Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Protein Pept Lett ; 29(6): 555-566, 2022.
Article in English | MEDLINE | ID: mdl-35538837

ABSTRACT

BACKGROUND: Garlic (Allium sativum) from the family Amaryllidaceae is widely used in culinary and is reported to have potential anticancer, anti-diabetic, antimicrobial, and cardioprotective activities. Allium sativum agglutinin (ASA) is a bulb-type lectin (BTL) domaincontaining lectin isolated from garlic and has been studied for its various biological functions. Previous studies have reported the anti-cancer effects of ASA on histiocytic lymphoma (U937), promyelocytic leukemia (HL60), and oral cancer (KB). METHODS: In this study, we have purified and characterized ASA and evaluated it for its anticancer effects on other cancer cell lines. MTT assay and FACS analysis was done to corroborate the anticancer findings against cervical (HeLa) and lung cancer (A549) cell lines. RESULTS: IC50 value of 37 µg/ml in HeLa and a weak activity (26.4 ± 1.9% cellular inhibition at 100µg/ml treatment) in A549 were found in the MTT assay. FACS analysis further corroborated these findings and showed the apoptotic effects of ASA in these cell lines. CONCLUSION: Anticancer activity for members of bulb-type lectin (BTL) domain-containing lectins has been widely reported, and we hope that our study forms a basis for the development of ASA as a therapeutic agent.


Subject(s)
Biological Products , Garlic , Agglutinins/pharmacology , Antioxidants , Garlic/metabolism , Lectins , Plant Lectins/metabolism , Plant Lectins/pharmacology
2.
Biomed Pharmacother ; 146: 112507, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34891122

ABSTRACT

Lectins or clusters of carbohydrate-binding proteins of non-immune origin are distributed chiefly in the Plantae. Lectins have potent anti-infectivity properties for several RNA viruses including SARS-CoV-2. The primary purpose of this review is to review the ability of lectins mediated potential biotherapeutic and bioprophylactic strategy against coronavirus causing COVID-19. Lectins have binding affinity to the glycans of SARS-COV-2 Spike glycoprotein that has N-glycosylation sites. Apart from this, the complement lectin pathway is a "first line host defense" against the viral infection that is activated by mannose-binding lectins. Mannose-binding lectins deficiency in serum influences innate immunity of the host and facilitates infectious diseases including COVID-19. Our accumulated evidence obtained from scientific databases particularly PubMed and Google Scholar databases indicate that mannose-specific/mannose-binding lectins (MBL) have potent efficacies like anti-infectivity, complement cascade induction, immunoadjuvants, DC-SIGN antagonists, or glycomimetic approach, which can prove useful in the strategy of COVID-19 combat along with the glycobiological aspects of SARS-CoV-2 infections and antiviral immunity. For example, plant-derived mannose-specific lectins BanLac, FRIL, Lentil, and GRFT from red algae can inhibit and neutralize SARS-CoV-2 infectivity, as confirmed with in-vitro, in-vivo, and in-silico assessments. Furthermore, Bangladesh has a noteworthy resource of antiviral medicinal plants as well as plant lectins. Intensifying research on the antiviral plant lectins, adopting a glyco-biotechnological approach, and with deeper insights into the "glycovirological" aspects may result in the designing of alternative and potent blueprints against the 21st century's biological pandemic of SARS-CoV-2 causing COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , Biological Therapy/methods , COVID-19/prevention & control , Disease Eradication/methods , Plant Lectins/therapeutic use , SARS-CoV-2/drug effects , Animals , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , Biological Therapy/trends , COVID-19/epidemiology , Disease Eradication/trends , Humans , Plant Lectins/isolation & purification , Plant Lectins/pharmacology
3.
Future Microbiol ; 16: 1289-1301, 2021 11.
Article in English | MEDLINE | ID: mdl-34689597

ABSTRACT

COVID-19, caused by the SARS-CoV-2 outbreak, has resulted in a massive global health crisis. Bioactive molecules extracted or synthesized using starting material obtained from marine species, including griffithsin, plitidepsin and fingolimod are in clinical trials to evaluate their anti-SARS-CoV-2 and anti-HIV efficacies. The current review highlights the anti-SARS-CoV-2 potential of marine-derived phytochemicals explored using in silico, in vitro and in vivo models. The current literature suggests that these molecules have the potential to bind with various key drug targets of SARS-CoV-2. In addition, many of these agents have anti-inflammatory and immunomodulatory potentials and thus could play a role in the attenuation of COVID-19 complications. Overall, these agents may play a role in the management of COVID-19, but further preclinical and clinical studies are still required to establish their role in the mitigation of the current viral pandemic.


Subject(s)
Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Oceans and Seas , SARS-CoV-2/drug effects , Alkaloids/pharmacology , Anti-Inflammatory Agents , Antiviral Agents/chemistry , Depsipeptides , Fingolimod Hydrochloride/chemistry , Fingolimod Hydrochloride/pharmacology , Humans , Lectins , Marine Biology , Molecular Docking Simulation , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Phycocyanin/pharmacology , Phytochemicals , Plant Lectins/chemistry , Plant Lectins/pharmacology , Polyphenols/pharmacology , Polysaccharides/pharmacology , Seaweed , Sesquiterpenes/pharmacology
4.
Emerg Microbes Infect ; 10(1): 1519-1529, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34278967

ABSTRACT

The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutated continuously and newly emerging variants escape from antibody-mediated neutralization raised great concern. S protein is heavily glycosylated and the glycosylation sites are relatively conserved, thus glycans on S protein surface could be a target for the development of anti-SARS-CoV-2 strategies against variants. Here, we collected 12 plant-derived lectins with different carbohydrate specificity and evaluated their anti-SARS-CoV-2 activity against mutant strains and epidemic variants using a pseudovirus-based neutralization assay. The Lens culinaris-derived lentil lectin which specifically bind to oligomannose-type glycans and GlcNAc at the non-reducing end terminus showed most potent and broad antiviral activity against a panel of mutant strains and variants, including the artificial mutants at N-/O-linked glycosylation site, natural existed amino acid mutants, as well as the epidemic variants B.1.1.7, B.1.351, and P.1. Lentil lectin also showed antiviral activity against SARS-CoV and MERS-CoV. We found lentil lectin could block the binding of ACE2 to S trimer and inhibit SARS-CoV-2 at the early steps of infection. Using structural information and determined N-glycan profile of S trimer, taking together with the carbohydrate specificity of lentil lectin, we provide a basis for the observed broad spectrum anti-SARS-CoV-2 activity. Lentil lectin showed weak haemagglutination activity at 1 mg/mL and no cytotoxicity activity, and no weight loss was found in single injection mouse experiment. This report provides the first evidence that lentil lectin strongly inhibit infection of SARS-COV-2 variants, which should provide valuable insights for developing future anti-SARS-CoV-2 strategies.


Subject(s)
Antiviral Agents/pharmacology , Lens Plant/chemistry , Plant Extracts/pharmacology , Plant Lectins/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemistry , Humans , Mice , Mice, Inbred BALB C , Plant Extracts/chemistry , Plant Lectins/chemistry , SARS-CoV-2/growth & development , Seeds/chemistry
5.
Oxid Med Cell Longev ; 2020: 1042451, 2020.
Article in English | MEDLINE | ID: mdl-33014267

ABSTRACT

Apoptosis, a well-known pattern of programmed cell death, occurs in multicellular organisms not only for controlling tissue homeostasis but also for getting rid of severely damaged cells in order to protect the redundant growth of abnormal cells undergoing cancerous cells. The epidermis of the human skin, composed largely of keratinocytes (KCs), is renewed continuously. Therefore, KCs apoptosis plays a critical role in the maintenance of epidermis structure and function. However, regulated cell death can be disturbed by environmental factors especially ultraviolet radiation (UV) B, leading to the formation of sunburn cells (KCs undergoing UVB-induced apoptosis) and impairing the skin integrity. In the present study, we firstly reported the potential of the natural artocarpin (NAR) to regulate UVB-induced human KCs apoptosis. The NAR showed antilipid peroxidation with an IC50 value of 18.2 ± 1.6 µg/mL, according to TBARS assay while the IC50 value of trolox, a well-known antioxidant, was 7.3 ± 0.8 µg/mL. For cell-based studies, KCs were pretreated with 3.1 µg/mL of the NAR for 24 hr and then exposed to UVB at 55 mJ/cm2. Our data indicated that the NAR pretreatment reduces UVB-induced oxidative stress by scavenging free radicals and nitric oxide and therefore prevents reactive oxygen species (ROS) and reactive nitrogen species- (RNS-) mediated apoptosis. The NAR pretreatment has been shown also to reduce the UVB-induced cyclobutane pyrimidine dimer (CPD) lesions by absorbing UVB radiation and regulating the cell cycle phase. Additionally, the NAR pretreatment was found to modulate the expression of cleaved caspases-3 and 8 that trigger different signalling cascades leading to apoptosis. Thus, these results provide a basis for the investigation of the photoprotective effect of the NAR isolated from A. altilis heartwood and suggest that it can be potentially used as an agent against UVB-induced skin damages.


Subject(s)
Apoptosis/drug effects , Mannose-Binding Lectins/chemistry , Plant Lectins/chemistry , Radiation-Protective Agents/pharmacology , Ultraviolet Rays , Antioxidants/chemistry , Apoptosis/radiation effects , Artocarpus/chemistry , Artocarpus/metabolism , Caspase 3/metabolism , Cell Cycle Checkpoints/drug effects , Cell Cycle Checkpoints/radiation effects , Cell Line , Cell Survival/drug effects , Cell Survival/radiation effects , Chromatography, High Pressure Liquid , Humans , Keratinocytes/cytology , Keratinocytes/metabolism , Mannose-Binding Lectins/isolation & purification , Mannose-Binding Lectins/pharmacology , Nitric Oxide/metabolism , Oxidative Stress/drug effects , Plant Extracts/chemistry , Plant Lectins/isolation & purification , Plant Lectins/pharmacology , Radiation-Protective Agents/chemistry , Radiation-Protective Agents/isolation & purification , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism
6.
Arq. bras. cardiol ; 114(6): 1029-1037, Jun., 2020. graf
Article in Portuguese | LILACS, SES-SP | ID: biblio-1131245

ABSTRACT

Resumo Fundsamento As sementes de Moringa oleifera , que são utilizadas para clarificação de água, contêm uma lectina chamada WSMoL que tem mostrado atividade antibacteriana e imunomoduladora in vitro . Devido ao seu valor nutritivo e potencial terapêutico, as folhas e as sementes dessa árvore são consumidas em algumas comunidades. Algumas lectinas de plantas não são tóxicas para mamíferos, mas tem sido relatado que outras são prejudiciais quando ingeridas ou administradas por outros meios. Objetivo Como um dos passos necessários para determinar a segurança de WSMoL, nós avaliamos os possíveis efeitos cardiotóxicos desta proteína purificada. Métodos Durante 21 dias consecutivos, a WSMoL foi administrada a camundongos por gavagem. Foram investigadas as funções eletrofisiológicas, mecânicas e metabólicas in vivo e ex vivo por meio de registros eletrocardiográficos, ressonância magnética nuclear e respirometria de alta resolução. Resultados O tratamento com WSMoL não induziu alterações nos níveis de glicose no sangue ou peso corporal em comparação com o grupo controle. Adicionalmente, as relações peso cardíaco/peso corporal e peso cardíaco/comprimento tibial estavam semelhantes em ambos os grupos. A ingestão de lectina também não modificou a tolerância à glicose ou resistência à insulina. Não foram observadas alterações nos parâmetros eletrocardiográficos ou na duração do potencial de ação cardíaco. Os corações dos camundongos dos grupos controle e WSMoL mostraram função ventricular esquerda preservada. Além disso, a WSMoL não induziu alterações na função mitocondrial (em todos os casos, p > 0,05). Conclusões A administração de WSMoL demonstrou ter um perfil de segurança cardíaca. Estes resultados contribuem à avaliação de segurança do uso de sementes de M. oleifera para tratar água, visto que essa lectina está presente na preparação empregada por algumas populações com esse fim. (Arq Bras Cardiol. 2020; [online].ahead print, PP.0-0)


Abstract Background Moringa oleifera seeds, which are used for water clarification, contain a lectin named WSMoL which has shown in vitro antibacterial and immunomodulatory activity. Due to their nutritional value and therapeutic potential, the leaves and seeds of this tree are eaten in some communities. Some plant lectins are non-toxic to mammals, but others have been reported to be harmful when ingested or administered by other means. Objective As one of the steps needed to define the safety of WSMoL, we evaluated possible cardiotoxic effects of this purified protein. Methods: WSMoL was administered for 21 consecutive days to mice by gavage. Electrophysiological, mechanical, and metabolic cardiac functions were investigated by in vivo and ex vivo electrocardiographic recordings, nuclear magnetic resonance, and high-resolution respirometry. Results The treatment with WSMoL did not induce changes in blood glucose levels or body weight in comparison with control group. Moreover, the heart weight/body weight and heart weight/tibia length ratios were similar in both groups. Lectin ingestion also did not modify glucose tolerance or insulin resistance. No alterations were observed in electrocardiographic parameters or cardiac action potential duration. The heart of mice from the control and WSMoL groups showed preserved left ventricular function. Furthermore, WSMoL did not induce changes in mitochondrial function (in all cases, p > 0.05). Conclusions The administration of WSMoL demonstrated a cardiac safety profile. These results contribute to the safety evaluation of using M. oleifera seeds to treat water, since this lectin is present in the preparation employed by some populations to this end. (Arq Bras Cardiol. 2020; [online].ahead print, PP.0-0)


Subject(s)
Animals , Mice , Seeds/chemistry , Plant Extracts/pharmacology , Moringa oleifera/chemistry , Plant Lectins/pharmacology , Water , Plant Extracts/chemistry , Plant Lectins/isolation & purification
7.
J Ethnopharmacol ; 259: 112952, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32416247

ABSTRACT

ETHNOPHARMACOLOGY RELEVANCE: Schinus terebinthifolia Raddi leaves have been used in folk medicine due to several properties, including antitumor and analgesic effects. The variable efficacy and adverse effects of analgesic drugs have motivated the search for novel antinociceptive agents. It has been reported that the S. terebinthifolia leaf lectin (SteLL) has antitumor activity against sarcoma 180 in mice. AIM OF THE STUDY: This work aimed to evaluate whether SteLL would reduce cancer pain using an orthotopic tumor model. MATERIALS AND METHODS: A sarcoma 180 cell suspension was inoculated into the right hind paws of mice, and the treatments (150 mM NaCl, negative control; 10 mg/kg morphine, positive control; or SteLL at 1 and 2 mg/kg) were administered intraperitoneally 24 h after cell inoculation up to 14 days. Spontaneous nociception, mechanical hyperalgesia, and hot-plate tests were performed. Further, the volume and weight of the tumor-bearing paws were measured. RESULTS: SteLL (2 mg/kg) improved limb use during ambulation. The lectin (1 and 2 mg/kg) also inhibited mechanical hyperalgesia and increased the latency time during the hot-plate test. Naloxone was found to reverse this effect, indicating the involvement of opioid receptors. The tumor-bearing paws of mice treated with SteLL exhibited lower volume and weight. CONCLUSION: SteLL reduced hyperalgesia due to sarcoma 180 in the paws of mice, and this effect can be related to its antitumor action.


Subject(s)
Anacardiaceae , Analgesics/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Cancer Pain/prevention & control , Hyperalgesia/prevention & control , Nociceptive Pain/prevention & control , Plant Leaves , Plant Lectins/pharmacology , Sarcoma 180/drug therapy , Anacardiaceae/chemistry , Analgesics/isolation & purification , Animals , Antineoplastic Agents, Phytogenic/isolation & purification , Cancer Pain/etiology , Cancer Pain/metabolism , Cancer Pain/physiopathology , Female , Hyperalgesia/etiology , Hyperalgesia/metabolism , Hyperalgesia/physiopathology , Mice , Nociception/drug effects , Nociceptive Pain/etiology , Nociceptive Pain/metabolism , Nociceptive Pain/physiopathology , Pain Threshold/drug effects , Plant Leaves/chemistry , Plant Lectins/isolation & purification , Reaction Time/drug effects , Receptors, Opioid/metabolism , Sarcoma 180/complications , Sarcoma 180/pathology , Signal Transduction , Time Factors
8.
Arq Bras Cardiol ; 114(6): 1029-1037, 2020 06.
Article in English, Portuguese | MEDLINE | ID: mdl-32187285

ABSTRACT

Background Moringa oleifera seeds, which are used for water clarification, contain a lectin named WSMoL which has shown in vitro antibacterial and immunomodulatory activity. Due to their nutritional value and therapeutic potential, the leaves and seeds of this tree are eaten in some communities. Some plant lectins are non-toxic to mammals, but others have been reported to be harmful when ingested or administered by other means. Objective As one of the steps needed to define the safety of WSMoL, we evaluated possible cardiotoxic effects of this purified protein. Methods: WSMoL was administered for 21 consecutive days to mice by gavage. Electrophysiological, mechanical, and metabolic cardiac functions were investigated by in vivo and ex vivo electrocardiographic recordings, nuclear magnetic resonance, and high-resolution respirometry. Results The treatment with WSMoL did not induce changes in blood glucose levels or body weight in comparison with control group. Moreover, the heart weight/body weight and heart weight/tibia length ratios were similar in both groups. Lectin ingestion also did not modify glucose tolerance or insulin resistance. No alterations were observed in electrocardiographic parameters or cardiac action potential duration. The heart of mice from the control and WSMoL groups showed preserved left ventricular function. Furthermore, WSMoL did not induce changes in mitochondrial function (in all cases, p > 0.05). Conclusions The administration of WSMoL demonstrated a cardiac safety profile. These results contribute to the safety evaluation of using M. oleifera seeds to treat water, since this lectin is present in the preparation employed by some populations to this end. (Arq Bras Cardiol. 2020; [online].ahead print, PP.0-0).


Subject(s)
Moringa oleifera/chemistry , Plant Extracts/pharmacology , Plant Lectins/pharmacology , Seeds/chemistry , Animals , Mice , Plant Extracts/chemistry , Plant Lectins/isolation & purification , Water
9.
Food Funct ; 11(2): 1624-1634, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32022058

ABSTRACT

α-Amylase inhibitors (α-AI) have great potential to treat obesity. In this study, an α-AI enriched extract (α-AIE) with a specific activity of 1027.1 ± 154.2 (U per mg protein) was prepared from white common bean (Phaseolus vulgaris L.) seeds. Its anti-obesity effect and gut microbiota modulation properties were verified in high-fat diet-induced obese rats. The intake of the α-AIE significantly reduced body weight gain and improved serum lipid levels (p < 0.05). In addition, rats fed the α-AIE diet exhibited higher total short-chain fatty-acid (SCFA) concentrations (p < 0.05) in their colonic contents. ß-Diversity analysis, principal component analysis and a Venn diagram showed that α-AIE administration changed the gut microbiota composition. At the phylum level, the relative abundances of Firmicutes and Proteobacteria decreased and the relative abundances of Bacteroidetes and Akkermansia increased. In addition, 89 operational taxonomic units (OTUs) significantly responding to the high-fat diet and 30 OTUs significantly responding to the α-AIE were identified. The OTUs enriched by the α-AIE were mainly assigned to putative SCFA-producing bacteria, including Bacteroides, Butyricoccus, Blautia and Eubacterium. Twenty-two OTUs were found to be significantly correlated with obesity indexes. Taken together, the present results suggest that the intake of the α-AIE attenuated obesity and modulated gut microbiota.


Subject(s)
Gastrointestinal Microbiome/drug effects , Obesity/metabolism , Plant Lectins/pharmacology , Animals , Anti-Obesity Agents/pharmacology , Diet, High-Fat , Disease Models, Animal , Male , Phaseolus/chemistry , Plant Extracts/pharmacology , Rats , Rats, Sprague-Dawley
10.
J Infect Dis ; 221(Supplement_4): S480-S492, 2020 May 11.
Article in English | MEDLINE | ID: mdl-32037447

ABSTRACT

Nipah virus (NiV) is a highly pathogenic zoonotic paramyxovirus that causes fatal encephalitis and respiratory disease in humans. There is currently no approved therapeutic for human use against NiV infection. Griffithsin (GRFT) is high-mannose oligosaccharide binding lectin that has shown in vivo broad-spectrum activity against viruses, including severe acute respiratory syndrome coronavirus, human immunodeficiency virus 1, hepatitis C virus, and Japanese encephalitis virus. In this study, we evaluated the in vitro antiviral activities of GRFT and its synthetic trimeric tandemer (3mG) against NiV and other viruses from 4 virus families. The 3mG had comparatively greater potency than GRFT against NiV due to its enhanced ability to block NiV glycoprotein-induced syncytia formation. Our initial in vivo prophylactic evaluation of an oxidation-resistant GRFT (Q-GRFT) showed significant protection against lethal NiV challenge in Syrian golden hamsters. Our results warrant further development of Q-GRFT and 3mG as potential NiV therapeutics.


Subject(s)
Antiviral Agents/pharmacology , Henipavirus Infections/drug therapy , Nipah Virus/drug effects , Plant Lectins/pharmacology , Virus Internalization/drug effects , Animals , Antiviral Agents/therapeutic use , Chlorocebus aethiops , Disease Models, Animal , Drug Evaluation, Preclinical , Female , HEK293 Cells , HeLa Cells , Henipavirus Infections/virology , Humans , Mesocricetus , Nipah Virus/isolation & purification , Plant Lectins/therapeutic use , Vero Cells
11.
Protein Expr Purif ; 170: 105574, 2020 06.
Article in English | MEDLINE | ID: mdl-31978534

ABSTRACT

BACKGROUND: Lectins are known to possess interesting biological properties such as anti microbial, nematicidal, anti tumor and anti viral activities. Lantana camara from verbenaceae family is a medicinal plant known for possessing anti oxidant and anticancer activities. Since anticancer activity is reported in plant lectins, leaves of Lantana camara was used to check the presence of lectin. METHODS AND RESULTS: Here we report the purification, characterization and biological properties of a lectin from Lantana camara (LCL) leaves. LCL was purified by ion exchange chromatography on CM-cellulose column followed by affinity chromatography on mucin coupled Sepharose 4B column and gel filtration chromatography on Superdex G75 column. LCL is a glycoprotein with 10% of the carbohydrate and is blood group non specific. SDS-PAGE analysis of affinity purified LCL showed two proteins with apparent molecular weight of 14.49 kDa and 17.4 kDa which were subsequently separated by Gel filtration chromatography on Superdex G75 column. Hapten inhibition studies of LCL revealed its highest affinity for Chitin, Milibiose, α-D-Methyl galactopyranoside and glycoproteins like mucin, asialomucin. LCL showed strong binding to human colon adenocarcinoma HT29 cells with MFI of 242 which was effectively blocked by 68.1 and 62.5% by both mucin and milibiose. LCL showed dose and time dependent growth inhibitory effects on HT29 cells with IC50 of 3.75  µg/ml at 48 h. LCL has potent antibacterial and anti fungal activity. CONCLUSION: LCL can be explored for its clinical potential.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Antineoplastic Agents/pharmacology , Lantana/chemistry , Plant Lectins/pharmacology , Anti-Bacterial Agents/isolation & purification , Antifungal Agents/isolation & purification , Antineoplastic Agents/isolation & purification , Chitin/chemistry , Chitin/metabolism , Chromatography, Affinity , Chromatography, Gel , Chromatography, Ion Exchange , Electrophoresis, Polyacrylamide Gel , Fungi/drug effects , Fungi/growth & development , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/growth & development , HT29 Cells , Humans , Melibiose/chemistry , Melibiose/metabolism , Methylgalactosides/chemistry , Methylgalactosides/metabolism , Microbial Sensitivity Tests , Mucins/chemistry , Mucins/metabolism , Plant Extracts/chemistry , Plant Leaves/chemistry , Plant Lectins/isolation & purification , Plants, Medicinal , Protein Binding
12.
Curr Protein Pept Sci ; 21(5): 497-506, 2020.
Article in English | MEDLINE | ID: mdl-31746293

ABSTRACT

Latex, a milky fluid found in several plants, is widely used for many purposes, and its proteins have been investigated by researchers. Many studies have shown that latex produced by some plant species is a natural source of biologically active compounds, and many of the hydrolytic enzymes are related to health benefits. Research on the characterization and industrial and pharmaceutical utility of latex has progressed in recent years. Latex proteins are associated with plants' defense mechanisms, against attacks by fungi. In this respect, there are several biotechnological applications of antifungal proteins. Some findings reveal that antifungal proteins inhibit fungi by interrupting the synthesis of fungal cell walls or rupturing the membrane. Moreover, both phytopathogenic and clinical fungal strains are susceptible to latex proteins. The present review describes some important features of proteins isolated from plant latex which presented in vitro antifungal activities: protein classification, function, molecular weight, isoelectric point, as well as the fungal species that are inhibited by them. We also discuss their mechanisms of action.


Subject(s)
Antifungal Agents/pharmacology , Chitinases/pharmacology , Latex/chemistry , Peptide Hydrolases/pharmacology , Peroxidases/pharmacology , Plant Lectins/pharmacology , Plant Proteins/pharmacology , Antifungal Agents/classification , Antifungal Agents/isolation & purification , Botrytis/drug effects , Botrytis/growth & development , Candida albicans/drug effects , Candida albicans/growth & development , Chitinases/classification , Chitinases/isolation & purification , Chitinases/physiology , Fusarium/drug effects , Fusarium/growth & development , Isoelectric Point , Microbial Sensitivity Tests , Molecular Weight , Peptide Hydrolases/classification , Peptide Hydrolases/isolation & purification , Peptide Hydrolases/physiology , Peroxidases/classification , Peroxidases/isolation & purification , Peroxidases/physiology , Plant Diseases/microbiology , Plant Extracts/chemistry , Plant Lectins/classification , Plant Lectins/isolation & purification , Plant Lectins/physiology , Plant Proteins/classification , Plant Proteins/isolation & purification , Plant Proteins/physiology , Plants/chemistry
13.
Nutrients ; 11(8)2019 08 01.
Article in English | MEDLINE | ID: mdl-31374931

ABSTRACT

To examine the effects of the alpha-amylase inhibitor isoform 1 called phaseolamin, a standardized extract from white kidney beans (Phaseolus vulgaris L) was tested against the hallmarks of metabolic syndrome. The efficacy of a per os repeated treatment with P. vulgaris extract (500 mg/kg) was compared with metformin (100 mg/kg) and atorvastatin (10 mg/kg) in a model of metabolic syndrome evoked by prolonged high fat diet (HFD; week 1 to week 19) in C57BL/6 mice. Bean extract and compounds administration started after metabolic syndrome establishment (week 11). P. vulgaris extract reduced the body weight overtime, as well as effectively lowered glycaemia, triglycerides, and cholesterol. On week 19, bean extract normalized the HFD-evoked tolerance to glucose and insulin. According to the phytochemical characterization, it inhibited the alpha-amylase activity. Animals treated with the extract were rescued from motor impairments and nociceptive threshold alterations induced by HFD. Specific organs analysis revealed that P. vulgaris extract decreased hepatic steatosis and lipid peroxidation in liver. It protected the heart from HFD oxidative alterations increasing the expression of the detoxifying enzymes catalase and glutathione reductase, and normalizing NADH dehydrogenase level. The histological analysis of aorta showed a protection about the development of fatty streaks in the muscular layers. In conclusion, a prolonged treatment with the standardized extract of P. vulgaris significantly reduced several pathological features related to a metabolic syndrome-like condition; a multifactorial approach that candidates this vegetal product as a possible therapeutic option against metabolic syndrome.


Subject(s)
Glycoside Hydrolase Inhibitors/pharmacology , Metabolic Syndrome/drug therapy , Phaseolus/chemistry , Plant Extracts/pharmacology , Plant Lectins/pharmacology , Seeds/chemistry , Animals , Atorvastatin/pharmacology , Behavior, Animal/drug effects , Biomarkers/blood , Blood Glucose/drug effects , Blood Glucose/metabolism , Diet, High-Fat , Disease Models, Animal , Glycoside Hydrolase Inhibitors/isolation & purification , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Insulin Resistance , Lipids/blood , Male , Metabolic Syndrome/blood , Metabolic Syndrome/enzymology , Metabolic Syndrome/pathology , Metformin/pharmacology , Mice, Inbred C57BL , Plant Extracts/isolation & purification , Plant Lectins/isolation & purification , Time Factors
14.
Molecules ; 24(11)2019 Jun 04.
Article in English | MEDLINE | ID: mdl-31167364

ABSTRACT

Currently available drugs for treatment of glioblastoma, the most aggressive brain tumor, remain inefficient, thus a plethora of natural compounds have already been shown to have antimalignant effects. However, these have not been tested for their impact on tumor cells in their microenvironment-simulated cell models, e.g., mesenchymal stem cells in coculture with glioblastoma cell U87 (GB). Mesenchymal stem cells (MSC) chemotactically infiltrate the glioblastoma microenvironment. Our previous studies have shown that bone-marrow derived MSCs impair U87 growth and invasion via paracrine and cell-cell contact-mediated cross-talk. Here, we report on a plant-derived protein, obtained from Crataeva tapia tree Bark Lectin (CrataBL), having protease inhibitory/lectin activities, and demonstrate its effects on glioblastoma cells U87 alone and their cocultures with MSCs. CrataBL inhibited U87 cell invasion and adhesion. Using a simplified model of the stromal microenvironment, i.e., GB/MSC direct cocultures, we demonstrated that CrataBL, when added in increased concentrations, caused cell cycle arrest and decreased cocultured cells' viability and proliferation, but not invasion. The cocultured cells' phenotypes were affected by CrataBL via a variety of secreted immunomodulatory cytokines, i.e., G-CSF, GM-CSF, IL-6, IL-8, and VEGF. We hypothesize that CrataBL plays a role by boosting the modulatory effects of MSCs on these glioblastoma cell lines and thus the effects of this and other natural lectins and/or inhibitors would certainly be different in the tumor microenvironment compared to tumor cells alone. We have provided clear evidence that it makes much more sense testing these potential therapeutic adjuvants in cocultures, mimicking heterogeneous tumor-stroma interactions with cancer cells in vivo. As such, CrataBL is suggested as a new candidate to approach adjuvant treatment of this deadly tumor.


Subject(s)
Capparaceae/chemistry , Mesenchymal Stem Cells/drug effects , Plant Bark/chemistry , Plant Extracts/pharmacology , Plant Lectins/pharmacology , Protease Inhibitors/pharmacology , Cell Adhesion/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Coculture Techniques , Cytokines/biosynthesis , Glioblastoma/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Metalloproteases/antagonists & inhibitors , Nitric Oxide/biosynthesis , Plant Extracts/chemistry , Plant Lectins/chemistry , Protease Inhibitors/chemistry
15.
Int J Mol Sci ; 20(12)2019 Jun 22.
Article in English | MEDLINE | ID: mdl-31234551

ABSTRACT

Experiments conducted in vitro and in vivo, as well as some preclinical trials for cancer therapeutics, support the antineoplastic properties of lectins. A screening of antitumoral activity on HT29 colon cancer cells, based on polypeptide characterization and specific lectin binding to HT29 cells membrane receptors, was performed in order to assess the bioactivities present in four Mediterranean plant species: Juniperus oxycedrus subsp. oxycedrus, Juniperus oxycedrus subsp. badia, Arbutus unedo and Corema album. Total leaf proteins from each species were evaluated with respect to cell viability and inhibitory activities on HT29 cells (cell migration, matrix metalloproteinase -MMP proteolytic activities). A discussion is presented on a possible mechanism justifying the specific binding of lectins to HT29 cell receptors. All species revealed the presence of proteins with affinity to HT29 cell glycosylated receptors, possibly explaining the differential antitumor activity exhibited by the two most promising species, Juniperus oxycedrus subsp. badia and Arbutus unedo.


Subject(s)
Colonic Neoplasms/drug therapy , Plant Lectins/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Survival , Ericaceae/chemistry , HT29 Cells , Humans , Juniperus/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Leaves/chemistry , Plant Lectins/therapeutic use
16.
Sci Rep ; 9(1): 6428, 2019 04 23.
Article in English | MEDLINE | ID: mdl-31015523

ABSTRACT

Mistletoe (Viscum album) is a type of parasitic plant reported to have anticancer activity including in hepatocellular carcinoma (HCC). However, the mechanism of mistletoe's anticancer activity, and its effectiveness in treating HCC are not fully understood. We report here that mistletoe extracts, including Fraxini (grown on ash trees) and Iscador Q and M (grown on oak and maple trees), exert strong antiproliferative activity in Hep3B cells, with median inhibitory concentrations (IC50) of 0.5 µg/mL, 7.49 µg/mL, and 7.51 µg/mL, respectively. Results of Reversed Phase Proteomic Array analysis (RPPA) suggests that Fraxini substantially down-regulates c-Myc expression in Hep3B cells. Fraxini-induced growth inhibition (at a concentration of 1.25 µg/ml) was less pronounced in c-Myc knockdown Hep3B cells than in control cells. Furthermore, in the Hep3B xenograft model, Fraxini-treated (8 mg/kg body weight) mice had significantly smaller tumors (34.6 ± 11.9 mm3) than control mice (161.6 ± 79.4 mm3, p < 0.036). Similarly, c-Myc protein expression was reduced in Fraxini treated Hep3B cell xenografts compared to that of control mice. The reduction of c-Myc protein levels in vitro Hep3B cells appears to be mediated by the ubiquitin-proteasome system. Our results suggest the importance of c-Myc in Fraxini's antiproliferative activity, which warrants further investigation.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Carcinoma, Hepatocellular/drug therapy , Gene Expression Regulation, Neoplastic , Liver Neoplasms/drug therapy , Plant Lectins/pharmacology , Proto-Oncogene Proteins c-myc/genetics , Viscum album/chemistry , Animals , Antineoplastic Agents, Phytogenic/isolation & purification , Apoptosis/drug effects , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Female , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mice , Mice, Nude , Plant Extracts/chemistry , Plant Lectins/isolation & purification , Proteasome Endopeptidase Complex/drug effects , Proteasome Endopeptidase Complex/metabolism , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction , Tumor Burden/drug effects , Ubiquitin/genetics , Ubiquitin/metabolism , Xenograft Model Antitumor Assays
17.
Phytomedicine ; 58: 152875, 2019 May.
Article in English | MEDLINE | ID: mdl-30884454

ABSTRACT

BACKGROUND: In our previous study, we isolated and characterized a lectin called Helja from Helianthus annuus (sunflower) and then, in a further study, demonstrated its antifungal activity against Candida spp. Since Candida infections are a major health concern due to the increasing emergence of antifungal resistant strains, the search for new antifungal agents offers a promising opportunity for improving the treatment strategies against candidiasis. PURPOSE: The aim of this work was to get insights about the mechanism of action of Helja, an antifungal lectin of H. annuus, and to explore its ability to inhibit Candida albicans biofilm development and adherence to buccal epithelial cells (BEC). STUDY DESIGN/METHODS: Yeast viability was evaluated by Evans Blue uptake and counting of colony forming units (CFU). The yeast cell integrity was assessed using Calcofluor White (CFW) as a cell wall perturbing agent and sorbitol as osmotic protectant. The induction of oxidative stress was evaluated using 3,3'-diaminobenzidine (DAB) for detection of hydrogen peroxide. The adherence was determined by counting the yeast cells attached to BEC after methylene blue staining. The biofilms were developed on polystyrene microplates, visualized by confocal laser scanning microscopy and the viable biomass was quantified by CFU counting. The binding lectin-Candida was assessed using Helja conjugated to fluorescein isothiocyanate (Helja-FITC) and simultaneous staining with CFW. The cellular surface hydrophobicity (CSH) was determined using a microbial adhesion to hydrocarbons method. RESULTS: C. albicans cells treated with 0.1 µg/µl of Helja showed a drastic decrease in yeast survival. The lectin affected the fungal cell integrity, induced the production of hydrogen peroxide and inhibited the morphological transition from yeast to filamentous forms. Helja caused a significant reduction of adherent cells and a decrease in biofilm biomass and coverage area. The treatment with the protein also reduced the surface hydrophobicity of fungal cells. We show the binding of Helja-FITC to yeast cells distributed as a thin outer layer to the CFW signal, and this interaction was displaced by mannose and Concanavalin A. CONCLUSION: The results demonstrate the interaction of Helja with the mannoproteins of C. albicans cell wall, the disruption of the cell integrity, the induction of oxidative stress, the inhibition of the morphological transition from yeast to filamentous forms and the fungal cell viability loss. The binding Helja-Candida also provides a possible explanation of the lectin effect on cell adherence, biofilm development and CSH, relevant features related to virulence of the pathogen.


Subject(s)
Antifungal Agents/metabolism , Candida albicans/drug effects , Helianthus/chemistry , Plant Lectins/metabolism , Plant Lectins/pharmacology , Antifungal Agents/pharmacology , Biofilms/drug effects , Candida albicans/pathogenicity , Candida albicans/physiology , Cell Membrane/chemistry , Cell Membrane/drug effects , Cell Wall/drug effects , Cell Wall/metabolism , Cells, Cultured , Epithelial Cells/microbiology , Fluorescein-5-isothiocyanate/chemistry , Fluorescein-5-isothiocyanate/metabolism , Humans , Hydrogen Peroxide/metabolism , Hydrophobic and Hydrophilic Interactions
18.
J Ethnopharmacol ; 233: 148-157, 2019 Apr 06.
Article in English | MEDLINE | ID: mdl-30658183

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Schinus terebinthifolia Raddi is a plant broadly used in folk medicine and the use of its leaf extract as an antitumor agent has been reported. AIM OF THE STUDY: To evaluate the antitumor potential and the toxicity of saline extract (SE) and lectin (SteLL) from S. terebinthifolia leaves in sarcoma 180-bearing mice. MATERIALS AND METHODS: Cytotoxicity to sarcoma 180 cells was tested in vitro, and antitumor assay was performed using Swiss female mice. The treatments (0.15 M NaCl, negative control; methotrexate 1.5 mg/kg, positive control; SE 100 mg/kg; SteLL 1 and 5 mg/kg) by intraperitoneal injections started on the 8th day after tumor inoculation and lasted 7 days. It was analyzed: tumor weight; number and gauge of tumor vessels; hematological and biochemical parameters; histopathological changes; and occurrence of micronuclei in bone marrow cells. RESULTS: SE and SteLL showed IC50 values (concentrations that reduced cell viability to 50%) of 301.65 and 8.30 µg/mL, respectively. The lectin was able to induce apoptosis. Treatments with the extract and lectin caused a 57.6-73.6% reduction in tumor weight, which was not significantly different from the reduction in the methotrexate group. Tumors of animals treated with SteLL at 5 mg/kg showed reduced number of secondary vessels while the gauge was lower in all treated groups. In the groups treated with SteLL, tumors showed reduced and slightly vascularized parenchyma, with necrosis in the center and at the periphery. No alterations in the blood levels of urea, creatine, and glucose were detected while serum AST level was moderately increased in the SE group. Histopathological analysis revealed vacuolization and steatosis in the liver of animals treated with the extract and lectin. In addition, the treatments with SE and SteLL resulted in the reduction of filtration space and alterations in tubular architecture in kidneys. In respect to hematological parameters, it was only detected increase in the number of monocytes in SE group. The extract and lectin did not induce the formation of micronuclei in the bone marrow cells. CONCLUSIONS: SE and SteLL had antitumor effect against sarcoma 180 without inducing hematological changes and genotoxic effects in mice; however, some degree of hepatic and renal toxicity was observed, suggesting the evaluation of drug delivery strategies in the future.


Subject(s)
Anacardiaceae , Antineoplastic Agents/therapeutic use , Plant Extracts/therapeutic use , Plant Lectins/therapeutic use , Sarcoma 180/drug therapy , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Female , Kidney/drug effects , Liver/drug effects , Mice , Phytotherapy , Plant Leaves , Plant Lectins/pharmacology
19.
Curr Protein Pept Sci ; 20(6): 600-613, 2019.
Article in English | MEDLINE | ID: mdl-30608039

ABSTRACT

Lectins are defined as proteins or glycoproteins capable of specific and reversible binding to carbohydrates. Inside this group of proteins, the most well-studied lectins belong to the Leguminosae family, and inside this family, the Diocleinae subtribe includes the most characterized lectin Concanavalin A (ConA), as well as ConBr, the lectin from Canavalia brasiliensis, the subject of this review. Since 1979, several studies have been published in the literature regarding this lectin, from its isolation and characterization to its several biological activities. This year, 2019, will mark 40 years since researchers have begun to study ConBr and 100 years since the discovery of ConA, making 2019 a momentous year for lectinology. Owing to the abundance of studies involving ConBr, this review will focus on ConBr's purification, physicochemical properties, functional and structural analyses, biological activities and biotechnological applications. This will give researchers a broad glimpse into the potential of this lectin, as well as it characteristics, as we look ahead to its expanding applications in glycomics and biotechnology.


Subject(s)
Canavalia/chemistry , Plant Lectins/isolation & purification , Seeds/chemistry , Animals , Apoptosis/drug effects , Cell Proliferation/drug effects , Concanavalin A/metabolism , Humans , Hydrogen-Ion Concentration , Models, Molecular , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Plant Lectins/pharmacology , Protein Binding , Protein Conformation
20.
Phytomedicine ; 55: 179-190, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30668428

ABSTRACT

BACKGROUND: Epithelial-to-mesenchymal transition (EMT), a key step in oral cancer progression, is associated with invasion, metastasis, and therapy resistance, thus targeting the EMT represents a critical therapeutic strategy for the treatment of oral cancer metastasis. Our previous study showed that Abrus agglutinin (AGG), a plant lectin, induces both intrinsic and extrinsic apoptosis to activate the tumor inhibitory mechanism. OBJECTIVE: This study aimed to investigate the role of AGG in modulating invasiveness and stemness through EMT inhibition for the development of antineoplastic agents against oral cancer. METHODS: The EMT- and stemness-related proteins were studied in oral cancer cells using Western blot analysis and fluorescence microscopy. The potential mechanisms of Snail downregulation through p73 activation in FaDu cells were evaluated using Western blot analysis, immunoprecipitation, confocal microscopy, and molecular docking analysis. Immunohistochemical staining of the tumor samples of AGG-treated FaDu-xenografted nude mice was performed. RESULTS: At the molecular level, AGG-induced p73 suppressed Snail expression, leading to EMT inhibition in FaDu cells. Notably, AGG promoted the translocation of Snail from the nucleus to the cytoplasm in FaDu cells and triggered its degradation through ubiquitination. In this setting, AGG inhibited the interaction between Snail and p73 in FaDu cells, resulting in p73 activation and EMT inhibition. Moreover, in epidermal growth factor (EGF)-stimulated FaDu cells, AGG abolished the upregulation of extracellular signal-regulated kinase (ERK)1/2 that plays a pivotal role in the upregulation of Snail to regulate the EMT phenotypes. In immunohistochemistry analysis, FaDu xenografts from AGG-treated mice showed decreased expression of Snail, SOX2, and vimentin and increased expression of p73 and E-cadherin compared with the control group, confirming EMT inhibition as part of its anticancer efficacy against oral cancer. CONCLUSION: In summary, AGG stimulates p73 in restricting EGF-induced EMT, invasiveness, and stemness by inhibiting the ERK/Snail pathway to facilitate the development of alternative therapeutics for oral cancer.


Subject(s)
Epithelial-Mesenchymal Transition/drug effects , Mouth Neoplasms/drug therapy , Plant Lectins/pharmacology , Snail Family Transcription Factors/metabolism , Tumor Protein p73/metabolism , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor , Epidermal Growth Factor/metabolism , Humans , Mice, Nude , Molecular Docking Simulation , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Plant Lectins/chemistry , Snail Family Transcription Factors/chemistry , Snail Family Transcription Factors/genetics , Tumor Protein p73/chemistry , Tumor Protein p73/genetics , Ubiquitination , Up-Regulation/drug effects , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL