Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 788
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Food Funct ; 15(9): 4818-4831, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38606579

ABSTRACT

Gamma-aminobutyric acid (GABA) is the predominant amino acid in litchi pulp, known for its neuroregulatory effects and anti-inflammatory properties. Although previous research has highlighted the pro-inflammatory characteristics of litchi thaumatin-like protein (LcTLP), interplay between GABA and LcTLP in relation to inflammation remains unclear. This study aims to explore the hepatoprotective effects of the litchi pulp-derived GABA extract (LGE) against LcTLP-induced liver inflammation in mice and LO2 cells. In vivo experiments demonstrated that LGE significantly reduced the levels of aspartate transaminase and alanine transaminase, and protected the liver against infiltration of CD4+ and CD8+ T cells and histological injury induced by LcTLP. Pro-inflammatory cytokines including interleukin-6, interleukin-1ß, and tumor necrosis factor-α were also diminished by LGE. The LGE appeared to modulate the mitogen-activated protein kinase (MAPK) signaling pathway to exert its anti-inflammatory effects, as evidenced by a reduction of 47%, 35%, and 31% in phosphorylated p38, JNK, and ERK expressions, respectively, in the liver of the high-dose LGE group. Additionally, LGE effectively improved the translocation of gut microbiota by modulating its microbiological composition and abundance. In vitro studies have shown that LGE effectively counteracts the increase in reactive oxygen species, calcium ions, and pro-inflammatory cytokines induced by LcTLP. These findings may offer new perspectives on the health benefits and safety of litchi consumption.


Subject(s)
Litchi , Plant Extracts , gamma-Aminobutyric Acid , Animals , Mice , Litchi/chemistry , Plant Extracts/pharmacology , Male , gamma-Aminobutyric Acid/metabolism , Liver/drug effects , Liver/metabolism , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology , Plant Proteins/pharmacology , Inflammation/drug therapy , Gastrointestinal Microbiome/drug effects , Humans , Mice, Inbred C57BL , Fruit/chemistry , Aspartate Aminotransferases
2.
Molecules ; 28(24)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38138452

ABSTRACT

Repeated exposure to pathogens leads to evolutionary selection of adaptive traits. Many species transfer immunological memory to their offspring to counteract future immune challenges. Transfer factors such as those found in the colostrum are among the many mechanisms where transfer of immunologic memory from one generation to the next can be achieved for an enhanced immune response. Here, a library of 100 plants with high protein contents was screened to find plant-based proteins that behave like a transfer factor moiety to boost human immunity. Aqueous extracts from candidate plants were tested in a human peripheral blood mononuclear cell (PBMC) cytotoxicity assay using human cancerous lymphoblast cells-with K562 cells as a target and natural killer cells as an effector. Plant extracts that caused PBMCs to exhibit enhanced killing beyond the capability of the colostrum-based transfer factor were considered hits. Primary screening yielded an 11% hit rate. The protein contents of these hits were tested via a Bradford assay and Coomassie-stained SDS-PAGE, where three extracts were confirmed to have high protein contents. Plants with high protein contents underwent C18 column fractionation using methanol gradients followed by membrane ultrafiltration to isolate protein fractions with molecular weights of <3 kDa, 3-30 kDa, and >30 kDa. It was found that the 3-30 kDa and >30 kDa fractions had high activity in the PBMC cytotoxicity assay. The 3-30 kDa ultrafiltrates from the top two hits, seeds from Raphanus sativus and Brassica juncea, were then selected for protein identification by mass spectrometry. The majority of the proteins in the fractions were found to be seed storage proteins, with a low abundance of proteins involved in plant defense and stress response. These findings suggest that Raphanus sativus or Brassica juncea extracts could be considered for further characterization and immune functional exploration with a possibility of supplemental use to bolster recipients' immune response.


Subject(s)
Plant Proteins , Raphanus , Humans , Plant Proteins/pharmacology , Plant Proteins/metabolism , Leukocytes, Mononuclear/metabolism , Transfer Factor , Plants/metabolism , Mustard Plant/metabolism
3.
Biotechnol Appl Biochem ; 70(2): 593-602, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35789501

ABSTRACT

Desiccation tolerance in developing seeds occurs through several mechanisms among which, a common group of proteins named dehydrins has received considerable attention. So far, there is no information dealing with the accumulation of dehydrins in seeds of Opuntia ficus-indica. We have initiated here an extraction protocol based on two critical steps: heat and acid treatments, and the purity of this fraction was analyzed by FTIR spectroscopy. Western blot analysis of the heat-stable protein fraction (HSF) revealed two main bands of approximately 45 and 44 kDa, while three others of ∼40, 32, and 31 kDa were faintly visible, which were recognized by anti-dehydrin antibodies. This fraction exhibited a Cu2+ -dependent resistance to protease treatments. Next, we performed a series of assays to compare the functional properties of the HSF with those of the previously characterized wheat dehydrin (DHN-5). Antibacterial assays revealed that HSF exhibits only moderate antibacterial activities against gram-negative and gram-positive bacteria, with a minimum inhibition concentration ranging from 0.25 to 1 mg/ml. However, in vitro assays revealed that compared to DHN-5, HSF exhibits higher protective activities of the lactate dehydrogenase (LDH) when exposed to heat, freezing, and dehydration stresses. The protective role of HSF seems to be linked to its best ability to minimize protein aggregation.


Subject(s)
Opuntia , Opuntia/chemistry , Hot Temperature , Plant Proteins/pharmacology , Plant Proteins/chemistry , Seeds/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Plant Extracts/pharmacology , Plant Extracts/metabolism
4.
J Cachexia Sarcopenia Muscle ; 14(1): 116-125, 2023 02.
Article in English | MEDLINE | ID: mdl-36346154

ABSTRACT

BACKGROUND: There are several mechanisms via which increased protein intake might maintain or improve bone mineral density (BMD), but current evidence for an association or effect is inconclusive. The objectives of this study were to investigate the association between dietary protein intake (total, plant and animal) with BMD (spine and total body) and the effects of protein supplementation on BMD. METHODS: Individual data from four trials that included either (pre-)frail, undernourished or healthy older adults (aged ≥65 years) were combined. Dietary intake was assessed with food records (2, 3 or 7 days) and BMD with dual-energy X-ray absorptiometry (DXA). Associations and effects were assessed by adjusted linear mixed models. RESULTS: A total of 1570 participants [57% women, median (inter-quartile range): age 71 (68-75) years] for which at least total protein intake and total body BMD were known were included in cross-sectional analyses. In fully adjusted models, total protein intake was associated with higher total body and spine BMD [beta (95% confidence interval): 0.0011 (0.0006-0.0015) and 0.0015 (0.0007-0.0023) g/cm2 , respectively]. Animal protein intake was associated with higher total body and spine BMD as well [0.0011 (0.0007-0.0016) and 0.0017 (0.0010-0.0024) g/cm2 , respectively]. Plant protein intake was associated with a lower total body and spine BMD [-0.0010 (-0.0020 to -0.0001) and -0.0019 (-0.0034 to -0.0004) g/cm2 , respectively]. Associations were similar between sexes. Participants with a high ratio of animal to plant protein intake had higher BMD. In participants with an adequate calcium intake and sufficient serum 25(OH)D concentrations, the association between total protein intake with total body and spine BMD became stronger. Likewise, the association between animal protein intake with total body BMD was stronger. In the longitudinal analyses, 340 participants [58% women, median (inter-quartile range): age 75 (70-81) years] were included. Interventions of 12 or 24 weeks with protein supplementation or protein supplementation combined with resistance exercise did not lead to significant improvements in BMD. CONCLUSIONS: An association between total and animal protein intake with higher BMD was found. In contrast, plant protein intake was associated with lower BMD. Research is warranted to further investigate the added value of dietary protein alongside calcium and vitamin D for BMD improvement, especially in osteopenic or osteoporotic individuals. Moreover, more research on the impact of a plant-based diet on bone health is needed.


Subject(s)
Bone Density , Dietary Proteins , Animals , Female , Male , Dietary Proteins/pharmacology , Calcium , Absorptiometry, Photon , Plant Proteins/pharmacology
5.
Molecules ; 29(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38202792

ABSTRACT

The immune response of humans may be modulated by certain biopeptides. The present study aimed to determine the immunomodulatory potential of plant-derived food proteins and hydrolysates obtained from these proteins via monocatalytic in silico hydrolysis (using ficin, stem bromelainm or pepsin (pH > 2)). The scope of this study included determinations of the profiles of select bioactivities of proteins before and after hydrolysis and computations of the frequency of occurrence of selected bioactive fragments in proteins (parameter A), frequency/relative frequency of the release of biopeptides (parameters AE, W) and the theoretical degree of hydrolysis (DHt), by means of the resources and programs available in the BIOPEP-UWM database. The immunomodulating (ImmD)/immunostimulating (ImmS) peptides deposited in the database were characterized as well (ProtParam tool). Among the analyzed proteins of cereals and legumes, the best precursors of ImmD immunopeptides (YG, YGG, GLF, TPRK) turned out to be rice and garden pea proteins, whereas the best precursors of ImmS peptides appeared to be buckwheat (GVM, GFL, EAE) and broad bean (LLY, EAE) proteins. The highest number of YG sequences was released by stem bromelain upon the simulated hydrolysis of rice proteins (AE = 0.0010-0.0820, W = 0.1994-1.0000, DHt = 45-82%). However, antibacterial peptides (IAK) were released by ficin only from rice, oat, and garden pea proteins (DHt = 41-46%). Biopeptides (YG, IAK) identified in protein hydrolysates are potential immunomodulators, nutraceuticals, and components of functional food that may modulate the activity of the human immune system. Stem bromelain and ficin are also active components that are primed to release peptide immunomodulators from plant-derived food proteins.


Subject(s)
Fabaceae , Pea Proteins , Humans , Plant Proteins/pharmacology , Ficain , Immunologic Factors/pharmacology , Adjuvants, Immunologic , Peptides/pharmacology , Dietary Supplements
6.
Food Funct ; 13(24): 12777-12786, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36420930

ABSTRACT

Okara is a by-product of tofu or soymilk production processes. The disposal of huge quantities of okara is a significant issue. Based on previous reports, protein hydrolysis can release excess free amino acids and small peptides from okara and exhibit anti-fatigue function. We aimed to investigate the anti-fatigue effect of okara protein hydrolysate (OPH) in vitro and in vivo. In the first phase, we treated C2C12 myotubes with different processed OPHs to detect mitochondrial functions. The results revealed that OPH hydrolyzed with alcalase containing 2% E/S for 2 h increased the mitochondrial mRNA level (cytochrome b and cytochrome c oxidase I) and enzyme activity (citrate synthase and cytochrome c oxidase) most efficiently. In the second phase, we conducted animal studies to assess the anti-fatigue function of OPH. After acclimatization, 8 week-old male Sprague-Dawley (SD) rats were randomly classified into four groups: (1) control group, (2) 1X-OPH, (3) 2X-OPH, and (4) 5X-OPH (8 rats per group, treated for 28 days). The results indicated that the intake of OPH for 28 days increased the exhaustive swimming time of rats and lowered the increment of the lactate ratio, as well as the activity of lactate dehydrogenase and creatine kinase. These results indicated that OPH improves exercise performance and anti-fatigue function in male SD rats. Therefore, OPH could be a potential health supplement for anti-fatigue function.


Subject(s)
Dietary Supplements , Muscle Fatigue , Muscle Fibers, Skeletal , Plant Proteins , Polysaccharides , Soy Foods , Animals , Male , Rats , Electron Transport Complex IV , Rats, Sprague-Dawley , Plant Proteins/pharmacology , Polysaccharides/pharmacology , Cell Line , Muscle Fatigue/drug effects , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism
7.
Front Cell Infect Microbiol ; 12: 836819, 2022.
Article in English | MEDLINE | ID: mdl-35909977

ABSTRACT

The inhibition/degradation potential of Carissa carandas proteinaceous leaf extract against mixed bacterial biofilm of Staphylococcus aureus MTCC 96, Escherichia coli MTCC 1304, Pseudomonas aeruginosa MTCC 741, and Klebsiella pneumoniae MTCC 109, responsible for nosocomial infections, was evaluated. Distinct inhibition/degradation of mixed bacterial biofilm by the proteinaceous leaf extract of C. carandas was observed under a microscope, and it was found to be 80%. For mono-species biofilm, the maximum degradation of 70% was observed against S. aureus biofilm. The efficiency of aqueous plant extracts to inhibit the mono-species biofilm was observed in terms of minimum inhibitory concentration (MIC), and the best was found against P. aeruginosa (12.5 µg/ml). The presence of flavonoids, phenols, and tannins in the phytochemical analysis of the plant extract suggests the main reason for the antibiofilm property of C. carandas. From the aqueous extract, protein fraction was precipitated using 70% ammonium sulfate and dialyzed. This fraction was purified by ion-exchange chromatography and found to be stable and active at 10°C (pH 7). The purified fraction showed less than 40% cytotoxicity, which suggests that it can be explored for therapeutic purposes after in-depth testing. In order to investigate the mechanistic action of the biofilm inhibition, the plant protein was tested against Chromobacterium violaceum CV026, and its inhibitory effect confirmed its quorum quenching nature. Based on these experimental analyses, it can be speculated that the isolated plant protein might influence the signaling molecule that leads to the inhibition effect of the mixed bacterial biofilm. Further experimental studies are warranted to validate our current findings.


Subject(s)
Apocynaceae , Quorum Sensing , Anti-Bacterial Agents/chemistry , Bacteria , Biofilms , Plant Extracts , Plant Proteins/pharmacology , Pseudomonas aeruginosa , Staphylococcus aureus , Virulence
8.
Int J Mol Sci ; 23(16)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36012505

ABSTRACT

Yellow-orange latex of Chelidonium majus L. has been used in folk medicine as a therapeutic agent against warts and other visible symptoms of human papillomavirus (HPV) infections for centuries. The observed antiviral and antitumor properties of C. majus latex are often attributed to alkaloids contained therein, but recent studies indicate that latex proteins may also play an important role in its pharmacological activities. Therefore, the aim of the study was to investigate the effect of the crude C. majus latex and its protein and alkaloid-rich fractions on different stages of the HPV replication cycle. The results showed that the latex components, such as alkaloids and proteins, decrease HPV infectivity and inhibit the expression of viral oncogenes (E6, E7) on mRNA and protein levels. However, the crude latex and its fractions do not affect the stability of structural proteins in HPV pseudovirions and they do not inhibit the virus from attaching to the cell surface. In addition, the protein fraction causes increased TNFα secretion, which may indicate the induction of an inflammatory response. These findings indicate that the antiviral properties of C. majus latex arise both from alkaloids and proteins contained therein, acting on different stages of the viral replication cycle.


Subject(s)
Chelidonium , Latex , Papillomavirus Infections , Alkaloids/pharmacology , Antiviral Agents/pharmacology , Chelidonium/chemistry , Humans , Latex/chemistry , Latex/pharmacology , Papillomavirus Infections/drug therapy , Plant Proteins/pharmacology
9.
J Nat Prod ; 85(9): 2127-2134, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36044031

ABSTRACT

Cyclotides are mini-proteins with potent bioactivities and outstanding potential for agricultural and pharmaceutical applications. More than 450 different plant cyclotides have been isolated from six angiosperm families. In Brazil, studies involving this class of natural products are still scarce, despite its rich floristic diversity. Herein were investigated the cyclotides from Anchietea pyrifolia roots, a South American medicinal plant from the family Violaceae. Fourteen putative cyclotides were annotated by LC-MS. Among these, three new bracelet cyclotides, anpy A-C, and the known cycloviolacins O4 (cyO4) and O17 (cyO17) were sequenced through a combination of chemical and enzymatic reactions followed by MALDI-MS/MS analysis. Their cytotoxic activity was evaluated by a cytotoxicity assay against three human cancer cell lines (colorectal carcinoma cells: HCT 116 and HCT 116 TP53-/- and breast adenocarcinoma, MCF 7). For all assays, the IC50 values of isolated compounds ranged between 0.8 and 7.3 µM. CyO17 was the most potent cyclotide for the colorectal cancer cell lines (IC50, 0.8 and 1.2 µM). Furthermore, the hemolytic activity of anpy A and B, cyO4, and cyO17 was assessed, and the cycloviolacins were the least hemolytic (HD50 > 156 µM). This work sheds light on the cytotoxic effects of the anpy cyclotides against cancer cells. Moreover, this study expands the number of cyclotides obtained to date from Brazilian plant biodiversity and adds one more genus containing these molecules to the list of the Violaceae family.


Subject(s)
Biological Products , Cyclotides , Plant Proteins , Violaceae , Biological Products/chemistry , Biological Products/isolation & purification , Biological Products/pharmacology , Brazil , Cell Line, Tumor , Cyclotides/chemistry , Cyclotides/isolation & purification , Cyclotides/pharmacology , Humans , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Plant Proteins/pharmacology , Tandem Mass Spectrometry , Violaceae/chemistry
10.
Anticancer Agents Med Chem ; 22(18): 3163-3171, 2022.
Article in English | MEDLINE | ID: mdl-35692152

ABSTRACT

BACKGROUND: Calotropis procera is a laticiferous plant (Apocynaceae) found in tropical regions all over the world. The ultrastructural characteristics of laticifers, their restricted distribution among different taxonomic groups, and in some species in each clade, as peptidases from latex, make them very attractive for biological analysis. OBJECTIVE: The study aims to investigate the effects of LP-PII-IAA (laticifer protein (LP) sub-fraction II (PII) of C. procera presenting an iodoacetamide-inhibited cysteine proteinase activity) on irinotecan-induced intestinal mucositis, a serious adverse effect of this medicine for the treatment of cancer. METHODS: LP-PII-IAA is composed of closely related isoforms (90%) of peptidases derived from catalysis and an osmotin protein (5%). Animals receiving co-administration of LP-PII-IAA presented a significant decrease in mortality, absence of diarrhea, histological preservation, and normalization of intestinal functions. RESULTS: Clinical homeostasis was accompanied by a reduction in MPO activity and declined levels of IL-1ß, IL-6 and KC, while the IL-10 level increased in LP-PII-IAA-treated animals. COX-2 and NF-kB immunostaining was reduced and the levels of oxidative markers (GSH, MDA) were normalized in animals that received LP-PII-IAA. CONCLUSION: We suggest that peptidases from the latex of Calotropis procera were instrumental in the suppression of the adverse clinical and physiological effects of irinotecan.


Subject(s)
Calotropis , Cysteine Proteases , Animals , Calotropis/chemistry , Cyclooxygenase 2 , Interleukin-10 , Interleukin-6 , Iodoacetamide , Irinotecan/pharmacology , Latex/chemistry , Latex/pharmacology , NF-kappa B , Plant Proteins/pharmacology , Plant Proteins/therapeutic use
11.
Phytomedicine ; 102: 154186, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35617890

ABSTRACT

BACKGROUND: The osmotin from the medicinal plant Calotropis procera (CpOsm) has characteristics similar to adiponectin, a human protein with immunoregulatory actions. PURPOSE: This study aimed to investigate whether recombinant osmotin inclusion bodies from C. procera (IB/rCpOsm) produced in E. coli BL21(DE3) can prevent infection-induced inflammation. A virulent strain of Listeria monocytogenes was used as an infection model. METHODS: Cells of E. coli BL21(DE3) carrying the plasmid pET303-CpOsm were used to express the recombinant osmotin, which accumulated at reasonable levels as inclusion bodies (IB/rCpOsm). IB/rCpOsm were purified from induced cells and SDS-polyacrylamide gel electrophoresis followed by mass spectrometry analyses confirmed the identity of the major protein band (23 kDa apparent molecular mass) as CpOsm. Peritoneal macrophages (pMØ) from Swiss mice were cultured with IB/rCpOsm (1 or 10 µg/ml) in 96-well plates and then infected with L. monocytogenes. IB/rCpOsm (0.1, 1 or 10 mg/kg) was also administered intravenously to Swiss mice, which were then infected intraperitoneally with L. monocytogenes. RESULTS: Pretreatment of the pMØ with IB/rCpOsm significantly increased cell viability after infection and reduced the intracellular bacterial load. The infiltration of neutrophils into the peritoneal cavity of mice pretreated with IB/rCpOsm at 10 mg/kg (but not 0.1 and 1 mg/kg) was reduced after infection. In these mice, the bacterial load was high in the peritoneal fluid and the liver, but histological damage was discrete. The treatments with IB/rCpOsm at 10 mg/kg significantly increased the expression of the anti-inflammatory cytokine IL-10. CONCLUSION: This study shows that recombinant osmotin inclusion bodies from C. procera were bioactive and prompted anti-inflammatory actions at therapeutic dosages in the L. monocytogenes infection model.


Subject(s)
Anti-Inflammatory Agents , Calotropis , Listeriosis , Animals , Anti-Inflammatory Agents/pharmacology , Calotropis/chemistry , Disease Models, Animal , Escherichia coli , Inclusion Bodies/metabolism , Inflammation/drug therapy , Latex/chemistry , Listeriosis/drug therapy , Mice , Plant Proteins/pharmacology
12.
Molecules ; 27(4)2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35208951

ABSTRACT

A 24 kDa leucine-rich protein from ion exchange fractions of Solanum trilobatum, which has anti-bacterial activity against both the Gram-negative Vibrio cholerae and Gram-positive Staphylococcus aureus bacteria has been purified. In this study, mass spectrometry analysis identified the leucine richness and found a luminal binding protein (LBP). Circular dichroism suggests that the protein was predominantly composed of α- helical contents of its secondary structure. Scanning electron microscopy visualized the characteristics and morphological and structural changes in LBP-treated bacterium. Further in vitro studies confirmed that mannose-, trehalose- and raffinose-treated LBP completely inhibited the hemagglutination ability towards rat red blood cells. Altogether, these studies suggest that LBP could bind to sugar moieties which are abundantly distributed on bacterial surface which are essential for maintaining the structural integrity of bacteria. Considering that Solanum triolbatum is a well-known medicinal and edible plant, in order to shed light on its ancient usage in this work, an efficient anti-microbial protein was isolated, characterized and its in vitro functional study against human pathogenic bacteria was evaluated.


Subject(s)
Anti-Bacterial Agents , Plant Leaves/chemistry , Plant Proteins , Solanum/chemistry , Staphylococcus aureus/growth & development , Vibrio cholerae/growth & development , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Plant Proteins/pharmacology
13.
Gene ; 809: 146041, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34710526

ABSTRACT

Plant immunity to pathogen infections is a dynamic response that involves multiple organelles and defence signalling systems such as hypersensitive response (HR) and systemic acquired resistance (SAR). The latter requires the function of Pathogenesis-related (PR) proteins, a common plant protein family with diverse roles in plant innate immunity. Our previous proteomics study showed that a PR gene (ITC1587_Bchr9_P26466_MUSBA) was differentially regulated during a compatible banana-M. incognita interaction, substantiating the isolation of this gene in the current study. Here, we successfully isolated and characterised Pathogenesis-related-10 (PR10) gene with ß-1,3-glucanase and ribonuclease (RNase) activities from two Musa acuminata cultivars (denoted as MaPR10) namely Berangan and Grand Naine (ITC1256). We found that MaPR10 cloned sequences possess glycine-rich loop domain and shared conserved motifs specific to PR10 gene group, confirming its identity as a member of this group. Interestingly, we also found a catalytic domain sequence for glycoside hydrolase family 16 (EXDXXE), unique only to MaPR10 cloned sequences. Two peptide variants closely related to the reference sequence ITC1587_Bchr9_P26466_MUSBA namely MaPR10-BeB5 and MaPR10-GNA5 were overexpressed and purified to test for their functionality. Here, we confirmed that both protein variants possess ß-1,3-glucanase and ribonuclease (RNase) activities, and inhibit the growth of Aspergillus fumigatus, a human opportunistic pathogen. To our knowledge, this is the first PR10 plant proteins with such properties to be reported thus far.


Subject(s)
Musa/genetics , Musa/parasitology , Plant Proteins/genetics , Plant Proteins/metabolism , Tylenchoidea/pathogenicity , Animals , Antifungal Agents/pharmacology , Aspergillus fumigatus/drug effects , Aspergillus niger/drug effects , Gene Expression Regulation, Plant , Host-Parasite Interactions/genetics , Onions/genetics , Phylogeny , Plant Immunity/genetics , Plant Proteins/pharmacology , Plant Roots/genetics , Plant Roots/parasitology , Plants, Genetically Modified
14.
J Ethnopharmacol ; 285: 114903, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34890731

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Euphorbia tirucalli L., a tropical and subtropical plant, also known by the popular name avelós, has been used in folk medicine against many diseases as rheumatism, asthma, toothache, and cancer. Studies have shown that natural compounds contained in this plant species may be associated with these functions. However, little is known about its potential toxicity. AIM OF THE STUDY: Several proteins conduct biological functions, in particular, proteinases, play a crucial role in many mechanisms of living beings, including plants, animals and microorganisms. However, when poorly regulated, they can generate consequences, such as the non-production of certain substances, or even the abnormal multiplication of cells, which leads to tumors. On the other hand, by regulating these enzymes, proteinase inhibitors act by reducing the activity of proteinases, thus preventing their malfunction. The objective of this work was to evaluate the toxicity of the protein extract of E. tirucalli and to purify a protease inhibitor that may be associated with the biological medicinal functions of the plant. MATERIALS AND METHODS: The cytotoxic and mutagenic properties of the protein extract produced from the stem of avelós was investigated using the Ames test. The protein extract was also submitted to a protease inhibitor purification process using the gel filtration chromatography technique and the purified protein was biochemically characterized. RESULTS: A protease inhibitor, called tirustatin, was isolated 1.84-fold by Biogel P100. The calculated molecular mass of the isolated protein is 25.97 kDa. The inhibitor was stable at pH 3-10, with pronounced activity at pH 6. Thermostability was observed even at elevated temperature (100 °C) with inhibitory activity increased by 1.14-fold compared to inhibitor activity at room temperature. Incubation at basic pH values for up to 60 min caused little reduction (0.25-fold) in the papain inhibitory activity of tirustatin. The stoichiometry of the papain-tirustatin interaction was 1.5: 1 and 28.8 pM of the inhibitor effected 50% inhibition. With an equilibrium dissociation constant of 8.74 x 10-8M for the papain enzyme, it is possible to evaluate the isolated protein as a non-competitive inhibitor. In addition, the protein extract of E. tirucalli even at the maximum concentration used (20 µg/mL), did not show a cytotoxic and mutagenic profile in a bacterial model. CONCLUSION: The results presented in this work provide data that reinforce the idea of the potential use of proteins produced in E. tirucalli as pharmacological and biotechnological agents that can be exploited for the development of efficient drugs.


Subject(s)
Euphorbia/chemistry , Phytotherapy/adverse effects , Plant Extracts/toxicity , Plant Proteins/pharmacology , Plant Proteins/toxicity , Hot Temperature , Hydrogen-Ion Concentration , Mutagenicity Tests , Plant Extracts/chemistry , Plant Leaves/chemistry , Plant Proteins/chemistry , Plant Stems/chemistry , Salmonella
15.
J Cancer Res Ther ; 17(6): 1445-1453, 2021.
Article in English | MEDLINE | ID: mdl-34916376

ABSTRACT

BACKGROUND: Azoxymethane (AOM) is a potent carcinogenic agent commonly used to induce colon cancer in rats and mice, with the cytotoxicity of AOM mediated by oxidative stress. AIM OF STUDY: This study investigated the protective effect of a natural antioxidant (GliSODin) against AOM-induced oxidative stress and carcinogenesis in rat colon. METHODS: Twenty male Wistar rats were randomly divided into four groups (five rats/group). The control group was fed a basal diet. AOM-treated group (AOM) was fed a basal diet and received intraperitoneal injections of AOM for 2 weeks at a dose of 15 mg/kg. The GliSODin treatment group (superoxide dismutase [SOD]) received oral supplementation of GliSODin (300 mg/kg) for 3 months, and the fourth combined group received AOM and GliSODin (AOM + SOD). All animals were continuously fed ad libitum until the age of 16 weeks when all rats were sacrificed. The colon tissues were examined microscopically for pathological changes and aberrant crypt foci (ACF) development, oxidant status (lipid peroxidation-LPO), and enzyme antioxidant system (glutathione [GSH], GSH-S-transferase, catalase, and SOD). RESULTS: Our results showed that AOM induced ACF development and oxidative stress (GSH depletion and lipid peroxidation) in rat colonic cells. The concomitant treatment of AOM with GliSODin significantly ameliorated the cytotoxic effects of AOM. CONCLUSION: The results of this study provide in vivo evidence that GliSODin reduced the AOM-induced colon cancer in rats, through their potent antioxidant activities.


Subject(s)
Antioxidants/pharmacology , Colonic Neoplasms/drug therapy , Gliadin/pharmacology , Plant Proteins/pharmacology , Superoxide Dismutase/pharmacology , Animals , Antioxidants/therapeutic use , Azoxymethane/toxicity , Carcinogenesis/chemically induced , Carcinogenesis/drug effects , Carcinogenesis/pathology , Colon/drug effects , Colon/pathology , Colonic Neoplasms/chemically induced , Colonic Neoplasms/pathology , Cucurbitaceae/enzymology , Drug Screening Assays, Antitumor , Gliadin/therapeutic use , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Lipid Peroxidation/drug effects , Male , Oxidative Stress/drug effects , Plant Proteins/therapeutic use , Rats , Superoxide Dismutase/therapeutic use , Triticum/chemistry
16.
Sci Rep ; 11(1): 23227, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34853400

ABSTRACT

Roses are widely used as cut flowers worldwide. Petal senescence confines the decorative quality of cut rose flowers, an impressively considerable economic loss. Herein, we investigated the SUMO1/SUMO E3 ligase SIZ1 signaling pathway during bud opening, and petal senescence of cut rose flowers. Our results exhibited that the higher expression of SUMO1 and SUMO E3 ligase SIZ1 during bud opening was accompanied by lower endogenous H2O2 accumulation arising from higher expression and activities of SOD, CAT, APX, and GR, promoting proline accumulation by increasing P5CS expression and activity and enhancing GABA accumulation by increasing GAD expression and activity. In harvested flowers, lower expressions of SUMO1 and SUMO E3 ligase SIZ1 during petal senescence were associated with higher endogenous H2O2 accumulation due to lower expression and activities of SOD, CAT, APX, and GR. Therefore, promoting the activity of the GABA shunt pathway as realized by higher expression and activities of GABA-T and SSADH accompanied by increasing OAT expression and activity for sufficiently supply proline in rose flowers during petal senescence might serve as an endogenous antisenescence mechanism for slowing down petals senescence by avoiding endogenous H2O2 accumulation. Following phytosulfokine α (PSKα) application, postponing petal senescence in cut rose flowers could be ascribed to higher expression of SUMO1 and SUMO E3 ligase SIZ1 accompanied by higher expression and activities of SOD, CAT, APX, and GR, higher activity of GABA shunt pathway as realized by higher expression and activities of GAD, GABA-T, and SSADH, higher expression and activities of P5CS and OAT for supplying proline and higher expression of HSP70 and HSP90. Therefore, our results highlight the potential of the PSKα as a promising antisenescence signaling peptide in the floriculture industry for postponing senescence and extending the vase life of cut rose flowers.


Subject(s)
Flowers/drug effects , Peptide Hormones/pharmacology , Plant Proteins/pharmacology , Rosa/drug effects , Gene Expression Regulation, Plant , Hydrogen Peroxide/metabolism , SUMO-1 Protein/metabolism , Signal Transduction , Ubiquitin-Protein Ligases/metabolism
17.
Nutrients ; 13(11)2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34836236

ABSTRACT

Protein supplementation is a commonly employed strategy to enhance resistance training adaptations. However, little research to date has examined if peanut protein supplementation is effective in this regard. Thus, we sought to determine if peanut protein supplementation (PP; 75 total g/d of powder providing 30 g/d protein, >9.2 g/d essential amino acids, ~315 kcal/d) affected resistance training adaptations in college-aged adults. Forty-seven college-aged adults (n = 34 females, n = 13 males) with minimal prior training experience were randomly assigned to a PP group (n = 18 females, n = 5 males) or a non-supplement group (CTL; n = 16 females, n = 8 males) (ClinicalTrials.gov trial registration NCT04707963; registered 13 January 2021). Body composition and strength variables were obtained prior to the intervention (PRE). Participants then completed 10 weeks of full-body resistance training (twice weekly) and PP participants consumed their supplement daily. POST measures were obtained 72 h following the last training bout and were identical to PRE testing measures. Muscle biopsies were also obtained at PRE, 24 h following the first exercise bout, and at POST. The first two biopsy time points were used to determine myofibrillar protein synthesis (MyoPS) rates in response to a naïve training bout with or without PP, and the PRE and POST biopsies were used to determine muscle fiber adaptations in females only. Dependent variables were analyzed in males and females separately using two-way (supplement × time) repeated measures ANOVAs, unless otherwise stated. The 24-h integrated MyoPS response to the first naïve training bout was similar between PP and CTL participants (dependent samples t-test p = 0.759 for females, p = 0.912 for males). For males, the only significant supplement × time interactions were for DXA-derived fat mass (interaction p = 0.034) and knee extensor peak torque (interaction p = 0.010); these variables significantly increased in the CTL group (p < 0.05), but not the PP group. For females, no significant supplement × time interactions existed, although interactions for whole body lean tissue mass (p = 0.088) and vastus lateralis thickness (p = 0.099) approached significance and magnitude increases in these characteristics favored the PP versus CTL group. In summary, this is the second study to determine the effects of PP supplementation on resistance training adaptations. While PP supplementation did not significantly enhance training adaptations, the aforementioned trends in females, the limited n-size in males, and this being the second PP supplementation study warrant more research to determine if different PP dosing strategies are more effective than the current approach.


Subject(s)
Adaptation, Physiological , Arachis/chemistry , Dietary Supplements , Plant Proteins/pharmacology , Resistance Training , Adaptation, Physiological/drug effects , Amino Acids/analysis , Body Composition , Eating , Female , Humans , Male , Muscle Strength/drug effects , Muscle, Skeletal/diagnostic imaging , Myofibrils/metabolism , Protein Biosynthesis , Thigh/diagnostic imaging , Young Adult
18.
Int J Mol Sci ; 22(21)2021 Oct 31.
Article in English | MEDLINE | ID: mdl-34769268

ABSTRACT

Chelidonium majus L. is a latex-bearing plant used in traditional folk medicine to treat human papillomavirus (HPV)-caused warts, papillae, and condylomas. Its latex and extracts are rich in many low-molecular compounds and proteins, but there is little or no information on their potential interaction. We describe the isolation and identification of a novel major latex protein (CmMLP1) composed of 147 amino acids and present a model of its structure containing a conserved hydrophobic cavity with high affinity to berberine, 8-hydroxycheleritrine, and dihydroberberine. CmMLP1 and the accompanying three alkaloids were present in the eluted chromatographic fractions of latex. They decreased in vitro viability of human cervical cancer cells (HPV-negative and HPV-positive). We combined, for the first time, research on macromolecular and low-molecular-weight compounds of latex-bearing plants in contrast to other studies that investigated proteins and alkaloids separately. The observed interaction between latex protein and alkaloids may influence our knowledge on plant defense. The proposed toolbox may help in further understanding of plant disease resistance and in pharmacological research.


Subject(s)
Alkaloids , Antineoplastic Agents, Phytogenic , Chelidonium/chemistry , Latex/chemistry , Plant Extracts/chemistry , Plant Proteins , Uterine Cervical Neoplasms/drug therapy , Alkaloids/chemistry , Alkaloids/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Female , HeLa Cells , Humans , Plant Proteins/chemistry , Plant Proteins/pharmacology , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology
19.
Protein Pept Lett ; 28(11): 1259-1271, 2021.
Article in English | MEDLINE | ID: mdl-34551687

ABSTRACT

BACKGROUND: While several biologics have been reported from different parts of Clitoria ternatea, a herbaceous climber of the family Fabaceae, specific production of cationic peptides other than cyclotides (<3.7 kDa) has barely been investigated, or their bioactive potential been looked into. OBJECTIVE: The study aims to uncover potential bioactivities and characteristics of novel cationic peptides from C. ternatea seeds. METHODS: C. ternatea seed cationic peptide purified by simple and cost-effective procedures was analyzed by electrophoresis and mass spectrometry. Antimicrobial efficacy was evaluated against bacterial and fungal pathogens. Antioxidant potential was quantified by in vitro antioxidant assays. Physicochemical characterization and Tandem mass spectrometry were performed. RESULTS: An 8.5 kDa cationic peptide purified from C. ternatea seeds was active against Candida albicans, Staphylococcus aureus, Aeromonas hydrophila and Escherichia coli at a minimum inhibitory concentration in the range of 8-32 µg/ml. This activity was totally uncompromised at pH 5-8 or after 1 h of heat treatment at 70-80ºC, but was sensitive to protease treatment. Concentration-dependent free-radical scavenging activity and ferric-reducing capacity demonstrated the antioxidant potential of the peptide. Tandem MS analysis of trypsin-digested peptide based on shotgun proteomics detected matching peptide sequences with one or two cysteine residues but had low sequence coverage (≤17%) to known sequences in the C. ternatea protein database. Taken together, the distinct characteristics of this novel 8.5 kDa peptide clearly distinguish it from known cyclotides of C. ternatea. CONCLUSIONS: Insights have been obtained into the functional characteristics of what appears to be a novel cationic peptide from C. ternatea seeds, exhibiting significant antimicrobial and antioxidant activities.


Subject(s)
Anti-Infective Agents , Antimicrobial Cationic Peptides , Antioxidants , Bacteria/growth & development , Candida albicans/growth & development , Clitoria/chemistry , Plant Extracts/chemistry , Plant Proteins , Seeds/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/isolation & purification , Antimicrobial Cationic Peptides/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Plant Proteins/pharmacology
20.
Food Funct ; 12(19): 8994-9006, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34382048

ABSTRACT

Moringa oleifera (MO) leaf is a potential plant protein resource with high nutritional and medicinal value. The study aims to investigate the hypotensive activity and stability of MO leaf peptides. MO leaf protein was extracted and then hydrolyzed with Alcalase to produce the MO leaf protein hydrolysate (MOPH). The MOPH was separated into peptide fractions with different molecular weights by membrane ultrafiltration. The MOPH and ultrafiltration fractions were evaluated for antihypertensive activity. Inhibition of the angiotensin-converting enzyme (84.71 ± 0.07%) and renin (43.72 ± 0.02%) was significantly higher for <1 kDa peptides when compared to other fractions. Oral administration of the <1 kDa component in spontaneously hypertensive rats positively lowers the blood pressure (∼17 mmHg). The <1 kDa component was isolated and purified subsequently; the final active component was identified by mass spectrometry and amino acid sequence analysis. Two highly active ACE (angiotensin-converting enzyme) and renin dual inhibitory peptides Leu-Gly-Phe-Phe (LGF) and Gly-Leu-Phe-Phe (GLFF) were obtained. The two peptides exhibited a good dual inhibitory activity of ACE and renin with IC50 values of LGF (0.29 ± 0.13 mM, 1.88 ± 0.08 mM) and GLFF (0.31 ± 0.04 mM, 2.80 ± 0.08 mM). Furthermore, in vivo models, LGF and GLFF significantly reduced the systolic blood pressure (19.4 mmHg; 18.2 mmHg) and diastolic blood pressure (12 mmHg; 13.8 mmHg) of SHRs (spontaneously hypertensive rats). The peptide transmembrane transport experiments and simulated gastrointestinal digestion experiments with LGF and GLFF showed that they can resist gastrointestinal digestion in a complete form. Thus, bioactive peptides from MO leaf may possess the potential to be used for treating hypertension in humans.


Subject(s)
Antihypertensive Agents/therapeutic use , Moringa oleifera , Plant Proteins/therapeutic use , Administration, Oral , Animals , Antihypertensive Agents/administration & dosage , Antihypertensive Agents/pharmacology , Blood Pressure , Functional Food , Humans , Inhibitory Concentration 50 , Peptidyl-Dipeptidase A/chemistry , Phytotherapy , Plant Leaves , Plant Proteins/administration & dosage , Plant Proteins/pharmacology , Rats , Rats, Inbred SHR , Renin/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL