Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 459
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
ACS Biomater Sci Eng ; 10(5): 3387-3400, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38656158

ABSTRACT

Given the worldwide problem posed by enteric pathogens, the discovery of safe and efficient intestinal adjuvants combined with novel antigen delivery techniques is essential to the design of mucosal vaccines. In this work, we designed poly (lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs) to codeliver all-trans retinoic acid (atRA), novel antigens, and CpG. To address the insolubility of the intestinal adjuvant atRA, we utilized PLGA to encapsulate atRA and form a "nanocapsid" with polydopamine. By leveraging polydopamine, we adsorbed the water-soluble antigens and the TLR9 agonist CpG onto the NPs' surface, resulting in the pathogen-mimicking PLPCa NPs. In this study, the novel fusion protein (HBf), consisting of the Mycobacterium avium subspecies paratuberculosis antigens HBHA, Ag85B, and Bfra, was coloaded onto the NPs. In vitro, PLPCa NPs were shown to promote the activation and maturation of bone marrow-derived dendritic cells. Additionally, we found that PLPCa NPs created an immune-rich microenvironment at the injection site following intramuscular administration. From the results, the PLPCa NPs induced strong IgA levels in the gut in addition to enhancing powerful systemic immune responses. Consequently, significant declines in the bacterial burden and inflammatory score were noted in PLPCa NPs-treated mice. In summary, PLPCa can serve as a novel and safe vaccine delivery platform against gut pathogens, such as paratuberculosis, capable of activating both systemic and intestinal immunity.


Subject(s)
Nanoparticles , Paratuberculosis , Animals , Nanoparticles/chemistry , Paratuberculosis/immunology , Paratuberculosis/prevention & control , Mice , Tretinoin/chemistry , Tretinoin/pharmacology , Mycobacterium avium subsp. paratuberculosis/immunology , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Antigens, Bacterial/immunology , Antigens, Bacterial/chemistry , Dendritic Cells/immunology , Dendritic Cells/drug effects , Intestines/immunology , Intestines/microbiology , Mice, Inbred C57BL , Female , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/administration & dosage , Bacterial Vaccines/immunology , Mice, Inbred BALB C
2.
Biomater Sci ; 12(10): 2672-2688, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38596867

ABSTRACT

Breast cancer, a pervasive malignancy affecting women, demands a diverse treatment approach including chemotherapy, radiotherapy, and surgical interventions. However, the effectiveness of doxorubicin (DOX), a cornerstone in breast cancer therapy, is limited when used as a monotherapy, and concerns about cardiotoxicity persist. Ginsenoside Rg3, a classic compound of traditional Chinese medicine found in Panax ginseng C. A. Mey., possesses diverse pharmacological properties, including cardiovascular protection, immune modulation, and anticancer effects. Ginsenoside Rg3 is considered a promising candidate for enhancing cancer treatment when combined with chemotherapy agents. Nevertheless, the intrinsic challenges of Rg3, such as its poor water solubility and low oral bioavailability, necessitate innovative solutions. Herein, we developed Rg3-PLGA@TMVs by encapsulating Rg3 within PLGA nanoparticles (Rg3-PLGA) and coating them with membranes derived from tumor cell-derived microvesicles (TMVs). Rg3-PLGA@TMVs displayed an array of favorable advantages, including controlled release, prolonged storage stability, high drug loading efficiency and a remarkable ability to activate dendritic cells in vitro. This activation is evident through the augmentation of CD86+CD80+ dendritic cells, along with a reduction in phagocytic activity and acid phosphatase levels. When combined with DOX, the synergistic effect of Rg3-PLGA@TMVs significantly inhibits 4T1 tumor growth and fosters the development of antitumor immunity in tumor-bearing mice. Most notably, this delivery system effectively mitigates the toxic side effects of DOX, particularly those affecting the heart. Overall, Rg3-PLGA@TMVs provide a novel strategy to enhance the efficacy of DOX while simultaneously mitigating its associated toxicities and demonstrate promising potential for the combined chemo-immunotherapy of breast cancer.


Subject(s)
Doxorubicin , Ginsenosides , Nanoparticles , Polylactic Acid-Polyglycolic Acid Copolymer , Ginsenosides/chemistry , Ginsenosides/pharmacology , Ginsenosides/administration & dosage , Animals , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/administration & dosage , Female , Nanoparticles/chemistry , Mice , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Humans , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Cell-Derived Microparticles/chemistry , Cell-Derived Microparticles/drug effects , Mice, Inbred BALB C , Cell Line, Tumor , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Drug Liberation , Drug Carriers/chemistry , Dendritic Cells/drug effects
3.
J Control Release ; 365: 317-330, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37996056

ABSTRACT

Developing combined cancer therapy strategies is of utmost importance as it can enhance treatment efficacy, overcome drug resistance, and ultimately improve patient outcomes by targeting multiple pathways and mechanisms involved in cancer growth and progression. Specifically, the potential of developing a combination chemo&photothermal therapy using targeted polymer nanoparticles as nanocarriers offers a promising approach for synergistic cancer treatment by combining the benefits of both therapies, such as targeted drug delivery and localized hyperthermia. Here, we report the first targeted anti-HER2 PLGA nanocarriers, called targosomes, that simultaneously possess photothermal, chemotherapeutic and diagnostic properties using only molecular payloads. Biocompatible poly(lactic-co-glycolic acid), PLGA, nanoparticles were loaded with photosensitizer phthalocyanine, diagnostic dye Nile Blue, and chemotherapeutic drug irinotecan, which was chosen as a result of screening a panel of theragnostic nanoparticles. The targeted delivery to cell surface oncomarker HER2 was ensured by nanoparticle modification with the anti-HER2 monoclonal antibody, trastuzumab, using the one-pot synthesis method without chemical conjugation. The irradiation tests revealed prominent photothermal properties of nanoparticles, namely heating by 35 °C in 10 min. Nanoparticles exhibited a 7-fold increase in binding and nearly an 18-fold increase in cytotoxicity for HER2-overexpressing cells compared to cells lacking HER2 expression. This enhancement of cytotoxicity was further amplified by >20-fold under NIR light irradiation. In vivo studies proved the efficacy of nanoparticles for bioimaging of primary tumor and metastasis sites and demonstrated 93% tumor growth inhibition, making these nanoparticles excellent candidates for translation into theragnostic applications.


Subject(s)
Antineoplastic Agents , Hyperthermia, Induced , Nanoparticles , Neoplasms , Humans , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Phototherapy/methods , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Antineoplastic Agents/therapeutic use , Nanoparticles/chemistry , Cell Line, Tumor , Doxorubicin/chemistry
4.
Immun Inflamm Dis ; 11(7): e928, 2023 07.
Article in English | MEDLINE | ID: mdl-37506158

ABSTRACT

INTRODUCTION: Staphylococcus aureus seriously threatens human and animal health. IsdB137-361 of the iron surface determinant B protein (IsdB) from S. aureus exhibits the strong immunogenicity, but its immunoprotective effect is still to be further promoted. Because PEI-PLGA nanoparticles are generated by PEI conjugate with PLGA to develop great potential as a novel immune adjuvant, the immunogenicity of IsdB137-361 is likely be strengthened by PEI-PLGA. METHODS: Here, PEI-PLGA nanoparticles containing IsdB137-361 proteins were prepared by optimizing the entrapment efficiency. Mice were immunized with IsdB137-361 -PEI-PLGA nanoparticles to assess their anti-S. aureus effects. The level of IFN-γ, IL-4, IL-17, and IL-10 cytokines from spleen lymphocytes in mice and generation of the antibodies against IsdB137-361 in serum was assessed by ELISA, the protective immune response was appraised by S. aureus challenge. RESULTS: IsdB137-361 proteins loaded by PEI-PLGA were able to stimulate effectively the proliferation of spleen lymphocytes and increase the secretion of IFN-γ, IL-4, IL-17, and IL-10 cytokine from spleen lymphocytes, and significantly enhance generation of the antibodies against IsdB137-361 in serum, reduce the level of bacterial load in liver, spleen and kidney, and greatly improve the survival rate of mice after challenge. CONCLUSION: These data showed that PEI-PLGA nanoparticles can significantly enhance the immunogenicity of IsdB137-361 proteins, and provide an important reference for the development of novel immune adjuvant.


Subject(s)
Nanoparticles , Staphylococcal Infections , Humans , Animals , Mice , Staphylococcus aureus , Interleukin-10 , Interleukin-17 , Polylactic Acid-Polyglycolic Acid Copolymer , Interleukin-4 , Membrane Proteins , Adjuvants, Immunologic , Cytokines , Staphylococcal Infections/prevention & control
5.
Proteomics ; 23(16): e2200380, 2023 08.
Article in English | MEDLINE | ID: mdl-37148169

ABSTRACT

The use of poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) as carriers for chemotherapeutic drugs is regarded as an actively targeted nano-therapy for the specific delivery of anti-cancer drugs to target cells. However, the exact mechanism by which PLGA NPs boost anticancer cytotoxicity at the molecular level remains largely unclear. This study employed different molecular approaches to define the response of carcinoma FaDu cells to different types of treatment, specifically: paclitaxel (PTX) alone, drug free PLGA NPs, and PTX-loaded PTX-PLGA NPs. Functional cell assays revealed that PTX-PLGA NPs treated cells had a higher level of apoptosis than PTX alone, whereas the complementary, UHPLC-MS/MS (TIMS-TOF) based multi-omics analyses revealed that PTX-PLGA NPs treatment resulted in increased abundance of proteins associated with tubulin, as well as metabolites such as 5-thymidylic acid, PC(18:1(9Z)/18:1(9Z0), vitamin D, and sphinganine among others. The multi-omics analyses revealed new insights about the molecular mechanisms underlying the action of novel anticancer NP therapies. In particular, PTX-loaded NPs appeared to exacerbate specific changes induced by both PLGA-NPs and PTX as a free drug. Hence, the PTX-PLGA NPs' molecular mode of action, seen in greater detail, depends on this synergy that ultimately accelerates the apoptotic process, resulting in cancer cell death.


Subject(s)
Antineoplastic Agents , Head and Neck Neoplasms , Nanoparticles , Humans , Paclitaxel/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Polyglactin 910 , Polylactic Acid-Polyglycolic Acid Copolymer , Multiomics , Tandem Mass Spectrometry , Polyglycolic Acid , Lactic Acid , Cell Line, Tumor , Head and Neck Neoplasms/drug therapy , Drug Carriers/pharmacology
6.
Chembiochem ; 24(9): e202200698, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36793188

ABSTRACT

Cannabidiol (CBD) is a non-intoxicating cannabinoid from cannabis sativa that has demonstrated efficacious against inflammation, which can be considered as a potential drug for arthritis treatment. However, the poor solubility and low bioavailability limit its clinical application. Here, we report an effective strategy to fabricate Cannabidiol-loaded poly(lactic-co-glycolic acid) copolymer (CBD-PLGA) nanoparticles (NPs), with a spherical morphology and an average diameter of 238 nm. CBD was sustained release from CBD-PLGA-NPs, which improved the bioavailability of CBD. The CBD-PLGA-NPs effectively protect the damage of LPS to cell viability. We observed that CBD-PLGA-NPs significantly suppressed LPS-induced primary rat chondrocyte expression of inflammatory cytokines, including interleukin 1ß (IL-1ß), interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α) and matrix metalloproteinase 13 (MMP-13). Remarkably, CBD-PLGA-NPs also showed better therapeutic effects of inhibiting the degradation of the extracellular matrix of chondrocytes than equivalent CBD solution. In general, the fabrication CBD-PLGA-NPs showed good protection of primary chondrocytes in vitro and is a promising system for osteoarthritis treatment.


Subject(s)
Cannabidiol , Nanoparticles , Osteoarthritis , Rats , Animals , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Glycols , Biological Availability , Lipopolysaccharides , Polylactic Acid-Polyglycolic Acid Copolymer , Osteoarthritis/drug therapy , Drug Carriers
7.
Int J Nanomedicine ; 18: 7941-7963, 2023.
Article in English | MEDLINE | ID: mdl-38169688

ABSTRACT

Background: Candida albicans (C. albicans) forms pathogenic biofilms, and the dense mucus layer secreted by the epithelium is a major barrier to the traditional antibiotic treatment of mucosa-associated C. albicans infections. Herein, we report a novel anti-biofilm strategy of mucus-permeable sonodynamic therapy (mp-SDT) based on ultrasound (US)-mediated amphotericin B-loaded PEGylated PLGA nanoparticles (AmB-NPs) to overcome mucus barrier and enable the eradication of C. albicans biofilm. Methods: AmB-NPs were fabricated using ultrasonic double emulsion method, and their physicochemical and sonodynamic properties were determined. The mucus and biofilm permeability of US-mediated AmB-NPs were further investigated. Moreover, the anti-biofilm effect of US-mediated AmB-NPs treatment was thoroughly evaluated on mucus barrier abiotic biofilm, epithelium-associated biotic biofilm, and C. albicans-induced rabbit vaginal biofilms model. In addition, the ultrastructure and secreted cytokines of epithelial cells and the polarization of macrophages were analyzed to investigate the regulation of local cellular immune function by US-mediated AmB-NPs treatment. Results: Polymeric AmB-NPs display excellent sonodynamic performance with massive singlet oxygen (1O2) generation. US-mediated AmB-NPs could rapidly transport through mucus and promote permeability in biofilms, which exhibited excellent eradicating ability to C. albicans biofilms. Furthermore, in the vaginal epithelial cells (VECs)-associated C. albicans biofilm model, the mp-SDT scheme showed the strongest biofilm eradication effect, with up to 98% biofilm re-formation inhibition rate, improved the ultrastructural damage, promoted local immune defense enhancement of VECs, and regulated the polarization of macrophages to the M1 phenotype to enhance macrophage-associated antifungal immune responses. In addition, mp-SDT treatment exhibited excellent therapeutic efficacy against C. albicans-induced rabbit vaginitis, promoted the recovery of mucosal epithelial ultrastructure, and contributed to the reshaping of a healthier vaginal microbiome. Conclusion: The synergistic anti-biofilm strategies of mp-SDT effectively eradicated C. albicans biofilm and simultaneously regulated local antifungal immunity enhancement, which may provide a new approach to treat refractory drug-resistant biofilm-associated mucosal candidiasis.


Subject(s)
Candidiasis , Nanoparticles , Animals , Female , Rabbits , Amphotericin B/chemistry , Candida albicans , Antifungal Agents/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/pharmacology , Candidiasis/drug therapy , Polyethylene Glycols/chemistry , Nanoparticles/chemistry , Biofilms , Mucus , Microbial Sensitivity Tests
8.
J Pharm Sci ; 111(12): 3377-3383, 2022 12.
Article in English | MEDLINE | ID: mdl-36126760

ABSTRACT

The ability of cancer cells to develop resistance to anti-cancer drugs, known as multidrug resistance, remains a major cause of tumor recurrence and cancer metastasis. This work explores the double mechanism of toxicity of (D, L-lactide-co-glycolide) acid (PLGA) nanoparticles encapsulating a molybdenum cluster compound, namely Cs2[{Mo6I8}(OOCC2F5)6] (CMIF). Hemocompatibility and biocompatibility assays show the safe potential of CMIF loaded nanoparticles (CNPs) as delivery systems intended for tumor targeting for PDT of ovarian cancer with a slight hemolytic activity and a lack of toxicity up to 50 µM CMIF concentration. Cellular uptake shows a preferential uptake of CNPs in lysosomes, which is not interfering with CMIF activity. The double mechanism of CNPs consists in a production of ROS and a DNA damage activity, from 5 µM and 0.5 µM respectively (CMIF concentration). The cellular death mechanism comprises 80% of necrosis and 20% of direct apoptosis by direct DNA damages. This work confirms CMIF loaded PLGA nanoparticles as an efficient and relevant delivery system for PDT.


Subject(s)
Iodine , Nanoparticles , Ovarian Neoplasms , Humans , Female , Molybdenum/therapeutic use , Polylactic Acid-Polyglycolic Acid Copolymer , Iodine/therapeutic use , Polymers , Ovarian Neoplasms/drug therapy , Cell Line, Tumor
9.
Int J Mol Sci ; 23(18)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36142667

ABSTRACT

This paper reports the results of the PLGA-TiO2 nanocomposite regarding the green synthesis of titanium dioxide nanoparticles using a natural extract, its characterization, and encapsulation with poly(lactic-co-glycolic acid) (PLGA). UV-visible spectrometry was used for the identification of terpenes present in the extracts. The morphology of the nanoparticles was determined by scanning electron microscopy. Infrared spectroscopy was used for the determination of functional groups, while X-ray diffraction was used to determine the crystal structure. The analysis of the extended release of the encapsulated extract in the matrix of the nanomaterial resulted in a maximum visible UV absorbance at approximately 260 nm and confirmed the synthesis of titanium dioxide nanoparticles. Moreover, terpenes enhance synthesis and stabilize titanium dioxide nanoparticles. The synthesized structures are spherical and amorphous, 44 nm in size, and encapsulated at 65 nm.


Subject(s)
Nanoparticles , Titanium , Drug Carriers/chemistry , Drug Liberation , Nanoparticles/chemistry , Particle Size , Plant Extracts/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Terpenes , Titanium/chemistry
10.
Life Sci ; 307: 120876, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35961595

ABSTRACT

Asiatic acid (AA), an aglycone of pentacyclic triterpene glycoside, obtained from the leaves of Centella asiatica exerts anticancer effects by inhibiting cellular proliferation and inducing apoptosis in a wide range of carcinogenic distresses. However, its chemotherapeutic efficacy is dampened by its low bioavailability. Polymeric nanoparticles (NPs) exhibit therapeutic efficacy and compliance by improving tissue penetration and lowering toxicity. Thus, to increase the therapeutic effectiveness of AA in the treatment of breast cancer, AA-loaded poly lactic-co-glycolic acid (PLGA) NPs (AA-PLGA NPs) have been formulated. The AA-PLGA NPs were characterized on the basis of their average particle size, zeta potential, electron microscopic imaging, drug loading, and entrapment efficiency. The NPs exhibited sustained drug release profile in vitro. Developed NPs exerted dose-dependent cytotoxicity to MCF-7 and MDA-MB-231 cells without damaging normal cells. The pro-oxidant and pro-apoptotic properties of AA-PLGA NPs were determined by the study of the cellular levels of SOD, CAT, GSH-GSSG, MDA, protein carbonylation, ROS, mitochondrial membrane potential, and FACS analyses on MCF-7 cells. Immunoblotting showed that AA-PLGA NPs elicited an intrinsic pathway of apoptosis in MCF-7 cells. In vivo studies on female BALB/c mice exhibited reduced volume of mammary pad tumor tissues and augmented expression of caspase-3 when administered with AA-PLGA NPs. No systemic adverse effect of AA-PLGA NPs was observed in our studies. Thus, AA-PLGA NPs can act as an efficient drug delivery system against breast cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Nanoparticles , Neoplasms , Animals , Caspase 3 , Cell Line, Tumor , Drug Carriers , Female , Glutathione Disulfide , Glycolates , Glycosides , Mice , Particle Size , Pentacyclic Triterpenes/pharmacology , Polylactic Acid-Polyglycolic Acid Copolymer , Reactive Oxygen Species , Superoxide Dismutase
11.
Pharm Dev Technol ; 27(7): 785-793, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36043390

ABSTRACT

PURPOSE: Breast cancer is the second major cause of death worldwide among women. Co-delivery of anticancer drugs and nucleic acids targeting the apoptosis pathway could be a promising new approach. METHODS: In the present study, we synthesized a novel nanostructure for the co-delivery of curcumin and siRNA to breast cancer cells. Curcumin-loaded polylactic-co-glycolic acid (PLGA) was synthesized using an O/W emulsion-solvent diffusion method. It was coated with polyethylenimine (PEI) and subsequently complexed with Bcl-2 siRNA. Also, nanoparticles were characterized such as zeta potential, size distribution and drug encapsulation. Finally, the cytotoxicity of NP and Bcl-2 expression was evaluated. RESULTS: The curcumin-loaded PLGA nanoparticles were 70 nm in size, and increased to 84 nm after incorporation of PEI plus Bcl-2 siRNA. The encapsulation ratio of the drug in our nanoparticle was 78%. Cellular internalization of PLGA-CUR-PEI/Bcl-2 siRNA NPs was confirmed by fluorescence microscopy with the broadcasting of the fluorescence in the cytoplasm and into the nucleus. The results of the cell viability assay revealed that curcumin-loaded PLGA coated with PEI and Bcl-2 siRNA exhibited the highest cytotoxicity against the T47D cell line, while the siRNA decreased the Bcl-2 expression by 90.7%. CONCLUSION: The co-delivery of curcumin plus Bcl-2 siRNA with the PLGA-PEI nanosystem could be a synergistic drug carrier against breast cancer cells.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Curcumin , Nanoparticles , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Cell Line, Tumor , Curcumin/pharmacology , Curcumin/therapeutic use , Drug Carriers/chemistry , Emulsions , Female , Glycolates , Humans , Lactic Acid/chemistry , Nanoparticles/chemistry , Polyethyleneimine , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , RNA, Small Interfering/genetics , Solvents
12.
Mol Pharm ; 19(7): 2638-2650, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35621214

ABSTRACT

Nanoparticle formulations have long been proposed as subunit vaccine carriers owing to their ability to entrap proteins and codeliver adjuvants. Poly(lactic-co-glycolic acid) (PLGA) remains one of the most studied polymers for controlled release and nanoparticle drug delivery, and numerous studies exist proposing PLGA particles as subunit vaccine carriers. In this work we report using PLGA nanoparticles modified with biotin (bNPs) to deliver proteins via adsorption and stimulate professional antigen-presenting cells (APCs). We present evidence showing bNPs are capable of retaining proteins through the biotin-avidin interaction. Surface accessible biotin bound both biotinylated catalase (bCAT) through avidin and streptavidin horseradish peroxidase (HRP). Analysis of the HRP found that activity on the bNPs was preserved once captured on the surface of bNP. Further, bNPs were found to have self-adjuvant properties, evidenced by bNP induced IL-1ß, IL-18, and IL-12 production in vitro in APCs, thereby licensing the cells to generate Th1-type helper T cell responses. Cytokine production was reduced in avidin precoated bNPs (but not with other proteins), suggesting that the proinflammatory response is due in part to exposed biotin on the surface of bNPs. bNPs injected subcutaneously were localized to draining lymph nodes detectable after 28 days and were internalized by bronchoalveolar lavage dendritic cells and macrophages in mice in a dose-dependent manner when delivered intranasally. Taken together, these data provide evidence that bNPs should be explored further as potential adjuvanting carriers for subunit vaccines.


Subject(s)
Biotin , Nanoparticles , Adjuvants, Immunologic/chemistry , Animals , Avidin , Dendritic Cells , Mice , Nanoparticles/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Vaccines, Subunit/metabolism
13.
Cells ; 11(9)2022 05 08.
Article in English | MEDLINE | ID: mdl-35563888

ABSTRACT

Guided tissue regeneration and guided bone regeneration membranes are some of the most common products used for bone regeneration in periodontal dentistry. The main disadvantage of commercially available membranes is their lack of bone cell stimulation and easy bacterial colonization. The aim of this work was to design and fabricate a new membrane construct composed of electrospun poly (D,L-lactic acid)/poly (lactic-co-glycolic acid) fibers sonocoated with layers of nanoparticles with specific properties, i.e., hydroxyapatite and bimetallic nanocomposite of zinc oxide-silver. Thus, within this study, four different variants of biomaterials were evaluated, namely: poly (D,L-lactic acid)/poly (lactic-co-glycolic acid) biomaterial, poly(D,L-lactic acid)/poly (lactic-co-glycolic acid)/nano hydroxyapatite biomaterial, poly (D,L-lactic acid)/poly (lactic-co-glycolic acid)/nano zinc oxide-silver biomaterial, and poly (D,L-lactic acid)/poly (lactic-co-glycolic acid)/nano hydroxyapatite/nano zinc oxide-silver biomaterial. First, it was demonstrated that the wettability of biomaterials-a prerequisite property important for ensuring desired biological response-was highly increased after the sonocoating process. Moreover, it was indicated that biomaterials composed of poly (D,L-lactic acid)/poly (lactic-co-glycolic acid) with or without a nano hydroxyapatite layer allowed proper osteoblast growth and proliferation, but did not have antibacterial properties. Addition of a nano zinc oxide-silver layer to the biomaterial inhibited growth of bacterial cells around the membrane, but at the same time induced very high cytotoxicity towards osteoblasts. Most importantly, enrichment of this biomaterial with a supplementary underlayer of nano hydroxyapatite allowed for the preservation of antibacterial properties and also a decrease in the cytotoxicity towards bone cells, associated with the presence of a nano zinc oxide-silver layer. Thus, the final structure of the composite poly (D,L-lactic acid)/poly (lactic-co-glycolic acid)/nano hydroxyapatite/nano zinc oxide-silver seems to be a promising construct for tissue engineering products, especially guided tissue regeneration/guided bone regeneration membranes. Nevertheless, additional research is needed in order to improve the developed construct, which will simultaneously protect the biomaterial from bacterial colonization and enhance the bone regeneration properties.


Subject(s)
Metal Nanoparticles , Zinc Oxide , Anti-Bacterial Agents/pharmacology , Biocompatible Materials/chemistry , Durapatite/pharmacology , Osteoblasts , Polylactic Acid-Polyglycolic Acid Copolymer , Silver/pharmacology , Zinc Oxide/pharmacology
14.
Int J Biol Macromol ; 210: 350-364, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35537585

ABSTRACT

Clinical bone defects are often caused by high energy injury and are easily complicated by bacterial infection. An ideal bone repair material should promote bone regeneration and prevent bacterial infection. In this study, a multifunctional photothermal scaffold was developed: bone morphogenetic protein-2 (BMP-2)/polylactic-glycolic acid copolymers (PLGA) microspheres were prepared by a double emulsion method and then coated on the scaffolds prepared using a mixture of black phosphorus nanosheets (BPs) and PLGA, to form BMP-2@BPs scaffolds. The structural and photothermal properties of the composite scaffolds were characterized. The BMP-2@BPs scaffolds demonstrated good biocompatibility in both in vitro and in vivo experiments. The BMP-2@BPs scaffolds promoted osteogenic differentiation through a combination of BMP-2 release and upregulation of the expression of heat shock proteins by the radiation of near-infrared (NIR) light, which further upregulated the expression of osteogenesis-related genes. In addition, BPs demonstrated antibacterial effects under the mediation of NIR, which is beneficial for the prevention of clinical bacterial infections. In summary, the BMP-2@BPs scaffold was a multifunctional photothermal scaffold that could accelerate bone regeneration and act against bacteria. This study provides a new perspective for the treatment of bone defects and infectious bone defects.


Subject(s)
Osteogenesis , Tissue Scaffolds , Anti-Bacterial Agents/pharmacology , Bone Morphogenetic Protein 2/pharmacology , Bone Regeneration , Glycolates , Microspheres , Phosphorus/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Polymers/pharmacology , Tissue Scaffolds/chemistry
15.
Appl Biochem Biotechnol ; 194(8): 3733-3748, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35507250

ABSTRACT

Bromelain (Br), a mixture of proteolytic enzymes from pineapple (Ananas comosus), has various therapeutic potentials; however, its low bioavailability has limited the clinical applications specifically in oral delivery as the most common convenient used route of administration. In the present study, a lipopolymeric nanoparticle (NP) containing Br was developed to enhance its stability and oral delivery efficiency. Firstly, Br was loaded into poly (D, L-lactide-co-glycolide acid) (PLGA) and PLGA-phosphatidylcholine (PLGA-PC) NPs using double emulsion solvent evaporation technique. Then, Br integrity and activity were investigated using SDS-PAGE and gelatin test. The stability and release profile of Br from synthetized NPs were evaluated at different pH values of the digestive system. Furthermore, cytotoxicity, cellular uptake, and the amount of Br passage from Caco-2 cells were explored. The results showed PLGA-PC-Br NPs had higher encapsulation efficiency (83%) compared to PLGA-Br NPs (50%). In addition, this NP showed more Br released in neutral (20.36%) and acidic (34%) environments compared to PLGA-Br NPs after 5 days. The delay in the release of Br from PLGA-PC-Br NPs versus the faster release of Br from PLGA-Br formulation could assure that an appropriate concentration of Br has reached the intestine. Intestinal absorption study demonstrated that lipid polymer NPs were able to pass through Caco-2 cells about 1.5 times more (98.4%) than polymeric NPs (70%). In conclusion, PLGA-PC NPs would be considered as a promising lipid-polymer nanocarrier for effective intestinal absorption of Br.


Subject(s)
Nanoparticles , Polyglycolic Acid , Bromelains , Caco-2 Cells , Drug Carriers/chemistry , Humans , Lactic Acid/chemistry , Lipids , Nanoparticles/chemistry , Particle Size , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer
16.
AAPS PharmSciTech ; 23(5): 130, 2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35487999

ABSTRACT

Multidrug resistance (MDR) is a key determinant for hepatocellular carcinoma chemotherapy failure. P-glycoprotein is one of the main causes of MDR by causing drug efflux in tumor cells. In order to solve this thorny problem, we prepared a sorafenib-loaded polylactic acid-glycolic acid (PLGA) - D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) nanoparticles (SPTNs). SPTNs were successfully synthesized through an ultrasonic emulsion solvent evaporation method with a favourable encapsulation efficiency of 90.35%. SPTNs were almost spherical in shape with uniform particle size (215.70 ± 0.36 nm), narrow polydispersity index (0.27 ± 0.02) and negative surface charge (-26.01 ± 0.65 mV). In the cellular uptake assay, the intracellular coumarin-6 (C6) fluorescence of TPGS component-based PLGA nanoparticles (C6-PTNs) was 1.63-fold higher relative to that of PVA component-based PLGA nanoparticles (C6-PVNs). The half-maximal inhibitory concentration and apoptosis ratio of SPTNs against HepG2/MDR cells were 3.90 µM and 75.62%, respectively, which were notably higher than free SF and sorafenib-PLGA-PVA nanoparticles (SPVNs). The anti-drug efflux activities of SPTNs were assessed by the intracellular trafficking assay using verapamil as a P-gp inhibitor. SPTNs could effectively inhibit the drug efflux in tumor cells detected by flow cytometry, and suppressed relative MDR1 gene as well as P-glycoprotein expression in tumor cells. Attributed to the MDR reversion effect of SPTNs, the in vivo antitumor efficacy experiment showed that SPTNs significantly inhibited the tumor growth of HepG2/MDR xenograft-bearing nude mice, and obviously reduced the toxicity against liver and kidney compared with SF treatment. In summary, SPTNs, as highly efficient and safe antitumor nano delivery systems, showed promising potential for hepatocellular carcinoma therapy through reversing P-glycoprotein-mediated MDR. Graphical Abstract.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , ATP Binding Cassette Transporter, Subfamily B , Animals , Carcinoma, Hepatocellular/drug therapy , Drug Resistance, Multiple , Glycolates , Humans , Lactic Acid , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Mice , Mice, Nude , Polyesters , Polyethylene Glycols , Polyglycolic Acid , Polylactic Acid-Polyglycolic Acid Copolymer/pharmacology , Sorafenib/pharmacology , Sorafenib/therapeutic use , Vitamin E , alpha-Tocopherol/pharmacology
17.
J Biomed Nanotechnol ; 18(2): 369-380, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35484737

ABSTRACT

Microwave (MW) hyperthermia has been widely studied in tumor therapy, while the lack of specificity, and the potential toxicity induced by instability or difficulty in degradation of existed MW thermal sensitizers still limits the application. Herein, a new biocompatible Poly(lactic-co-glycolic acid) (PLGA)-based nanosensitizer of Dtxl-Gd@PLGA-PEG-TPP (DGPPT) with capacities of magnetic resonance (MR) imaging and mitochondrial targeting for MW hyperthermia combined with chemotherapy was constructed via a double emulsion solvent evaporation method. The modified TPP significantly enhanced the specificity of sensitizer for targeting mitochondria, a heat-sensitive energy supply plant in cells. Thus the MW thermal damage induced by the loaded Gd in PLGA nanospheres was also strengthened. Together, the system could also achieve MR imaging due to the existence of Gd. In addition, the encapsulated Dtxl performed the chemotherapy of inhibiting mitochondrial function for assisting with MW hyperthermia. In vivo experiments demonstrated that PLGA had high biocompatibility that no obvious damage occurred even the dose was up to 200 mg/kg. Meanwhile, DGPPT+MW representing the combination of mitochondrial targeting and MW hyperthermia-chemotherapy has also been proved to shrink tumor size effectively. This study provides a new direction for building biosafe and multifunctional MW sensitizer with active targeting ability to impede tumor growth.


Subject(s)
Hyperthermia, Induced , Neoplasms , Humans , Lactic Acid , Magnetic Resonance Imaging/methods , Microwaves , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Polyethylene Glycols , Polyglycolic Acid , Polylactic Acid-Polyglycolic Acid Copolymer
18.
Molecules ; 27(6)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35335262

ABSTRACT

The aim of this study was to obtain essential oil (LNEO) from the Laurus nobilis L. plant, and to prepare LNEO-loaded poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs) as an approach in cancer treatment. The components of the obtained LNEO were analyzed using GC-MS. The LNEO-NPs were synthesized by the single-emulsion method. The LNEO-NPs were characterized using UV-Vis spectrometry, Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and a DNA binding assay, which was performed via the UV-Vis titration method. According to the results, the LNEO-NPs had a 211.4 ± 4.031 nm average particle size, 0.068 ± 0.016 PdI, and -7.87 ± 1.15 mV zeta potential. The encapsulation efficiency and loading capacity were calculated as 59.25% and 25.65%, respectively, and the in vitro drug release study showed an LNEO release of 93.97 ± 3.78% over the 72 h period. Moreover, the LNEO was intercalatively bound to CT-DNA. In addition, the mechanism of action of LNEO on a dual PI3K/mTOR inhibitor was predicted, and its antiproliferative activity and mechanism were determined using molecular docking analysis. It was concluded that LNEO-loaded PLGA NPs may be used for cancer treatment as a novel phytotherapeutic agent-based controlled-release system.


Subject(s)
Laurus , Neoplasms , Oils, Volatile , Glycols , Lactic Acid/chemistry , Molecular Docking Simulation , Neoplasms/drug therapy , Oils, Volatile/pharmacology , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry
19.
Biomed Pharmacother ; 145: 112376, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34749055

ABSTRACT

AIM: Doxorubicin/Cyclophosphamide (AC) is one of the standard adjuvant anthracycline-containing regimens that is still in use for breast cancer treatment. Cancer cell resistance and AC-induced side effects make treatment suboptimal and worsen patients' quality of life. This study aimed to improve trans-ferulic acid's (TFA) efficiency via loading into folate-receptor-targeted-poly lactic-co-glycolic acid nanoparticles (FA-PLGA-TFA NPs). Also, investigating both the antitumor efficacy of Doxorubicin (Dox)/FA-PLGA-TFA NPs combination against dimethylbenz[a]anthracene (DMBA)-induced breast cancer and its safety profile. METHODS: FA-PLGA-TFA NPs were optimally fabricated and characterized. Levels of Notch1, Hes1, Wnt-3a, ß-catenin, MMP-9, cyclin D1, Permeability-Glycoprotein (P-gp), ERα, PR, and HER2 were assessed as a measure of the antitumor efficacy of different treatment protocols. Histopathological examination of heart and bone, levels of ALT, AST, ALP, CK-MB, and WBCs count were evaluated to ensure the combination's safety profile. KEY FINDINGS: Dox/FA-PLGA-TFA NPs not only inhibited Notch signaling but also suppressed Notch synergy with Wnt, estrogen, progesterone, and HER2 pathways. Interestingly, Dox/FA-PLGA-TFA NPs decreased P-gp level and preserved heart, bone, and liver health as well as WBCs count. SIGNIFICANCE: Dox/FA-PLGA-TFA NPs reduced the side-effects of each single drug, and at the same time exerted excellent antitumor activity that surpass the AC regimen in evading cancer cell resistance and having a superior safety profile.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Breast Neoplasms/drug therapy , Doxorubicin/pharmacology , Nanoparticles , Animals , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/toxicity , Coumaric Acids/chemistry , Doxorubicin/administration & dosage , Doxorubicin/toxicity , Drug Carriers/chemistry , Drug Resistance, Neoplasm , Female , Folic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Rats , Rats, Sprague-Dawley , Receptors, Notch/metabolism
20.
J Mater Chem B ; 10(2): 204-213, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34935026

ABSTRACT

The treatment of melanoma requires not only the elimination of skin cancer cells but also skin regeneration to heal defects. To achieve this goal, a bifunctional composite scaffold of poly(DL-lactic-co-glycolic acid) (PLGA), collagen and black phosphorus nanosheets (BPNSs) was prepared by hybridizing a BPNS-embedded collagen sponge with a PLGA knitted mesh. The composite mesh increased the temperature under near-infrared laser irradiation. The incorporation of BPNSs provided the PLGA-collagen-BPNS composite mesh with excellent photothermal properties for the photothermal ablation of melanoma cells both in vitro and in vivo. The PLGA-collagen-BPNS composite mesh had high mechanical strength for easy handling. The PLGA-collagen-BPNS composite mesh facilitated the proliferation of fibroblasts, promoted the expression of angiogenesis-related genes and the genes of components of the extracellular matrix for skin tissue regeneration. The high mechanical strength, photothermal ablation capability and skin tissue regeneration effects demonstrate that the bifunctional PLGA-collagen-BPNS composite mesh is a versatile and effective platform for the treatment of melanoma and the regeneration of skin defects.


Subject(s)
Antineoplastic Agents/therapeutic use , Melanoma/drug therapy , Phosphorus/therapeutic use , Regeneration/drug effects , Skin Physiological Phenomena/drug effects , Tissue Scaffolds/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/radiation effects , Cell Line, Tumor , Collagen/chemistry , Female , Humans , Infrared Rays , Mice, Inbred BALB C , Mice, Nude , Nanostructures/chemistry , Nanostructures/radiation effects , Nanostructures/therapeutic use , Phosphorus/chemistry , Phosphorus/radiation effects , Photothermal Therapy/methods , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Tissue Engineering/methods
SELECTION OF CITATIONS
SEARCH DETAIL