirmed to promote the growth rate of E. obliqua larvae by artificial diet assay. In conclusion, our study proved that the exogenous application of 5b could induce the tea plant resistance both to herbivore E. obliqua and pathogen C. camelliae, and EDG was identified as one of the secondary metabolites that could influence the growth rate of E. obliqua, but it did not directly influence the infection of C. camelliae in vitro. Further research should be carried out to clarify the mechanism through which 5b induces tea plant resistance to C. camelliae.


Subject(s)
Camellia sinensis/drug effects , Colletotrichum/pathogenicity , Cyclopentanes/chemistry , Disease Resistance/drug effects , Isoleucine/analogs & derivatives , Lactones/pharmacology , Moths/pathogenicity , Plant Diseases/prevention & control , Animals , Camellia sinensis/genetics , Camellia sinensis/immunology , Camellia sinensis/microbiology , Disease Resistance/immunology , Gene Expression Profiling , Gene Expression Regulation, Plant , Herbivory , Isoleucine/chemistry , Larva/drug effects , Larva/growth & development , Larva/immunology , Larva/microbiology , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism
9.
Int J Mol Sci ; 20(19)2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31554174

ABSTRACT

Plants have a variety of ways to defend themselves against pathogens. A commonly used model of the plant immune system is divided into a general response triggered by pathogen-associated molecular patterns (PAMPs), and a specific response triggered by effectors. The first type of response is known as PAMP triggered immunity (PTI), and the second is known as effector-triggered immunity (ETI). To obtain better insight into changes of protein abundance in immunity reactions, we performed a comparative proteomic analysis of a PTI and two different ETI models (relating to Phytophthora infestans) in potato. Several proteins showed higher abundance in all immune reactions, such as a protein annotated as sterol carrier protein 2 that could be interesting since Phytophthora species are sterol auxotrophs. RNA binding proteins also showed altered abundance in the different immune reactions. Furthermore, we identified some PTI-specific changes of protein abundance, such as for example, a glyoxysomal fatty acid beta-oxidation multifunctional protein and a MAR-binding protein. Interestingly, a lysine histone demethylase was decreased in PTI, and that prompted us to also analyze protein methylation in our datasets. The proteins upregulated explicitly in ETI included several catalases. Few proteins were regulated in only one of the ETI interactions. For example, histones were only downregulated in the ETI-Avr2 interaction, and a putative multiprotein bridging factor was only upregulated in the ETI-IpiO interaction. One example of a methylated protein that increased in the ETI interactions was a serine hydroxymethyltransferase.


Subject(s)
Plant Immunity , Plant Leaves/immunology , Plant Leaves/metabolism , Plant Proteins/metabolism , Proteomics , Solanum tuberosum/immunology , Solanum tuberosum/metabolism , Computational Biology/methods , Databases, Genetic , Mass Spectrometry , Methylation , Protein Interaction Mapping , Proteome
10.
J Agric Food Chem ; 67(19): 5465-5476, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30916943

ABSTRACT

Leaf herbivory on tea plants ( Camellia sinensis) by tea geometrids ( Ectropis oblique) severely threaten the yield and quality of tea. In previous work, we found that local defense response was induced in damaged leaves by geometrids at the transcriptome level. Here, we investigated the systemic response triggered in undamaged roots and the potential role of roots in response to leaf herbivory. Comparative transcriptome analysis and carbohydrate dynamics indicated that leaf herbivory activated systemic carbon reallocation to enhance resource investment for local secondary metabolism. The crucial role of jasmonic acid and the involvement of other potential hormone signals for local and systemic signaling networks were supported by phytohormone quantification and dynamic expression analysis of phytohormone-related genes. This work represents a deep understanding of the interaction of tea plants and geometrids from the perspective of systems biology and reveals that tea plants have evolved an intricate root-mediated resource-based resistance strategy to cope with geometrid attack.


Subject(s)
Camellia sinensis/genetics , Moths/physiology , Phytochemicals/chemistry , Plant Proteins/genetics , Animals , Camellia sinensis/chemistry , Camellia sinensis/immunology , Camellia sinensis/parasitology , Cyclopentanes/immunology , Feeding Behavior , Gene Expression Profiling , Gene Expression Regulation, Plant , Herbivory/physiology , Oxylipins/immunology , Plant Growth Regulators/immunology , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/parasitology , Plant Proteins/chemistry , Plant Proteins/immunology , Plant Roots/genetics , Plant Roots/immunology , Transcriptome
11.
Planta ; 249(3): 617-633, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30689053

ABSTRACT

Ficus species have adapted to diverse environments and pests by developing physical or chemical protection strategies. Physical defences are based on the accumulation of minerals such as calcium oxalate crystals, amorphous calcium carbonates and silica that lead to tougher plants. Additional cellular structures such as non-glandular trichomes or laticifer cells make the leaves rougher or sticky upon injury. Ficus have also established structures that are able to produce specialized metabolites (alkaloids, terpenoids, and phenolics) or proteins (proteases, protease inhibitors, oxidases, and chitinases) that are toxic to predators. All these defence mechanisms are distributed throughout the plant and can differ depending on the genotype, the stage of development or the environment. In this review, we present an overview of these strategies and discuss how these complementary mechanisms enable effective and flexible adaptation to numerous hostile environments.


Subject(s)
Ficus/physiology , Ficus/immunology , Ficus/microbiology , Ficus/parasitology , Herbivory , Plant Leaves/immunology , Plant Leaves/physiology
12.
PLoS One ; 13(11): e0207253, 2018.
Article in English | MEDLINE | ID: mdl-30412603

ABSTRACT

Plant immunity has mainly been studied under controlled conditions, limiting our knowledge regarding the regulation of immunity under natural conditions where plants grow in association with multiple microorganisms. Plant pathology theory, based on laboratory data, predicts complex biochemical plant-pathogen interactions leading to coevolution of pathogen infectivity vs. plant recognition of microbes in multiple layers over time. However, plant immunity is currently not evaluated in relation to ecological time-scales and field conditions. Here we report status of immunity in plants without visible disease symptoms in wild populations of nightshades, Solanum dulcamara and Solanum nigrum, and in agricultural fields of potato, Solanum tuberosum. We analysed presence of pathogenesis-related proteins in over 500 asymptomatic leaf samples collected in the field in June, July and August over three years. Pathogenesis-related proteins were present in only one-third of the collected samples, suggesting low activity of the immune system. We could also detect an increase in pathogenesis-related proteins later in the growing season, particularly in S. tuberosum. Our findings, based on pathogenesis-related protein markers, indicate major gaps in our knowledge regarding the status and regulation of plant immunity under field conditions.


Subject(s)
Plant Immunity , Plant Proteins/immunology , Plant Proteins/metabolism , Solanum/immunology , Solanum/metabolism , Crops, Agricultural/genetics , Crops, Agricultural/immunology , Crops, Agricultural/metabolism , Plant Immunity/genetics , Plant Leaves/immunology , Plant Leaves/metabolism , Plant Proteins/genetics , RNA, Plant/genetics , RNA, Plant/metabolism , Sequence Analysis, RNA , Solanum/genetics , Solanum nigrum/genetics , Solanum nigrum/immunology , Solanum nigrum/metabolism , Solanum tuberosum/genetics , Solanum tuberosum/immunology , Solanum tuberosum/metabolism , Sweden
13.
Plant Sci ; 270: 47-57, 2018 May.
Article in English | MEDLINE | ID: mdl-29576086

ABSTRACT

Ubiquitination is a post-translational modification that plays a crucial role during the regulation of plant immune signalling. The plant ATL family consists of a large number of putative RING type ubiquitin ligases. We show that potato ATL family gene StRFP1 and its orthologue NbATL60 from N. benthamiana both respond to Phytophthora infestans culture filtrate (CF) and flg22 induction. StRFP1 positively regulates immunity against P. infestans in potato. Ectopic transient expression of StRFP1 or expression of NbATL60 in N. benthamiana also enhances late blight resistance. By contrast, silencing NbATL60 in N. benthamiana reduces late blight resistance and leads to plant growth inhibition. Both StRFP1 and NbATL60 localize to the plasma membrane and intracellular puncta and possess E3 Ligase activity in vitro. Furthermore we demonstrate that the RING finger domain mutants of StRFP1 and NbATL60 lost E3 ligase activity and fail to suppress P. infestans colonization in N. benthamiana, indicating that E3 ligase activity is critical for StRFP1 and NbATL60 to regulate immunity. Overexpression or RNA interference of StRFP1 in transgenic potato led to increased or decreased expression of PTI maker genes (WRKY7, WRKY8, ACRE31 and Pti5) respectively. Similarly silencing of NbATL60 in N. benthamiana decreases expression of these PTI marker genes. Moreover, VIGS of NbATL60 in N. benthamiana did not compromise P. infestans PAMP INF1 or R2/Avr2, R3a/AVR3a, Rx/Cp and Pto/AvrPto triggered cell death. These results indicate that ATL genes StRFP1 and NbATL60 contribute to basal immunity (PTI) in Solanaceous plants.


Subject(s)
Disease Resistance , Nicotiana/genetics , Phytophthora infestans/physiology , Plant Diseases/immunology , Plant Proteins/metabolism , Solanum tuberosum/genetics , Cell Death , Gene Expression , Genes, Reporter , Pathogen-Associated Molecular Pattern Molecules , Phenotype , Plant Diseases/microbiology , Plant Leaves/cytology , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/microbiology , Plant Proteins/genetics , Plants, Genetically Modified , RNA Interference , Seedlings/cytology , Seedlings/genetics , Seedlings/immunology , Seedlings/microbiology , Solanum tuberosum/cytology , Solanum tuberosum/immunology , Solanum tuberosum/microbiology , Nicotiana/cytology , Nicotiana/immunology , Nicotiana/microbiology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
15.
Plant Mol Biol ; 95(4-5): 411-423, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28980117

ABSTRACT

KEY MESSAGE: Exploration with high throughput leaf metabolomics along with functional genomics in wild tomato unreveal potential role of steroidal glyco-alkaloids and phenylpropanoids during early blight resistance. Alternaria solani severely affects tomato (Solanum lycopersicum L.) yield causing early blight (EB) disease in tropical environment. Wild relative, Solanum arcanum Peralta could be a potential source of EB resistance; however, its underlying molecular mechanism largely remains unexplored. Hence, non-targeted metabolomics was applied on resistant and susceptible S. arcanum accessions upon A. solani inoculation to unravel metabolic dynamics during different stages of disease progression. Total 2047 potential metabolite peaks (mass signals) were detected of which 681 and 684 metabolites revealed significant modulation and clear differentiation in resistant and susceptible accessions, respectively. Majority of the EB-triggered metabolic changes were active from steroidal glycol-alkaloid (SGA), lignin and flavonoid biosynthetic pathways. Further, biochemical and gene expression analyses of key enzymes from these pathways positively correlated with phenotypic variation in the S. arcanum accessions indicating their potential role in EB. Additionally, transcription factors regulating lignin biosynthesis were also up-regulated in resistant plants and electrophoretic mobility shift assay revealed sequence-specific binding of rSaWRKY1 with MYB20 promoter. Moreover, transcript accumulation of key genes from phenylpropanoid and SGA pathways along with WRKY and MYB in WRKY1 transgenic tomato lines supported above findings. Overall, this study highlights vital roles of SGAs as phytoalexins and phenylpropanoids along with lignin accumulation unrevealing possible mechanistic basis of EB resistance in wild tomato.


Subject(s)
Alkaloids/metabolism , Alternaria/physiology , Gene Expression Regulation, Plant , Metabolomics , Plant Diseases/immunology , Solanum/metabolism , Alkaloids/chemistry , Biosynthetic Pathways , Disease Resistance , Flavonoids/metabolism , Glycols/chemistry , Glycols/metabolism , Lignin/metabolism , Phenotype , Phytosterols/chemistry , Phytosterols/metabolism , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Saponins/metabolism , Secondary Metabolism , Solanum/genetics , Solanum/immunology , Solanum/microbiology , Transcription Factors/genetics , Transcription Factors/metabolism
16.
Plant Physiol ; 175(1): 498-510, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28747428

ABSTRACT

Plants have evolved a limited repertoire of NB-LRR disease resistance (R) genes to protect themselves against myriad pathogens. This limitation is thought to be counterbalanced by the rapid evolution of NB-LRR proteins, as only a few sequence changes have been shown to be sufficient to alter resistance specificities toward novel strains of a pathogen. However, little is known about the flexibility of NB-LRR R genes to switch resistance specificities between phylogenetically unrelated pathogens. To investigate this, we created domain swaps between the close homologs Gpa2 and Rx1, which confer resistance in potato (Solanum tuberosum) to the cyst nematode Globodera pallida and Potato virus X, respectively. The genetic fusion of the CC-NB-ARC of Gpa2 with the LRR of Rx1 (Gpa2CN/Rx1L) results in autoactivity, but lowering the protein levels restored its specific activation response, including extreme resistance to Potato virus X in potato shoots. The reciprocal chimera (Rx1CN/Gpa2L) shows a loss-of-function phenotype, but exchange of the first three LRRs of Gpa2 by the corresponding region of Rx1 was sufficient to regain a wild-type resistance response to G. pallida in the roots. These data demonstrate that exchanging the recognition moiety in the LRR is sufficient to convert extreme virus resistance in the leaves into mild nematode resistance in the roots, and vice versa. In addition, we show that the CC-NB-ARC can operate independently of the recognition specificities defined by the LRR domain, either aboveground or belowground. These data show the versatility of NB-LRR genes to generate resistance to unrelated pathogens with completely different lifestyles and routes of invasion.


Subject(s)
Disease Resistance/genetics , Plant Diseases/immunology , Plant Proteins/metabolism , Potexvirus/physiology , Solanum tuberosum/genetics , Tylenchoidea/physiology , Animals , Leucine-Rich Repeat Proteins , Loss of Function Mutation , Phenotype , Plant Diseases/parasitology , Plant Diseases/virology , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/parasitology , Plant Leaves/virology , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/immunology , Plant Roots/parasitology , Plant Roots/virology , Plant Shoots/genetics , Plant Shoots/immunology , Plant Shoots/parasitology , Plant Shoots/virology , Protein Domains , Proteins/genetics , Proteins/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Recombinant Fusion Proteins , Solanum tuberosum/immunology , Solanum tuberosum/parasitology , Solanum tuberosum/virology
17.
Vaccine ; 35(34): 4421-4429, 2017 08 03.
Article in English | MEDLINE | ID: mdl-28684164

ABSTRACT

The success of cancer vaccines is limited as most of them induce corrupted CD8+ T cell memory populations. We reported earlier that a natural immunomodulator, neem leaf glycoprotein (NLGP), therapeutically restricts tumor growth in a CD8+ T cell-dependent manner. Here, our objective is to study whether memory CD8+ T cell population is generated in sarcoma hosts after therapeutic NLGP treatment and their role in prevention of post-surgery tumor recurrence, in comparison to the immunostimulatory metronomic cyclophosphamide (CTX) treatment. We found that therapeutic NLGP and CTX treatment generates central memory CD8+ T (TCM) cells with characteristic CD44+CD62LhighCCR7highIL-2high phenotypes. But these TCM cells are functionally impaired to prevent re-appearance of tumors along with compromised proliferative, IL-2 secretive and cytotoxic status. This might be due to the presence of tumor load, even a small one in the host, which serves as a persistent source of tumor antigens thereby corrupting the TCM cells so generated. Surgical removal of the persisting tumors from the host restored the functional characteristics of memory CD8+ T cells, preventing tumor recurrence after surgery till end of the experiment. Moreover, we observed that generation of superior TCM cells in NLGP treated surgically removed tumor hosts is related to the activation of Wnt signalling in memory CD8+ T cells with concomitant inhibition of GSK-3ß and stabilisation of ß-catenin, which ultimately activates transcription of Wnt target genes, like, eomesodermin, a signature molecule of CD8+ TCM cells.


Subject(s)
Azadirachta/chemistry , CD8-Positive T-Lymphocytes/immunology , Glycoproteins/immunology , Immunologic Memory , Neoplasm Recurrence, Local/prevention & control , Plant Extracts/immunology , Sarcoma/immunology , Animals , Antigens, Neoplasm , Cell Line, Tumor , Cyclophosphamide/administration & dosage , Cyclophosphamide/immunology , Cyclophosphamide/therapeutic use , Cytotoxicity, Immunologic , Glycoproteins/therapeutic use , Immunotherapy , Mice , Neoplasm Recurrence, Local/immunology , Neoplasm Recurrence, Local/surgery , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Plant Leaves/chemistry , Plant Leaves/immunology , Sarcoma/prevention & control , Sarcoma/surgery , Wnt Signaling Pathway , beta Catenin/genetics
18.
Planta Med ; 83(18): 1412-1419, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28575911

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, vomiting, dehydration, weight loss, and high mortality rate in neonatal piglets. Porcine epidemic diarrhea (PED) has been reported in Europe, America, and Asia including Thailand. The disease causes substantial losses to the swine industry in many countries. Presently, there is no effective PEDV vaccine available. In this study, we developed a plant-produced monoclonal antibody (mAb) 2C10 as a prophylactic candidate to prevent the PEDV infection. Recently, plant expression systems have gained interest as an alternative for the production of antibodies because of many advantages, such as low production cost, lack of human and animal pathogen, large scalability, etc. The 2C10 mAb was transiently expressed in Nicotiana benthamiana and lettuce using geminiviral vector. After purification by protein A affinity chromatography, the antibody was tested for the binding and neutralizing activity against PEDV. Our result showed that the plant produced 2C10 mAb can bind to the virus and also inhibit PEDV infection in vitro. These results show excellent potential for a plant-expressed 2C10 as a PEDV prophylaxis and a diagnostic for PEDV infection.


Subject(s)
Antibodies, Monoclonal/immunology , Coronavirus Infections/veterinary , Lactuca/immunology , Nicotiana/immunology , Porcine epidemic diarrhea virus/immunology , Swine Diseases/prevention & control , Amino Acid Sequence , Animals , Antibodies, Monoclonal/genetics , Chlorocebus aethiops , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Lactuca/genetics , Lactuca/virology , Molecular Farming , Neutralization Tests/veterinary , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/virology , Plantibodies/genetics , Plantibodies/immunology , Porcine epidemic diarrhea virus/genetics , Swine , Swine Diseases/immunology , Swine Diseases/virology , Nicotiana/genetics , Nicotiana/virology , Vero Cells
19.
J Exp Bot ; 68(5): 899-913, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28199670

ABSTRACT

Lesion-mimic mutants are useful to dissect programmed cell death and defense-related pathways in plants. Here we identified a new rice lesion-mimic mutant, spotted leaf 33 (spl33) and cloned the causal gene by a map-based cloning strategy. SPL33 encodes a eukaryotic translation elongation factor 1 alpha (eEF1A)-like protein consisting of a non-functional zinc finger domain and three functional EF-Tu domains. spl33 exhibited programmed cell death-mediated cell death and early leaf senescence, as evidenced by analyses of four histochemical markers, namely H2O2 accumulation, cell death, callose accumulation and TUNEL-positive nuclei, and by four indicators, namely loss of chlorophyll, breakdown of chloroplasts, down-regulation of photosynthesis-related genes, and up-regulation of senescence-associated genes. Defense responses were induced in the spl33 mutant, as shown by enhanced resistance to both the fungal pathogen Magnaporthe oryzae and the bacterial pathogen Xanthomonas oryzae pv. oryzae and by up-regulation of defense response genes. Transcriptome analysis of the spl33 mutant and its wild type provided further evidence for the biological effects of loss of SPL33 function in cell death, leaf senescence and defense responses in rice. Detailed analyses showed that reactive oxygen species accumulation may be the cause of cell death in the spl33 mutant, whereas uncontrolled activation of multiple innate immunity-related receptor genes and signaling molecules may be responsible for the enhanced disease resistance observed in spl33. Thus, we have demonstrated involvement of an eEF1A-like protein in programmed cell death and provided a link to defense responses in rice.


Subject(s)
Apoptosis , Oryza/physiology , Plant Proteins/genetics , Amino Acid Sequence , Cloning, Molecular , DNA, Complementary/genetics , DNA, Complementary/metabolism , Organ Specificity , Oryza/genetics , Oryza/immunology , Phylogeny , Plant Immunity , Plant Leaves/immunology , Plant Leaves/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL