Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
BMC Plant Biol ; 24(1): 173, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38443808

ABSTRACT

Polygonatum cyrtonema Hua is a traditional Chinese medicinal plant acclaimed for its therapeutic potential in diabetes and various chronic diseases. Its rhizomes are the main functional parts rich in secondary metabolites, such as flavonoids and saponins. But their quality varies by region, posing challenges for industrial and medicinal application of P. cyrtonema. In this study, 482 metabolites were identified in P. cyrtonema rhizome from Qingyuan and Xiushui counties. Cluster analysis showed that samples between these two regions had distinct secondary metabolite profiles. Machine learning methods, specifically support vector machine-recursive feature elimination and random forest, were utilized to further identify metabolite markers including flavonoids, phenolic acids, and lignans. Comparative transcriptomics and weighted gene co-expression analysis were performed to uncover potential candidate genes including CHI, UGT1, and PcOMT10/11/12/13 associated with these compounds. Functional assays using tobacco transient expression system revealed that PcOMT10/11/12/13 indeed impacted metabolic fluxes of the phenylpropanoid pathway and phenylpropanoid-related metabolites such as chrysoeriol-6,8-di-C-glucoside, syringaresinol-4'-O-glucopyranosid, and 1-O-Sinapoyl-D-glucose. These findings identified metabolite markers between these two regions and provided valuable genetic insights for engineering the biosynthesis of these compounds.


Subject(s)
Polygonatum , Polygonatum/genetics , Cluster Analysis , Flavonoids , Gene Expression Profiling , Machine Learning
2.
PLoS One ; 18(8): e0290605, 2023.
Article in English | MEDLINE | ID: mdl-37651363

ABSTRACT

Polygonatum cyrtonema Hua is a perennial herbaceous plant of the Polygonatum genus, belonging to the Liliaceae family, with significant medicinal and nutritional value. In China, this species is a traditional medicinal and edible herb with a long history of application and is widely appreciated by the people. However, as the demand for medicinal herbs continues to grow, excessive harvesting has led to the depletion of wild resources and the risk of genetic erosion. In addition, the chaotic cultivation of varieties and the lack of high quality germplasm resources have led to inconsistent quality of medical materials. Therefore, it is urgent to conduct genetic diversity evaluation of this species and establish a sound conservation plan. This study assessed the genetic diversity and population structure of 96 samples collected from seven regions in China using the simple sequence repeat (SSR) molecular marker technology. In this study, a total of 60 alleles (Na) were detected across the 10 polymorphic SSR markers used, with an average of 6.0 alleles generated per locus. The values of polymorphic information content (PIC) values ranged from 0.3396 to 0.8794, with an average value of 0.6430. The average value of the effective number of alleles (Ne) was 2.761, and the average value of the Shannon's information index (I) was 1.196. The population structure analysis indicates that the Polygonatum cyrtonema Hua germplasm can be classified into three subpopulations (JZ, QY, JD) at the molecular level, which corresponds to the previous subgroups identified based on individual plant phenotypic traits. Analysis of Molecular Variance (AMOVA) showed that 74% of the genetic variation was between individuals within populations in different regions. The phylogenetic analysis of the 96 germplasm samples divided them into three main populations. The QY and JD subpopulations are largely clustered together, which could be attributed to their mountainous distribution and the local climate environment. The genetic differentiation coefficient (Fst) value was low at 0.065, indicating relatively low population differentiation. The ratio of the genetic differentiation coefficient (Fst) between the JZ population and the other two populations (QY and JD) is much higher than the ratio between the QY and JD populations. Based on the clustering results and the ratio of the genetic differentiation coefficient (Fst), it can be inferred that the genetic relationship between the QY and JD subpopulations is closer, with a certain degree of genetic differentiation from the JZ subpopulation. This study supports the conservation of germplasm resources of Polygonatum cyrtonema Hua in China and provides new parental material for germplasm genetic improvement and breeding programs.


Subject(s)
Polygonatum , Humans , Polygonatum/genetics , Phylogeny , Plant Breeding , China , Microsatellite Repeats/genetics , Genetic Variation
3.
Sci Rep ; 13(1): 7237, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37142659

ABSTRACT

Polygonatum Miller belongs to the tribe Polygonateae of Asparagaceae. The horizontal creeping fleshy roots of several species in this genus serve as traditional Chinese medicine. Previous studies have mainly reported the size and gene contents of the plastomes, with little information on the comparative analysis of the plastid genomes of this genus. Additionally, there are still some species whose chloroplast genome information has not been reported. In this study, the complete plastomes of six Polygonatum were sequenced and assembled, among them, the chloroplast genome of P. campanulatum was reported for the first time. Comparative and phylogenetic analyses were then conducted with the published plastomes of three related species. Results indicated that the whole plastome length of the Polygonatum species ranged from 154,564 bp (P. multiflorum) to 156,028 bp (P. stenophyllum) having a quadripartite structure of LSC and SSC separated by two IR regions. A total of 113 unique genes were detected in each of the species. Comparative analysis revealed that gene content and total GC content in these species were highly identical. No significant contraction or expansion was observed in the IR boundaries among all the species except P. sibiricum1, in which the rps19 gene was pseudogenized owing to incomplete duplication. Abundant long dispersed repeats and SSRs were detected in each genome. There were five remarkably variable regions and 14 positively selected genes were identified among Polygonatum and Heteropolygonatum. Phylogenetic results based on chloroplast genome strongly supported the placement of P. campanulatum with alternate leaves in sect. Verticillata, a group characterized by whorled leaves. Moreover, P. verticillatum and P. cyrtonema were displayed as paraphyletic. This study revealed that the characters of plastomes in Polygonatum and Heteropolygonatum maintained a high degree of similarity. Five highly variable regions were found to be potential specific DNA barcodes in Polygonatum. Phylogenetic results suggested that leaf arrangement was not suitable as a basis for delimitation of subgeneric groups in Polygonatum and the definitions of P. cyrtonema and P. verticillatum require further study.


Subject(s)
Asparagaceae , Genome, Chloroplast , Genome, Plastid , Polygonatum , Phylogeny , Genome, Chloroplast/genetics , Polygonatum/genetics , Asparagaceae/genetics
4.
Genome ; 66(4): 80-90, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36763968

ABSTRACT

Polygonatum cyrtonema Hua is a traditional Chinese herb medicine, and it is widely distributed in China. The intrageneric taxonomy and phylogenetic relationships within Polygonatum have long been controversial due to their morphological similarity and lacking special DNA barcodes. In this paper, the complete chloroplast genome is a relatively conserved quadripartite structure including a large single copy region of 84 711 bp, a small single copy region of 18 210 bp, and a pair of inverted repeats region of 26 142 bp. A total of 342 simple sequence repeats were identified, and most of them were found to be composed of A/T, including 126 mono-nucleotides and 179 di-nucleotides. Nucleotide diversity was analyzed and eight highly variable regions (psbl∼trnT-CGU, atpF∼atpH, trnT-GGU∼psbD, psaJ∼rps20, trnL-UAG∼ndhD, ndhG∼ndhl, ndhA, and rpl32∼ccsA) were identified as potential molecular markers. Phylogenetic analysis based on the whole chloroplast genome showed that P. cyrtonema, within the family Asparagaceae, is closely related to Polygonatum sibiricum and Polygonatum kingianum. The sequence matK, trnT-GGU & ccsA, and ndhG∼ndhA were identified as three DNA barcodes. The assembly and comparative analysis of P. cyrtonema complete chloroplast genome will provide essential molecular information about the evolution and molecular biology for further study.


Subject(s)
Genome, Chloroplast , Plants, Medicinal , Polygonatum , Phylogeny , Polygonatum/genetics , Plants, Medicinal/genetics , China
5.
BMC Plant Biol ; 22(1): 163, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35365083

ABSTRACT

BACKGROUND: The rhizome of Polygonatum kingianum Coll. et Hemsl (P. kingianum) is a crucial traditional Chinese medicine, but severe bud dormancy occurs during early rhizome development. Low temperature is a positive factor affecting dormancy release, whereas the variation in carbohydrates during dormancy release has not been investigated systematically. Therefore, the sugar content, related metabolic pathways and gene co-expression were analysed to elucidate the regulatory mechanism of carbohydrates during dormancy release in the P. kingianum rhizome bud. RESULTS: During dormancy transition, starch and sucrose (Suc) exhibited opposing trends in the P. kingianum rhizome bud, representing a critical indicator of dormancy release. Galactose (Gal) and raffinose (Raf) were increased in content and synthesis. Glucose (Glc), cellulose (Cel), mannose (Man), arabinose (Ara), rhamnose (Rha) and stachyose (Sta) showed various changes, indicating their different roles in breaking rhizome bud dormancy in P. kingianum. At the beginning of dormancy release, Glc metabolism may be dominated by anaerobic oxidation (glycolysis followed by ethanol fermentation). After entering the S3 stage, the tricarboxylic acid cycle (TCA) and pentose phosphate pathway (PPP) were may be more active possibly. In the gene co-expression network comprising carbohydrates and hormones, HYD1 was identified as a hub gene, and numerous interactions centred on STS/SUS were also observed, suggesting the essential role of brassinosteroids (BRs), Raf and Suc in the regulatory network. CONCLUSION: We revealed cold-responsive genes related to carbohydrate metabolism, suggesting regulatory mechanisms of sugar during dormancy release in the P. kingianum rhizome bud. Additionally, gene co-expression analysis revealed possible interactions between sugar and hormone signalling, providing new insight into the dormancy release mechanism in P. kingianum rhizome buds.


Subject(s)
Polygonatum , Gene Expression Regulation, Plant , Humans , Plant Dormancy/genetics , Plant Proteins/genetics , Polygonatum/genetics , Polygonatum/metabolism , Rhizome/metabolism , Sugars
6.
BMC Plant Biol ; 21(1): 537, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34781887

ABSTRACT

BACKGROUND: Polygonatum kingianum Coll. et Hemsl. is an important plant in Traditional Chinese Medicine. The extracts from its tubers are rich in polysaccharides and other metabolites such as saponins. It is a well-known concept that growing medicinal plants in semi-arid (or drought stress) increases their natural compounds concentrations. This study was conducted to explore the morpho-physiological responses of P. kingianum plants and transcriptomic signatures of P. kingianum tubers exposed to mild, moderate, and severe drought and rewatering. RESULTS: The stress effects on the morpho-physiological parameters were dependent on the intensity of the drought stress. The leaf area, relative water content, chlorophyll content, and shoot fresh weight decreased whereas electrolyte leakage increased with increase in drought stress intensity. A total of 53,081 unigenes were obtained; 59% of which were annotated. We observed that 1352 and 350 core genes were differentially expressed in drought and rewatering, respectively. Drought stress driven differentially expressed genes (DEGs) were enriched in phenylpropanoid biosynthesis, flavonoid biosynthesis, starch and sucrose metabolism, and stilbenoid diarylheptanoid and gingerol biosynthesis, and carotenoid biosynthesis pathways. Pathways such as plant-pathogen interaction and galactose metabolism were differentially regulated between severe drought and rewatering. Drought reduced the expression of lignin, gingerol, and flavonoid biosynthesis related genes and rewatering recovered the tubers from stress by increasing the expression of the genes. Increased expression of carotenoid biosynthesis pathway related genes under drought suggested their important role in stress endurance. An increase in starch and sucrose biosynthesis was evident from transcriptomic changes under drought stress. Rewatering recovered the drought affected tubers as evident from the contrasting expression profiles of genes related to these pathways. P. kingianum tuber experiences an increased biosynthesis of sucrose, starch, and carotenoid under drought stress. Drought decreases the flavonoids, phenylpropanoids, gingerol, and lignin biosynthesis. These changes can be reversed by rewatering the P. kingianum plants. CONCLUSIONS: These results provide a transcriptome resource for P. kingianum and expands the knowledge on the effect of drought and rewatering on important pathways. This study also provides a large number of candidate genes that could be manipulated for drought stress tolerance and managing the polysaccharide and secondary metabolites' contents in P. kingianum.


Subject(s)
Polygonatum/metabolism , Transcriptome/genetics , Carotenoids/metabolism , Catechols/metabolism , Droughts , Fatty Alcohols/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Leaves/genetics , Plant Leaves/metabolism , Polygonatum/genetics
7.
BMC Plant Biol ; 21(1): 362, 2021 Aug 07.
Article in English | MEDLINE | ID: mdl-34364388

ABSTRACT

BACKGROUND: The root rot of fragrant solomonseal (Polygonatum odoratum) has occurred frequently in the traditional P. odoratum cultivating areas in recent years, causing a heavy loss in yield and quality. The phenolic acids in soil, which are the exudates from the P. odoratum root, act as allelochemicals that contribute to the consecutive monoculture problem (CMP) of the medicinal plant. The aim of this study was to get a better understanding of P. odoratum CMP. RESULTS: The phenolic acid contents, the nutrient chemical contents, and the enzyme activities related to the soil nutrient metabolism in the first cropping (FC) soil and continuous cropping (CC) soil were determined, and the differentially expressed genes (DEGs) related to the regulation of the phenolic acids in roots were analyzed. The results showed that five low-molecule-weight phenolic acids were detected both in the CC soil and FC soil, but the phenolic acid contents in the CC soil were significantly higher than those in the FC soil except vanillic acid. The contents of the available nitrogen, available phosphorus, and available potassium in the CC soil were significantly decreased, and the activities of urease and sucrase in the CC soil were significantly decreased. The genomic analysis showed that the phenolic acid anabolism in P. odoratum in the CC soil was promoted. These results indicated that the phenolic acids were accumulated in the CC soil, the nutrient condition in the CC soil deteriorated, and the nitrogen metabolism and sugar catabolism of the CC soil were lowered. Meantime, the anabolism of phenolic acids was increased in the CC plant. CONCLUSIONS: The CC system promoted the phenolic acid anabolism in P. odoratum and made phenolic acids accumulate in the soil.


Subject(s)
Agriculture/methods , Hydroxybenzoates/analysis , Polygonatum/genetics , Soil/chemistry , Enzymes/analysis , Gene Expression Profiling , Gene Expression Regulation, Plant , Hydroxybenzoates/metabolism , Nitrogen/analysis , Phosphorus/analysis , Plant Proteins/genetics , Plants, Medicinal , Polygonatum/metabolism , Rhizosphere , Sequence Analysis, RNA
8.
Cell Mol Biol (Noisy-le-grand) ; 66(2): 47-52, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32415926

ABSTRACT

Polygonatum odoratum is a historically traditional Chinese medicine plant. However, the consecutive monoculture problem (CMP) widespread in other Chinese medicine limiting their cultivation on a large scale. In this study, the physiological data showed the adverse effect of CMP on the growth of P. odoratum under the consecutive cropping (CC) compared with the first cropping (FC). Then the high-throughput sequencing of miRNA and mRNA libraries of leaves and roots from FC and CC P. odoratum plants identified 671 differentially expressed genes (DEGs) and 184 differentially expressed miRNAs and revealed that the DEGs and target genes of the miRNAs were mainly involved in starch and sucrose metabolism, phenylpropanoid and brassinosteroid biosynthesis. The KEGG analysis revealed that the DEGs between CC and FC roots were enriched in the plant-pathogen interaction pathway. This study provided the expression regulation of genes related to CMP of P. odoratum but also suggested that CMP may result in the serious damage of pathogens to roots and cause the slow growth in the consecutive cropping plants.


Subject(s)
MicroRNAs/metabolism , Polygonatum/genetics , Transcriptome , Gene Expression Regulation, Plant , Medicine, Chinese Traditional , Plant Cells/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Polygonatum/cytology , Polygonatum/metabolism , RNA, Plant/metabolism
9.
Zhongguo Zhong Yao Za Zhi ; 45(1): 85-91, 2020 Jan.
Article in Chinese | MEDLINE | ID: mdl-32237415

ABSTRACT

Polygonatum cyrtonema belongs to the plant family Liliaceae, and its dried rhizome is one of the sources of Chinese traditional medicine of Polygonati Rhizoma. It possesses the dual function as both medicine and food. Its main chemical components are polysaccharides and saponins. In order to understand the biosynthesis pathway of polysaccharides and diosgenin in P. cyrtonema, the corresponding transcriptomic data were obtained by extracting and sequencing the RNA of four parts of P. cyrtonema, namely, leaves, stems, rhizomes and roots. By adopting BGISEQ-500 sequencing platform, 42.03 Gb data were retrieved. Subsequently, the de novo assembly was carried out by Trinity software to obtain 137 233 transcripts, of which 68.13% of unigenes were annotated in seven databases including KEGG, GO, NR, NT, SwissProt, Pfam and KOG. Transcripts that may be involved in the biosynthesis of polysaccharides and diosgenin were analyzed by data mining. With help of qPCR, we validated expression data of four genes that were possibly involved in the biosynthesis of target metabolites. This experiment provides data for the study of biosynthetic pathways of P. cyrtonema secondary metabolites and the clarification of related structural gene functions.


Subject(s)
Diosgenin/metabolism , Polygonatum/metabolism , Polysaccharides/biosynthesis , Transcriptome , Biosynthetic Pathways , Gene Expression Profiling , Phytochemicals/biosynthesis , Polygonatum/genetics
10.
Fitoterapia ; 135: 52-63, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30999023

ABSTRACT

Steroidal saponins, one of the most diverse groups of plant-derived natural products, elicit biological and pharmacological activities; however, the genes involved in their biosynthesis and the corresponding biosynthetic pathway in monocotyledon plants remain unclear. This study aimed to identify genes involved in the biosynthesis of steroidal saponins by performing a comparative analysis among transcriptomes of Paris polyphylla var. chinensis (PPC), Ypsilandra thibetica (YT), and Polygonatum kingianum (PK). De novo transcriptome assemblies generated 57,537, 140,420, and 151,773 unigenes from PPC, YT, and PK, respectively, of which 56.54, 47.81, and 44.30% were successfully annotated, respectively. Among the transcriptomes for PPC, YT, and PK, we identified 194, 169, and 131; 17, 14, and 26; and, 80, 122, and 113 unigenes corresponding to terpenoid backbone biosynthesis; sesquiterpenoid and triterpenoid biosynthesis; and, steroid biosynthesis pathways, respectively. These genes are putatively involved in the biosynthesis of cholesterol that is the primary precursor of steroidal saponins. Phylogenetic analyses indicated that lanosterol synthase may be exclusive to dicotyledon plant species, and the cytochrome P450 unigenes were closely related to clusters CYP90B1 and CYP734A1, which are UDP-glycosyltransferases unigenes homologous with the UGT73 family. Thus, unigenes of ß-glucosidase may be candidate genes for catalysis of later period modifications of the steroidal saponin skeleton. Our data provide evidence to support the hypothesis that monocotyledons biosynthesize steroidal saponins from cholesterol via the cycloartenol pathway.


Subject(s)
Liliaceae/genetics , Melanthiaceae/genetics , Phytosterols/biosynthesis , Polygonatum/genetics , Saponins/biosynthesis , Transcriptome , Biosynthetic Pathways , Cytochrome P-450 Enzyme System/genetics , Gene Expression Profiling , Liliaceae/chemistry , Liliaceae/metabolism , Melanthiaceae/chemistry , Melanthiaceae/metabolism , Molecular Structure , Phylogeny , Phytosterols/chemistry , Phytosterols/genetics , Polygonatum/chemistry , Polygonatum/metabolism , Saponins/chemistry , Saponins/genetics , Triterpenes
11.
Plant Mol Biol ; 99(3): 205-217, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30627860

ABSTRACT

KEY MESSAGE: We identified three dormant stages of Polygonatum kingianum and changes that occurred during dormancy transition in the following aspects including cell wall and hormones, as well as interaction among them. Polygonatum kingianum Coll.et Hemsl (P. kingianum) is an important traditional Chinese medicine, but the mechanism of its rhizome bud dormancy has not yet been studied systematically. In this study, three dormancy phases were induced under controlled conditions, and changes occurring during the transition were examined, focusing on phytohormones and the cell wall. As revealed by HPLC-MS (High Performance Liquid Chromatography-Mass Spectrometry) analysis, the endo- to non-dormancy transition was association with a reduced abscisic acid (ABA)/gibberellin (GA3) ratio, a decreased level of auxin (IAA) and an increased level of trans-zeatin (tZR). Transmission electron microscopy showed that plasmodesmata (PDs) and the cell wall of the bud underwent significant changes between endo- and eco-dormancy. A total of 95,462 differentially expressed genes (DEGs) were identified based on transcriptomics, and clustering and principal component analysis confirmed the different physiological statuses of the three types of bud samples. Changes in the abundance of transcripts associated with IAA, cytokinins (CTKs), GA, ABA, brassinolide (BR), jasmonic acid (JA), ethylene, salicylic acid (SA), PDs and cell wall-loosening factors were analysed during the bud dormancy transition in P. kingianum. Furthermore, nitrilase 4 (NIT4) and tryptophan synthase alpha chain (TSA1), which are related to IAA synthesis, were identified as hub genes of the co-expression network, and strong interactions between hormones and cell wall-related factors were observed. This research will provide a good model for chilling-treated rhizome bud dormancy in P. kingianum and cultivation of this plant.


Subject(s)
Cell Wall/genetics , Gene Expression Regulation, Plant , Gene Regulatory Networks , Indoleacetic Acids/metabolism , Plant Dormancy/genetics , Plant Growth Regulators/genetics , Polygonatum/genetics , Rhizome/genetics , Abscisic Acid/genetics , Abscisic Acid/metabolism , Brassinosteroids/metabolism , Cell Wall/metabolism , Cell Wall/ultrastructure , Cluster Analysis , Cyclopentanes/metabolism , Cytokinins/metabolism , Ethylenes/metabolism , Gene Expression Profiling , Gibberellins/genetics , Gibberellins/metabolism , Medicine, Chinese Traditional , Oxylipins/metabolism , Plant Dormancy/physiology , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Polygonatum/metabolism , Rhizome/metabolism , Salicylic Acid/metabolism , Signal Transduction/genetics , Signal Transduction/physiology , Steroids, Heterocyclic/metabolism , Tryptophan Synthase/metabolism
12.
Int J Mol Sci ; 18(9)2017 Sep 12.
Article in English | MEDLINE | ID: mdl-28895881

ABSTRACT

Polygonatum sibiricum polysaccharides (PSPs) are used to improve immunity, alleviate dryness, promote the secretion of fluids, and quench thirst. However, the PSP biosynthetic pathway is largely unknown. Understanding the genetic background will help delineate that pathway at the molecular level so that researchers can develop better conservation strategies. After comparing the PSP contents among several different P. sibiricum germplasms, we selected two groups with the largest contrasts in contents and subjected them to HiSeq2500 transcriptome sequencing to identify the candidate genes involved in PSP biosynthesis. In all, 20 kinds of enzyme-encoding genes were related to PSP biosynthesis. The polysaccharide content was positively correlated with the expression patterns of ß-fructofuranosidase (sacA), fructokinase (scrK), UDP-glucose 4-epimerase (GALE), Mannose-1-phosphate guanylyltransferase (GMPP), and UDP-glucose 6-dehydrogenase (UGDH), but negatively correlated with the expression of Hexokinase (HK). Through qRT-PCR validation and comprehensive analysis, we determined that sacA, HK, and GMPP are key genes for enzymes within the PSP metabolic pathway in P. sibiricum. Our results provide a public transcriptome dataset for this species and an outline of pathways for the production of polysaccharides in medicinal plants. They also present more information about the PSP biosynthesis pathway at the molecular level in P. sibiricum and lay the foundation for subsequent research of gene functions.


Subject(s)
Carbohydrate Metabolism/genetics , Polygonatum/enzymology , Polygonatum/genetics , Polygonatum/metabolism , Polysaccharides/biosynthesis , Polysaccharides/genetics , Transcriptome/genetics , Base Sequence , China , Fructokinases/genetics , Fructokinases/metabolism , Gene Expression Regulation, Plant , Genes, Plant/genetics , Hexokinase/genetics , Hexokinase/metabolism , Metabolic Networks and Pathways/genetics , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Medicinal/enzymology , Plants, Medicinal/genetics , Plants, Medicinal/metabolism , Polygonatum/classification , Polysaccharides/isolation & purification , UDPglucose 4-Epimerase/genetics , UDPglucose 4-Epimerase/metabolism , beta-Fructofuranosidase/genetics , beta-Fructofuranosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL