Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.391
Filter
Add more filters

Complementary Medicines
Publication year range
1.
BMC Plant Biol ; 24(1): 309, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38649801

ABSTRACT

BACKGROUND: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), belonging to ω-3 long-chain polyunsaturated fatty acids (ω3-LC-PUFAs), are essential components of human diet. They are mainly supplemented by marine fish consumption, although their native producers are oleaginous microalgae. Currently, increasing demand for fish oils is insufficient to meet the entire global needs, which puts pressure on searching for the alternative solutions. One possibility may be metabolic engineering of plants with an introduced enzymatic pathway producing ω3-LC-PUFAs. RESULT: In this study we focused on the acyl-CoA:diacylglycerol acyltransferase2b (PtDGAT2b) from the diatom Phaeodactylum tricornutum, an enzyme responsible for triacylglycerol (TAG) biosynthesis via acyl-CoA-dependent pathway. Gene encoding PtDGAT2b, incorporated into TAG-deficient yeast strain H1246, was used to confirm its activity and conduct biochemical characterization. PtDGAT2b exhibited a broad acyl-CoA preference with both di-16:0-DAG and di-18:1-DAG, whereas di-18:1-DAG was favored. The highest preference for acyl donors was observed for 16:1-, 10:0- and 12:0-CoA. PtDGAT2b also very efficiently utilized CoA-conjugated ω-3 LC-PUFAs (stearidonic acid, eicosatetraenoic acid and EPA). Additionally, verification of the potential role of PtDGAT2b in planta, through its transient expression in tobacco leaves, indicated increased TAG production with its relative amount increasing to 8%. Its co-expression with the gene combinations aimed at EPA biosynthesis led to, beside elevated TAG accumulation, efficient accumulation of EPA which constituted even 25.1% of synthesized non-native fatty acids (9.2% of all fatty acids in TAG pool). CONCLUSIONS: This set of experiments provides a comprehensive biochemical characterization of DGAT enzyme from marine microalgae. Additionally, this study elucidates that PtDGAT2b can be used successfully in metabolic engineering of plants designed to obtain a boosted TAG level, enriched not only in ω-3 LC-PUFAs but also in medium-chain and ω-7 fatty acids.


Subject(s)
Diacylglycerol O-Acyltransferase , Diatoms , Nicotiana , Diatoms/genetics , Diatoms/enzymology , Diatoms/metabolism , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Nicotiana/genetics , Nicotiana/enzymology , Nicotiana/metabolism , Acyl Coenzyme A/metabolism , Plants, Genetically Modified , Triglycerides/biosynthesis , Triglycerides/metabolism , Eicosapentaenoic Acid/biosynthesis , Eicosapentaenoic Acid/metabolism , Fatty Acids, Omega-3/biosynthesis , Fatty Acids, Omega-3/metabolism , Metabolic Engineering
2.
Plant Sci ; 344: 112079, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38588981

ABSTRACT

The cotton boll weevil (CBW, Anthonomus grandis) stands as one of the most significant threats to cotton crops (Gossypium hirsutum). Despite substantial efforts, the development of a commercially viable transgenic cotton event for effective open-field control of CBW has remained elusive. This study describes a detailed characterization of the insecticidal toxins Cry23Aa and Cry37Aa against CBW. Our findings reveal that CBW larvae fed on artificial diets supplemented exclusively with Cry23Aa decreased larval survival by roughly by 69%, while supplementation with Cry37Aa alone displayed no statistical difference compared to the control. However, the combined provision of both toxins in the artificial diet led to mortality rates approaching 100% among CBW larvae (LC50 equal to 0.26 PPM). Additionally, we engineered transgenic cotton plants by introducing cry23Aa and cry37Aa genes under control of the flower bud-specific pGhFS4 and pGhFS1 promoters, respectively. Seven transgenic cotton events expressing high levels of Cry23Aa and Cry37Aa toxins in flower buds were selected for greenhouse bioassays, and the mortality rate of CBW larvae feeding on their T0 and T1 generations ranged from 75% to 100%. Our in silico analyses unveiled that Cry23Aa displays all the hallmark characteristics of ß-pore-forming toxins (ß-PFTs) that bind to sugar moieties in glycoproteins. Intriguingly, we also discovered a distinctive zinc-binding site within Cry23Aa, which appears to be involved in protein-protein interactions. Finally, we discuss the major structural features of Cry23Aa that likely play a role in the toxin's mechanism of action. In view of the low LC50 for CBW larvae and the significant accumulation of these toxins in the flower buds of both T0 and T1 plants, we anticipate that through successive generations of these transgenic lines, cotton plants engineered to overexpress cry23Aa and cry37Aa hold promise for effectively managing CBW infestations in cotton crops.


Subject(s)
Bacillus thuringiensis Toxins , Bacterial Proteins , Endotoxins , Gossypium , Hemolysin Proteins , Larva , Plants, Genetically Modified , Weevils , Gossypium/genetics , Gossypium/parasitology , Animals , Weevils/genetics , Plants, Genetically Modified/genetics , Endotoxins/genetics , Endotoxins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/pharmacology , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Hemolysin Proteins/pharmacology , Larva/drug effects , Bacillus thuringiensis/genetics , Pest Control, Biological
3.
Methods Mol Biol ; 2788: 209-226, 2024.
Article in English | MEDLINE | ID: mdl-38656516

ABSTRACT

Coffea arabica L. is a crucial crop globally, but its genetic homogeneity leads to its susceptibility to diseases and pests like the coffee berry borer (CBB). Chemical and cultural control methods are difficult due to the majority of the CBB life cycle taking place inside coffee beans. One potential solution is the use of the gene cyt1Aa from Bacillus thuringiensis as a biological insecticide. To validate candidate genes against CBB, a simple, rapid, and efficient transient expression system is necessary. This study uses cell suspensions as a platform for expressing the cyt1Aa gene in the coffee genome (C. arabica L. var. Catuaí) to control CBB. The Agrobacterium tumefaciens strain GV3101::pMP90 containing the bar and cyt1Aa genes are used to genetically transform embryogenic cell suspensions. PCR amplification of the cyt1Aa gene is observed 2, 5, and 7 weeks after infection. This chapter describes a protocol that can be used for the development of resistant varieties against biotic and abiotic stresses and CRISPR/Cas9-mediated genome editing.


Subject(s)
Agrobacterium tumefaciens , Coffea , Coffea/genetics , Agrobacterium tumefaciens/genetics , CRISPR-Cas Systems , Plants, Genetically Modified/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacillus thuringiensis/genetics , Endotoxins/genetics , Bacillus thuringiensis Toxins , Gene Editing/methods , Hemolysin Proteins/genetics , Gene Expression Regulation, Plant , Transformation, Genetic , Coffee/genetics
4.
Plant Physiol Biochem ; 208: 108473, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38430784

ABSTRACT

Alternative splicing (AS) was an important post-transcriptional mechanism that involved in plant resistance to adversity stress. WRKY transcription factors function as transcriptional activators or repressors to modulate plant growth, development and stress response. However, the role of alternate splicing of WRKY in cold tolerance is poorly understood in tea plants. In this study, we found that the CsWRKY21 transcription factor, a member of the WRKY IId subfamily, was induced by low temperature. Subcellular localization and transcriptional activity assays showed that CsWRKY21 localized to the nucleus and had no transcriptional activation activity. Y1H and dual-luciferase reporter assays showed that CsWRKY21 suppressed expression of CsABA8H and CsUGT by binding with their promoters. Transient overexpression of CsABA8H and CsUGT reduced abscisic acid (ABA) content in tobacco leaves. Furthermore, we discovered that CsWRKY21 undergoes AS in the 5'UTR region. The AS transcript CsWRKY21-b was induced at low temperature, up to 6 folds compared to the control, while the full-length CsWRKY21-a transcript did not significantly change. Western blot analysis showed that the retention of introns in the 5'UTR region of CsWRKY21-b led to higher CsWRKY21 protein content. These results revealed that alternative splicing of CsWRKY21 involved in cold tolerance of tea plant by regulating the protein expression level and then regulating the content of ABA, and provide insights into molecular mechanisms of low temperature defense mediated by AS in tea plant.


Subject(s)
Alternative Splicing , Plant Proteins , Alternative Splicing/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , 5' Untranslated Regions , Transcription Factors/genetics , Transcription Factors/metabolism , Cold Temperature , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Tea , Gene Expression Regulation, Plant , Plants, Genetically Modified/metabolism , Stress, Physiological
5.
BMC Genomics ; 25(1): 283, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38500027

ABSTRACT

MYB transcription factors play an extremely important regulatory role in plant responses to stress and anthocyanin synthesis. Cloning of potato StMYB-related genes can provide a theoretical basis for the genetic improvement of pigmented potatoes. In this study, two MYB transcription factors, StMYB113 and StMYB308, possibly related to anthocyanin synthesis, were screened under low-temperature conditions based on the low-temperature-responsive potato StMYB genes family analysis obtained by transcriptome sequencing. By analyzed the protein properties and promoters of StMYB113 and StMYB308 and their relative expression levels at different low-temperature treatment periods, it is speculated that StMYB113 and StMYB308 can be expressed in response to low temperature and can promote anthocyanin synthesis. The overexpression vectors of StMYB113 and StMYB308 were constructed for transient transformation tobacco. Color changes were observed, and the expression levels of the structural genes of tobacco anthocyanin synthesis were determined. The results showed that StMYB113 lacking the complete MYB domain could not promote the accumulation of tobacco anthocyanins, while StMYB308 could significantly promote the accumulation involved in tobacco anthocyanins. This study provides a theoretical reference for further study of the mechanism of StMYB113 and StMYB308 transcription factors in potato anthocyanin synthesis.


Subject(s)
Solanum tuberosum , Transcription Factors , Transcription Factors/metabolism , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Anthocyanins , Temperature , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Plants, Genetically Modified/genetics
6.
PLoS One ; 19(3): e0294318, 2024.
Article in English | MEDLINE | ID: mdl-38446779

ABSTRACT

Enzymatic browning poses a significant challenge that limits in vitro propagation and genetic transformation of plant tissues. This research focuses on investigating how adding antioxidant substances can suppress browning, leading to improved efficiency in transforming plant tissues using Agrobacterium and subsequent plant regeneration from rough lemon (Citrus × jambhiri). When epicotyl segments of rough lemon were exposed to Agrobacterium, they displayed excessive browning and tissue decay. This was notably different from the 'Hamlin' explants, which did not exhibit the same issue. The regeneration process failed completely in rough lemon explants, and they accumulated high levels of total phenolic compounds (TPC) and polyphenol oxidase (PPO), which contribute to browning. To overcome these challenges, several antioxidant and osmoprotectant compounds, including lipoic acid, melatonin, glycine betaine, and proline were added to the tissue culture medium to reduce the oxidation of phenolic compounds and mitigate browning. Treating epicotyl segments with 100 or 200 µM melatonin led to a significant reduction in browning and phenolic compound accumulation. This resulted in enhanced shoot regeneration, increased transformation efficiency, and reduced tissue decay. Importantly, melatonin supplementation effectively lowered the levels of TPC and PPO in the cultured explants. Molecular and physiological analyses also confirmed the successful overexpression of the CcNHX1 transcription factor, which plays a key role in imparting tolerance to salinity stress. This study emphasizes the noteworthy impact of supplementing antioxidants in achieving successful genetic transformation and plant regeneration in rough lemon. These findings provide valuable insights for developing strategies to address enzymatic browning and enhance the effectiveness of plant tissue culture and genetic engineering methods with potential applications across diverse plant species.


Subject(s)
Citrus , Melatonin , Plants, Genetically Modified , Melatonin/pharmacology , Antioxidants/pharmacology , Citrus/genetics , Agrobacterium , Catechol Oxidase , Phenols/pharmacology , Regeneration , Dietary Supplements
7.
Poult Sci ; 103(4): 103499, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38330889

ABSTRACT

Increased use of genetically modified (GM) plants in the food and feed industry has raised several concerns about the presence of unwanted genes in the food chain and potential associated health risks. In recent years, several studies have compared the nutrient contents of GM crops to conventional counterparts, and some have also tracked the fate of novel DNA fragments and proteins in the gastrointestinal (GIT) and their presence in several tissues. This study was conducted to investigate the fate of transgenic PHP19340A DNA fragment containing gm-fad2-1 (Soybean Event DP-3Ø5423-1) gene in digestive tract contents, blood, internal organs, and muscle tissues. The effects of feeding DP-3Ø5423-1 full-fat soybean meal (FFSBM) to broiler chickens on immune response and blood profiles were also evaluated on d 35. Day-old Ross 308 birds (n = 480) were randomly allocated to 24 floor pens in a 2 × 2 factorial arrangement with diet and gender as main factors. Birds were fed diets containing 20% of either DP-3Ø5423-1 or non-GM FFSBM for 35 d. Data were subjected to a 2-way ANOVA using the GLM procedure of JMP (Pro13). Based on PCR analysis, transgenic PHP19340A DNA fragment containing gm-fad2-1 gene was degraded throughout the digestive system to reach undetectable level in the cecal digesta. Moreover, there was no transgenic gene translocation to blood, organs, or muscle tissue. Feeding DP-3Ø5423-1 FFSBM to broilers had no effect on mRNA abundance of IL-1ß, IL-2, IL-6, IL-12B, IL-17A, IFNγ, TNFα, and NF-κB in the spleen or on blood profile. In conclusion, these findings indicate that the examined transgenic fragment in DP-3Ø5423-1 FFSBM progressively degraded in the GIT and did not translocate into blood or tissues. Along with the immune response and blood profile findings, it can be assumed that DP-3Ø5423-1 soybean is safe and unlikely to pose any health risks to broilers or consumers.


Subject(s)
Chickens , Glycine max , Animals , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Chickens/physiology , Diet/veterinary , Dietary Supplements , DNA/metabolism , Glycine max/genetics , Immunity , Plants, Genetically Modified/genetics , Random Allocation
8.
Plant Physiol Biochem ; 208: 108470, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38422576

ABSTRACT

Camelinasativa has considerable promise as a dedicated industrial oilseed crop. Its oil-based blends have been tested and approved as liquid transportation fuels. Previously, we utilized metabolomic and transcriptomic profiling approaches and identified metabolic bottlenecks that control oil production and accumulation in seeds. Accordingly, we selected candidate genes for the metabolic engineering of Camelina. Here we targeted the overexpression of Camelina PDCT gene, which encodes the phosphatidylcholine: diacylglycerol cholinephosphotransferase enzyme. PDCT is proposed as a gatekeeper responsible for the interconversions of diacylglycerol (DAG) and phosphatidylcholine (PC) pools and has the potential to increase the levels of TAG in seeds. To confirm whether increased CsPDCT activity in developing Camelina seeds would enhance carbon flux toward increased levels of TAG and alter oil composition, we overexpressed the CsPDCT gene under the control of the seed-specific phaseolin promoter. Camelina transgenics exhibited significant increases in seed yield (19-56%), seed oil content (9-13%), oil yields per plant (32-76%), and altered polyunsaturated fatty acid (PUFA) content compared to their parental wild-type (WT) plants. Results from [14C] acetate labeling of Camelina developing embryos expressing CsPDCT in culture indicated increased rates of radiolabeled fatty acid incorporation into glycerolipids (up to 64%, 59%, and 43% higher in TAG, DAG, and PC, respectively), relative to WT embryos. We conclude that overexpression of PDCT appears to be a positive strategy to achieve a synergistic effect on the flux through the TAG synthesis pathway, thereby further increasing oil yields in Camelina.


Subject(s)
Brassicaceae , Phosphatidylcholines , Phosphatidylcholines/metabolism , Triglycerides/metabolism , Brassicaceae/genetics , Brassicaceae/metabolism , Fatty Acids/metabolism , Seeds/genetics , Seeds/metabolism , Carbon Cycle , Plant Oils/metabolism , Plants, Genetically Modified/metabolism
9.
Int J Mol Sci ; 25(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38339223

ABSTRACT

Aralia elata (Miq.) Seem is a medicinal plant that shares a common pathway for the biosynthesis of triterpenoid saponins with Panax ginseng. Here, we transferred the dammarenediol-II synthase gene from P. ginseng (PgDDS; GenBank: AB122080.1) to A. elata. The growth of 2-year-old transgenic plants (L27; 9.63 cm) was significantly decreased compared with wild-type plants (WT; 74.97 cm), and the leaflet shapes and sizes of the transgenic plants differed from those of the WT plants. Based on a terpene metabolome analysis of leaf extracts from WT, L13, and L27 plants, a new structural skeleton for ursane-type triterpenoid saponins was identified. Six upregulated differentially accumulated metabolites (DAMs) were detected, and the average levels of Rg3 and Re in the leaves of the L27 plants were 42.64 and 386.81 µg/g, respectively, increased significantly compared with the WT plants (15.48 and 316.96 µg/g, respectively). Thus, the expression of PgDDS in A. elata improved its medicinal value.


Subject(s)
Aralia , Plants, Medicinal , Saponins , Triterpenes , Aralia/genetics , Aralia/chemistry , Saponins/chemistry , Triterpenes/chemistry , Plants, Medicinal/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Plant Leaves/metabolism
10.
Plant Cell Rep ; 43(2): 47, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302779

ABSTRACT

KEY MESSAGE: The first in-depth characterization of a subfamily III Snakin/GASA member was performed providing experimental evidence on promoter activity and subcellular localization and unveiling a role of potato Snakin-3 in defense Snakin/GASA proteins share 12 cysteines in conserved positions in the C-terminal region. Most of them were involved in different aspects of plant growth and development, while a small number of these peptides were reported to have antimicrobial activity or participate in abiotic stress tolerance. In potato, 18 Snakin/GASA genes were identified and classified into three groups based on phylogenetic analysis. Snakin-1 and Snakin-2 are members of subfamilies I and II, respectively, and were reported to be implicated not only in defense against pathogens but also in plant development. In this work, we present the first in-depth characterization of Snakin-3, a member of the subfamily III within the Snakin/GASA gene family of potato. Transient co-expression of Snakin-3 fused to the green fluorescent protein and organelle markers revealed that it is located in the endoplasmic reticulum. Furthermore, expression analyses via pSnakin-3::GUS transgenic plants showed GUS staining mainly in roots and vascular tissues of the stem. Moreover, GUS expression levels were increased after inoculation with Pseudomonas syringae pv. tabaci or Pectobacterium carotovorum subsp. carotovorum and also after auxin treatment mainly in roots and stems. To gain further insights into the function of Snakin-3 in planta, potato overexpressing lines were challenged against P. carotovorum subsp. carotovorum showing enhanced tolerance to this bacterial pathogen. In sum, here we report the first functional characterization of a Snakin/GASA gene from subfamily III in Solanaceae. Our findings provide experimental evidence on promoter activity and subcellular localization and reveal a role of potato Snakin-3 in plant defense.


Subject(s)
Solanum tuberosum , Solanum tuberosum/metabolism , Plant Proteins/metabolism , Phylogeny , Plants, Genetically Modified/genetics , Peptides/genetics
11.
Int J Mol Sci ; 25(2)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38256065

ABSTRACT

Our previous study showed that COPPER-CONTAINING AMINE OXIDASE (CuAO) and AMINOALDEHYDE DEHYDROGENASE (AMADH) could regulate the accumulation of γ-aminobutyric acid (GABA) in tea through the polyamine degradation pathway. However, their biological function in drought tolerance has not been determined. In this study, Camellia sinensis (Cs) CsCuAO1 associated with CsAMADH1 conferred drought tolerance, which modulated GABA levels in tea plants. The results showed that exogenous GABA spraying effectively alleviated the drought-induced physical damage. Arabidopsis lines overexpressing CsCuAO1 and CsAMADH1 exhibited enhanced resistance to drought, which promoted the synthesis of GABA and putrescine by stimulating reactive oxygen species' scavenging capacity and stomatal movement. However, the suppression of CsCuAO1 or CsAMADH1 in tea plants resulted in increased sensitivity to drought treatment. Moreover, co-overexpressing plants increased GABA accumulation both in an Agrobacterium-mediated Nicotiana benthamiana transient assay and transgenic Arabidopsis plants. In addition, a GABA transporter gene, CsGAT1, was identified, whose expression was strongly correlated with GABA accumulation levels in different tissues under drought stress. Taken together, CsCuAO1 and CsAMADH1 were involved in the response to drought stress through a dynamic GABA-putrescine balance. Our data will contribute to the characterization of GABA's biological functions in response to environmental stresses in plants.


Subject(s)
Arabidopsis , Camellia sinensis , Drought Resistance , Arabidopsis/genetics , Camellia sinensis/genetics , Putrescine , Plants, Genetically Modified/genetics , gamma-Aminobutyric Acid , Tea
12.
BMC Plant Biol ; 24(1): 1, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38163871

ABSTRACT

BACKGROUND: Wheat is one of the main grain crops in the world, and the tiller number is a key factor affecting the yield of wheat. Phosphorus is an essential element for tiller development in wheat. However, due to decreasing phosphorus content in soil, there has been increasing use of phosphorus fertilizer, while imposing risk of soil and water pollution. Hence, it is important to identify low phosphorus tolerance genes and utilize them for stress resistance breeding in wheat. RESULTS: We subjected the wheat variety Kenong 199 (KN199) to low phosphorus stress and observed a reduced tiller number. Using transcriptome analysis, we identified 1651 upregulated genes and 827 downregulated of genes after low phosphorus stress. The differentially expressed genes were found to be enriched in the enzyme activity regulation related to phosphorus, hormone signal transduction, and ion transmembrane transport. Furthermore, the transcription factor analysis revealed that TaWRKY74s were important for low phosphorus tolerance. TaWRKY74s have three alleles: TaWRKY74-A, TaWRKY74-B, and TaWRKY74-D, and they all belong to the WRKY family with conserved WRKYGQK motifs. These proteins were found to be located in the nucleus, and they were expressed in axillary meristem, shoot apical meristem(SAM), young leaves, leaf primordium, and spikelet primordium. The evolutionary tree showed that TaWRKY74s were closely related to OsWRKY74s in rice. Moreover, TaWRKY74s-RNAi transgenic plants displayed significantly fewer tillers compared to wild-type plants under normal conditions. Additionally, the tiller numebr of the RNAi transgenic plants was also significantly lower than that of the wild-type plants under low-phosphorus stress, and increased the decrease amplitude. This suggestd that TaWRKY74s are related to phosphorus response and can affect the tiller number of wheat. CONCLUSIONS: The results of this research showed that TaWRKY74s were key genes in wheat response to low phosphorus stress, which might regulate wheat tiller number through abscisic acid (ABA) and auxin signal transduction pathways. This research lays the foundation for further investigating the mechanism of TaWRKY74s in the low phosphorus environments and is significant for wheat stress resistance breeding.


Subject(s)
Plant Breeding , Triticum , Triticum/metabolism , Gene Expression Profiling , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Phosphorus/metabolism , Soil , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
13.
BMC Genomics ; 25(1): 10, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38166714

ABSTRACT

BACKGROUND: Plant U-box (PUB) E3 ubiquitin ligases have vital effects on various biological processes. Therefore, a comprehensive and systematic identification of the members of the U-box gene family in potato will help to understand the evolution and function of U-box E3 ubiquitin ligases in plants. RESULTS: This work identified altogether 74 PUBs in the potato (StPUBs) and examined their gene structures, chromosomal distributions, and conserved motifs. There were seventy-four StPUB genes on ten chromosomes with diverse densities. As revealed by phylogenetic analysis on PUBs within potato, Arabidopsis, tomato (Solanum lycopersicum), cabbage (Brassica oleracea), rice (Oryza sativa), and corn (Zea mays), were clustered into eight subclasses (C1-C8). According to synteny analysis, there were 40 orthologous StPUB genes to Arabidopsis, 58 to tomato, 28 to cabbage, 7 to rice, and 8 to corn. In addition, RNA-seq data downloaded from PGSC were utilized to reveal StPUBs' abiotic stress responses and tissue-specific expression in the doubled-monoploid potato (DM). Inaddition, we performed RNA-seq on the 'Atlantic' (drought-sensitive cultivar, DS) and the 'Qingshu NO.9' (drought-tolerant cultivar, DT) in early flowering, full-blooming, along with flower-falling stages to detect genes that might be involved in response to drought stress. Finally, quantitative real-time PCR (qPCR) was carried out to analyze three candidate genes for their expression levels within 100 mM NaCl- and 10% PEG 6000 (w/v)-treated potato plantlets for a 24-h period. Furthermore, we analyzed the drought tolerance of StPUB25 transgenic plants and found that overexpression of StPUB25 significantly increased peroxidase (POD) activity, reduced ROS (reactive oxygen species) and MDA (malondialdehyde) accumulation compared with wild-type (WT) plants, and enhancing drought tolerance of the transgenic plants. CONCLUSION: In this study, three candidate genes related to drought tolerance in potato were excavated, and the function of StPUB25 under drought stress was verified. These results should provide valuable information to understand the potato StPUB gene family and investigate the molecular mechanisms of StPUBs regulating potato drought tolerance.


Subject(s)
Arabidopsis , Solanum tuberosum , Ubiquitin-Protein Ligases/genetics , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Drought Resistance , Phylogeny , Droughts , Ubiquitins/genetics , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
14.
Plant Sci ; 340: 111974, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38199385

ABSTRACT

The AGL6 (AGMOUSE LIKE 6) gene is a member of the SEP subfamily and functions as an E-class floral homeotic gene in the development of floral organs. In this study, we cloned IiAGL6, the orthologous gene of AGL6 in Isatis indigotica. The constitutive expression of IiAGL6 in Arabidopsis thaliana resulted in a late-flowering phenotype and the development of curly leaves during the vegetative growth period. Abnormal changes in floral organ development were observed during the reproductive stage. In woad plants, suppression of IiAGL6 using TRV-VIGS (tobacco rattle virus-mediated virus-induced gene silencing) decreased the number of stamens and led to the formation of aberrant anthers. Similar changes in stamen development were also observed in miRNA-AGL6 transgenic Arabidopsis plants. Yeast two-hybrid and BiFC tests showed that IiAGL6 can interact with other MADS-box proteins in woad; thus, playing a key role in defining the identities of floral organs, particularly during stamen formation. These findings might provide novel insights and help investigate the biological roles of MADS transcription factors in I. indigotica.


Subject(s)
Arabidopsis , Isatis , Isatis/genetics , Isatis/metabolism , Plant Proteins/metabolism , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Flowers , Arabidopsis/metabolism , Pollen/genetics , Pollen/metabolism , Gene Expression Regulation, Plant , Plants, Genetically Modified/metabolism , Phylogeny
15.
Plant Cell ; 36(3): 709-726, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38000892

ABSTRACT

Fruit softening, an irreversible process that occurs during fruit ripening, can lead to losses and waste during postharvest transportation and storage. Cell wall disassembly is the main factor leading to loss of fruit firmness, and several ripening-associated cell wall genes have been targeted for genetic modification, particularly pectin modifiers. However, individual knockdown of most cell wall-related genes has had minimal influence on cell wall integrity and fruit firmness, with the notable exception of pectate lyase. Compared to pectin disassembly, studies of the cell wall matrix, the xyloglucan-cellulose framework, and underlying mechanisms during fruit softening are limited. Here, a tomato (Solanum lycopersicum) fruit ripening-associated α-expansin (SlExpansin1/SlExp1) and an endoglucanase (SlCellulase2/SlCel2), which function in the cell wall matrix, were knocked out individually and together using clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9-mediated genome editing. Simultaneous knockout of SlExp1 and SlCel2 enhanced fruit firmness, reduced depolymerization of homogalacturonan-type pectin and xyloglucan, and increased cell adhesion. In contrast, single knockouts of either SlExp1 or SlCel2 did not substantially change fruit firmness, while simultaneous overexpression of SlExp1 and SlCel2 promoted early fruit softening. Collectively, our results demonstrate that SlExp1 and SlCel2 synergistically regulate cell wall disassembly and fruit softening in tomato.


Subject(s)
Cellulase , Solanum lycopersicum , Fruit/metabolism , Solanum lycopersicum/genetics , Cellulase/genetics , Cellulase/metabolism , Plants, Genetically Modified/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Pectins/metabolism , Cell Wall/metabolism
16.
J Integr Plant Biol ; 66(1): 17-19, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38078380

ABSTRACT

A sample delivery method, modified from cut-dip-budding, uses explants with robust shoot regeneration ability, enabling transformation and gene editing in medicinal plants, bypassing tissue culture and hairy root formation. This method has potential for applications across a wide range of plant species.


Subject(s)
Gene Editing , Plants, Medicinal , Gene Editing/methods , Plants, Medicinal/genetics , Transformation, Genetic , Plants, Genetically Modified/genetics
17.
Nutr Res ; 121: 67-81, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38043437

ABSTRACT

Rice is the primary staple food for half of the world's population but is low in lysine content. Previously, we developed transgenic rice with enhanced free lysine content in rice seeds (lysine-rich rice), which was shown safe for consumption and improved the growth in rats. However, the effects of lysine-rich rice on skeletal growth and development remained unknown. In this study, we hypothesized that lysine-rich rice improved skeletal growth and development in weaning rats. Male weaning Sprague-Dawley rats received lysine-rich rice (HFL) diet, wild-type rice (WT) diet, or wild-type rice with various contents of lysine supplementation diet for 70 days. Bone microarchitectures were examined by microcomputed tomography, bone strength was investigated by mechanical test, and dynamics of bone growth were examined by histomorphometric analysis. In addition, we explored the molecular mechanism of lysine and skeletal growth through biochemical testing of growth hormone, bone turnover marker, and amino acid content of rat serum analysis, as well as in a cell culture system. Results indicated that the HFL diet improved rats' bone growth, strength, and microarchitecture compared with the WT diet group. In addition, the HFL diet increased the serum essential amino acids, growth hormone (insulin-like growth factor-1), and bone formation marker concentrations. The cell culture model showed that lysine deficiency reduced insulin-like growth factor-1 and Osterix expression, Akt/mammalian target of rapamycin signaling, and matrix mineralization, and inhibited osteoblast differentiation associated with bone growth. Our findings showed that lysine-rich rice improved skeletal growth and development in weaning rats. A further increase of rice lysine content is highly desirable to fully optimize bone growth and development.


Subject(s)
Lysine , Oryza , Rats , Male , Animals , Rats, Sprague-Dawley , Oryza/genetics , Oryza/metabolism , Plants, Genetically Modified/chemistry , Plants, Genetically Modified/metabolism , X-Ray Microtomography , Body Weight , Growth Hormone/metabolism , Mammals/metabolism
18.
J Environ Sci (China) ; 135: 669-680, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37778837

ABSTRACT

The co-occurrence of glyphosate (GLP) and aminomethylphosphonic acid (AMPA) in contaminated water, soil, sediment and plants is a cause for concern due to potential threats to the ecosystem and human health. A major route of exposure is through contact with contaminated soil and consumption of crops containing GLP and AMPA residues. However, clay-based sorption strategies for mixtures of GLP and AMPA in soil, plants and garden produce have been very limited. In this study, in vitro soil and in vivo genetically modified corn models were used to establish the proof of concept that the inclusion of clay sorbents in contaminated soils will reduce the bioavailability of GLP and AMPA in soils and their adverse effects on plant growth. Effects of chemical concentration (1-10 mg/kg), sorbent dose (0.5%-3% in soil and 0.5%-1% in plants) and duration (up to 28 days) on sorption kinetics were studied. The time course results showed a continuous GLP degradation to AMPA. The inclusion of calcium montmorillonite (CM) and acid processed montmorillonite (APM) clays at all doses significantly and consistently reduced the bioavailability of both chemicals from soils to plant roots and leaves in a dose- and time-dependent manner without detectable dissociation. Plants treated with 0.5% and 1% APM inclusion showed the highest growth rate (p ≤ 0.05) and lowest chemical bioavailability with up to 76% reduction in roots and 57% reduction in leaves. Results indicated that montmorillonite clays could be added as soil supplements to reduce hazardous mixtures of GLP and AMPA in soils and plants.


Subject(s)
Bentonite , Bioaccumulation , Herbicides , Organophosphonates , Soil Pollutants , Zea mays , Humans , Bentonite/chemistry , Clay/chemistry , Ecosystem , Herbicides/analysis , Herbicides/chemistry , Herbicides/pharmacokinetics , Soil/chemistry , Soil Pollutants/analysis , Soil Pollutants/pharmacokinetics , Zea mays/chemistry , Zea mays/physiology , Organophosphonates/analysis , Organophosphonates/chemistry , Organophosphonates/pharmacokinetics , Plants, Genetically Modified/chemistry , Plants, Genetically Modified/physiology , Bioaccumulation/physiology , Glyphosate
19.
Plant Physiol Biochem ; 206: 108294, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38159547

ABSTRACT

Plant rhamnogalacturonan lyases (RGLyases) cleave the backbone of rhamnogalacturonan I (RGI), the "hairy" pectin and polymer of the disaccharide rhamnose (Rha)-galacturonic acid (GalA) with arabinan, galactan or arabinogalactan side chains. It has been suggested that RGLyases could participate in remodeling cell walls during fruit softening, but clear evidence has not been reported. To investigate the role of RGLyases in strawberry softening, a genome-wide analysis of RGLyase genes in the genus Fragaria was performed. Seventeen genes encoding RGLyases with functional domains were identified in Fragaria × ananassa. FaRGLyase1 was the most expressed in the ripe receptacle of cv. Chandler. Transgenic strawberry plants expressing an RNAi sequence of FaRGLyase1 were obtained. Three transgenic lines yielded ripe fruits firmer than controls without other fruit quality parameters being significantly affected. The highest increase in firmness achieved was close to 32%. Cell walls were isolated from ripe fruits of two selected lines. The amount of water-soluble and chelated pectins was higher in transgenic lines than in the control. A carbohydrate microarray study showed a higher abundance of RGI epitopes in pectin fractions and in the cellulose-enriched fraction obtained from transgenic lines. Sixty-seven genes were differentially expressed in transgenic ripe fruits when compared with controls. These genes were involved in various physiological processes, including cell wall remodeling, ion homeostasis, lipid metabolism, protein degradation, stress response, and defense. The transcriptomic changes observed in FaRGLyase1 plants suggest that senescence was delayed in transgenic fruits.


Subject(s)
Fragaria , Fragaria/metabolism , Fruit/genetics , Fruit/metabolism , Rhamnogalacturonans/metabolism , Pectins/metabolism , Plants, Genetically Modified/metabolism , Polysaccharide-Lyases/genetics , Polysaccharide-Lyases/metabolism , Cell Wall/metabolism , Gene Expression Regulation, Plant
20.
Int J Mol Sci ; 24(22)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38003283

ABSTRACT

Potato is an important food crop worldwide. Brassinosteroids (BRs) are widely involved in plant growth and development, and BIN2 (brassinosteroid insensitive 2) is the negative regulator of their signal transduction. However, the function of BIN2 in the formation of potato tubers remains unclear. In this study, transgenic methods were used to regulate the expression level of StBIN2 in plants, and tuber related phenotypes were analyzed. The overexpression of StBIN2 significantly increased the number of potatoes formed per plant and the weight of potatoes in transgenic plants. In order to further explore the effect of StBIN2 on the formation of potato tubers, this study analyzed BRs, ABA hormone signal transduction, sucrose starch synthase activity, the expression levels of related genes, and interacting proteins. The results show that the overexpression of StBIN2 enhanced the downstream transmission of ABA signals. At the same time, the enzyme activity of the sugar transporter and the expression of synthetic genes were increased in potato plants overexpressing StBIN2, which also demonstrated the upregulation of sucrose and the expression of the starch synthesis gene. Apparently, StBIN2 affected the conversion and utilization of key substances such as glucose, sucrose, and starch in the process of potato formation so as to provide a material basis and energy preparation for forming potatoes. In addition, StBIN2 also promoted the expression of the tuber formation factors StSP6A and StS6K. Altogether, this investigation enriches the study on the mechanism through which StBIN2 regulates potato tuber formation and provides a theoretical basis for achieving a high and stable yield of potato.


Subject(s)
Solanum tuberosum , Solanum tuberosum/metabolism , Sugars/metabolism , Carbohydrates , Starch/metabolism , Sucrose/metabolism , Plant Tubers/metabolism , Hormones/metabolism , Signal Transduction , Plants, Genetically Modified/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL