Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 216
Filter
Add more filters

Complementary Medicines
Publication year range
1.
ACS Biomater Sci Eng ; 10(7): 4425-4436, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38597148

ABSTRACT

Traditional Chinese medicine external prescriptions have displayed excellent clinical effects for treating deep soft tissue injuries. However, the effects cannot be fully utilized due to the limitations of their dosage forms and usage methods. It is still a challenge to develop a satisfactory adjuvant of traditional Chinese medicine external prescriptions. Herein, a hydrogel adjuvant was prepared based on gallic acid coupled ε-poly-l-lysine and partially oxidized hyaluronic acid. The resulting adjuvant shows great physicochemical properties, low hemolysis rate (still much less than 5% at 5 mg/mL), excellent antibacterial ability (about 95% at 2 mg/mL), strong antioxidant ability (1.687 ± 0.085 mmol FeSO4/(g hydrogel) at 1 mg/mL), as well as outstanding biocompatibility. A clinically used Chinese medicine external preparation was selected as an example to investigate the effectiveness of the adjuvant in treating deep soft tissue injuries. The results show that the prescription can be evenly dispersed in the adjuvant. Moreover, the introduction of the prescription has not significantly changed these advanced properties of the adjuvant. Importantly, the hydrogel adjuvant significantly improves the effectiveness of the prescription in treating deep soft tissue injuries. This work offers an alternative approach to the development of a new-type adjuvant of Chinese medicine external preparations and also provides a new strategy for the combination of traditional Chinese medicine and hydrogel to treat clinical diseases.


Subject(s)
Drugs, Chinese Herbal , Hydrogels , Soft Tissue Injuries , Wound Healing , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/therapeutic use , Animals , Wound Healing/drug effects , Soft Tissue Injuries/drug therapy , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Hyaluronic Acid/chemistry , Hyaluronic Acid/therapeutic use , Hyaluronic Acid/pharmacology , Medicine, Chinese Traditional , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/chemistry , Gallic Acid/chemistry , Gallic Acid/pharmacology , Gallic Acid/therapeutic use , Polylysine/chemistry , Polylysine/pharmacology , Polylysine/therapeutic use , Humans , Antioxidants/pharmacology , Antioxidants/therapeutic use , Hemolysis/drug effects , Mice
2.
Int J Biol Macromol ; 266(Pt 2): 131383, 2024 May.
Article in English | MEDLINE | ID: mdl-38580030

ABSTRACT

The development of antibiotic-loaded microneedles has been hindered for years by limited excipient options, restricted drug-loading space, poor microneedle formability, and short-term drug retention. Therefore, this study proposes a dissolving microneedle fabricated from the host-defense peptide ε-poly-l-lysine (EPL) as an antibacterial adjuvant system for delivering antibiotics. EPL serves not only as a major matrix material for the microneedle tips, but also as a broad-spectrum antibacterial agent that facilitates the intracellular accumulation of the antibiotic doxycycline (DOX) by increasing bacterial cell membrane permeability. Furthermore, the formation of physically crosslinked networks of EPL affords microneedle tips with improved formability, good mechanical properties, and amorphous nanoparticles (approximately 7.2 nm) of encapsulated DOX. As a result, a high total loading content of both antimicrobials up to 2319.1 µg/patch is achieved for efficient transdermal drug delivery. In a Pseudomonas aeruginosa-induced deep cutaneous infection model, the EPL microneedles demonstrates potent and long-term effects by synergistically enhancing antibiotic activities and prolonging drug retention in infected lesions, resulting in remarkable therapeutic efficacy with 99.91 % (3.04 log) reduction in skin bacterial burden after a single administration. Overall, our study highlights the distinct advantages of EPL microneedles and their potential in clinical antibacterial practice when loaded with amorphous DOX nanoparticles.


Subject(s)
Anti-Bacterial Agents , Doxycycline , Nanoparticles , Needles , Polylysine , Polylysine/chemistry , Doxycycline/administration & dosage , Doxycycline/pharmacology , Doxycycline/chemistry , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Animals , Pseudomonas aeruginosa/drug effects , Mice , Drug Delivery Systems , Administration, Cutaneous , Skin/drug effects , Skin/microbiology , Pseudomonas Infections/drug therapy
3.
Int J Biol Macromol ; 264(Pt 2): 130729, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460643

ABSTRACT

Astrocyte elevated gene-1 (AEG-1) oncogene is a notorious and evolving target in a variety of human malignancies including osteosarcoma. The RNA interference (RNAi) has been clinically proven to effectively knock down specific genes. To successfully implement RNAi in vivo, protective vectors are required not only to protect unstable siRNAs from degradation, but also to deliver siRNAs to target cells with controlled release. Here, we synthesized a Zein-poly(l-lysine) dendrons non-viral modular system that enables efficient siRNA-targeted AEG-1 gene silencing in osteosarcoma and encapsulation of antitumor drugs for controlled release. The rational design of the ZDP integrates the non-ionic and low immunogenicity of Zein and the positive charge of the poly(l-lysine) dendrons (DPLL) to encapsulate siRNA and doxorubicin (DOX) payloads via electrostatic complexes and achieve pH-controlled release in a lysosomal acidic microenvironment. Nanocomplexes-directed delivery greatly improves siRNA stability, uptake, and AEG-1 sequence-specific knockdown in 143B cells, with transfection efficiencies comparable to those of commercial lipofectamine but with lower cytotoxicity. This AEG-1-focused RNAi therapy supplemented with chemotherapy inhibited, and was effective in inhibiting the growth in of osteosarcoma xenografts mouse models. The combination therapy is an alternative or combinatorial strategy that can produce durable inhibitory responses in osteosarcoma patients.


Subject(s)
Bone Neoplasms , Dendrimers , Nanoparticles , Osteosarcoma , Zein , Animals , Mice , Humans , Polylysine , Azides , Delayed-Action Preparations , Alkynes , Doxorubicin/pharmacology , Osteosarcoma/drug therapy , Osteosarcoma/genetics , RNA, Small Interfering/metabolism , Bone Neoplasms/drug therapy , Bone Neoplasms/genetics , Cell Line, Tumor , Tumor Microenvironment
4.
Biomater Adv ; 157: 213755, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38171171

ABSTRACT

Both bacteria-infection and excessive inflammation delay the wound healing process and even create non-healing wound, thus it is highly desirable to endow the wound dressing with bactericidal and anti-oxidation properties. Herein an antibacterial and antioxidation hydrogel based on Carbomer 940 (CBM) and hydroxypropyl methyl cellulose (HPMC) loaded with tea polyphenols (TP) and hyperbranched poly-l-lysine (HBPL) was designed and fabricated. The hydrogel killed 99.9 % of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli) at 107 CFU mL-1, and showed strong antioxidation against H2O2 and 2,2-di(4-tert-octylphenyl)-1-picryl-hydrazyl (DPPH) radicals without noticeable cytotoxicity in vitro. The CBM/HPMC/HBPL/TP hydrogel significantly shortened the inflammatory period of the MRSA-infected full-thickness skin wound of rats in vivo, with 2 orders of lower MRSA colonies compared with the blank control, and promoted the wound closure especially at the earlier stage. The inflammation was suppressed and the vascularization was promoted significantly as well, resulting in reduced pro-inflammatory factors including interleukin-6 (IL-6), interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α), and increased anti-inflammatory factors such as interleukin-4 (IL-4) and interleukin-10 (IL-10).


Subject(s)
Antioxidants , Methicillin-Resistant Staphylococcus aureus , Animals , Rats , Antioxidants/pharmacology , Hydrogels/pharmacology , Polylysine/pharmacology , Escherichia coli , Hydrogen Peroxide , Wound Healing , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Hypromellose Derivatives , Inflammation , Interleukin-1beta , Tea
5.
J Sci Food Agric ; 104(5): 3069-3079, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38072654

ABSTRACT

BACKGROUND: ε-polylysine hydrochloride (ε-PLH) is a naturally occurring antimicrobial peptide extensively utilized in the food and medical industries. However, its impact on animal husbandry remains to be further explored. Therefore, the present study aimed to determine the effect of ε-PLH on laying hens' health and laying performance. RESULTS: Dietary supplementation with ε-PLH to the diet significantly increased average egg weight during weeks 1-8. Meanwhile, compared with the control group, supplementation with ε-PLH decreased the feed egg ratio during weeks 9-12 and egg breakage rate during weeks 9-16 ,whereas it increased eggshell strength during weeks 1-4 and 13-16 . The ε-PLH 0.05% group increased yolk percentage during weeks 5-8 and yolk color during weeks 1-4 . Furthermore, ε-PLH supplementation significantly increased the concentrations of total protein, albumin, globulin and reproductive hormones estradiol, as well as decreased interleukin-1 beta and malondialdehyde in the serum. Compared with the control group, supplementation with 0.05% ε-PLH significantly increased the relative abundance of Cyanobacteria and Gastranaerophilales and decreased the abundance of Desulfovibrio and Streptococcus in the cecum microbiota. In addition, ε-PLH 0.1% supplementation also increased acetic acid content in the cecum. CONCLUSION: Dietary supplementation with ε-PLH has a positive impact on both productive performance and egg quality in laying hens. Furthermore, ε-PLH can also relieve inflammation by promoting the immunity and reducing oxidative damage during egg production. ε-PLH has been shown to improve intestinal morphology, gut microbial diversity and intestinal health. © 2023 Society of Chemical Industry.


Subject(s)
Gastrointestinal Microbiome , Animals , Female , Polylysine/pharmacology , Chickens/microbiology , Dietary Supplements/analysis , Diet/veterinary , Fatty Acids, Volatile , Animal Feed/analysis
6.
Sci Rep ; 13(1): 18365, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37884622

ABSTRACT

The design of biomaterials able to facilitate cell adhesion is critical in the field of tissue engineering. Precise control of surface chemistry at the material/tissue interface plays a major role in enhancing the interactions between a biomaterial and living cells. Bio-integration is particularly important in case of various electrotherapies, since a close contact between tissue and electrode's surface facilitates treatment. A promising approach towards surface biofunctionalization involves the electrografting of diazonium salts followed by the modification of organic layer with pro-adhesive polypeptides. This study focuses on the modification of platinum electrodes with a 4-nitrobenzenediazonium layer, which is then converted to the aminobenzene moiety. The electrodes are further biofunctionalized with polypeptides (polylysine and polylysine/laminin) to enhance cell adhesion. This study also explores the differences between physical and chemical coupling of selected polypeptides to modulate pro-adhesive nature of Pt electrodes with respect to human neuroblastoma SH-SY5Y cells and U87 astrocytes. Our results demonstrate the significant enhancement in cell adhesion for biofunctionalized electrodes, with more amplified adhesion noted for covalently coupled polypeptides. The implications of this research are crucial for the development of more effective and functional biomaterials, particularly biomedical electrodes, which have the potential to advance the field of bioelectronics and improve patients' outcomes.


Subject(s)
Neuroblastoma , Polylysine , Humans , Adhesives , Biocompatible Materials , Peptides , Cell Adhesion , Surface Properties
7.
Biosensors (Basel) ; 13(7)2023 Jul 16.
Article in English | MEDLINE | ID: mdl-37504133

ABSTRACT

A highly sensitive unlabeled electrochemical aptasensor based on hydroxylated black phosphorus/poly-L-lysine (hBP/PLL) composite is introduced herein for the detection of malathion. Poly-L-lysine (PLL) with adhesion and coating properties adhere to the surface of the nanosheets by noncovalent interactions with underlying hydroxylated black phosphorus nanosheets (hBP) to produce the hBP/PLL composite. The as-synthesized hBP/PLL composite bonded to Au nanoparticles (Au NPs) firmly by assembling and using them as a substrate for the aptamer with high specificity as a probe to fabricate the sensor. Under optimal conditions, the linear range of the electrochemical aptasensor was 0.1 pM~1 µM, and the detection limit was 2.805 fM. The electrochemical aptasensor has great selectivity, a low detection limit, and anti-interference, which has potential application prospects in the field of rapid trace detection of pesticide residues.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Metal Nanoparticles , Metal Nanoparticles/chemistry , Malathion , Polylysine , Electrochemical Techniques , Gold/chemistry , Phosphorus , Aptamers, Nucleotide/chemistry , Limit of Detection
8.
Reprod Domest Anim ; 58(7): 990-996, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37191551

ABSTRACT

Carboxylated poly-l-lysine (CPLL) is an anti-freeze agent having pronounced non-permeating yet membrane stabilizing cryoprotective capabilities. The objective was to evaluate the CPLL supplementation in extender in terms of post-thaw quality (sperm), total anti-oxidant activity (milt) and fertilization potential of cryopreserved Labeo rohita sperm. For this purpose, male brood fish reared at a fish seed hatchery, Rawal Town Islamabad, Pakistan were captured from different rearing ponds and acclimatized in hatchery ponds for 6 h. The brooder was injected with Ovaprim (0.2 mL/kg), and milt was collected after 8 h in cooled sterilized falcon tubes, maintained at 4°C and evaluated for sperm motility. The milt collected from three brooders (n = 3) was diluted in extenders viz., modified Kurokura-2 extender having 10% methanol (control); experimental extenders with CPLL supplementation at the rate of 0.5%, 1% and 1.5%. Diluted milt was filled in 0.5 mL straws, exposed to liquid nitrogen vapours and cryopreserved. Cryopreserved milt was thawed at 25°C and assessed for post-thaw sperm quality. Sperm motility, motility duration, viability, total anti-oxidant capacity and DNA integrity was significantly higher (p < 0.05) in the extender having 1.5% CPLL than control. To evaluate the fertilization rates, male and female brooders were injected with Ovaprim at 0.2 mL/Kg and 0.5 mL/Kg body weight respectively. Fresh eggs and milt were collected through abdominal stripping. Batches of 10 g of eggs from each female (n = 2) were fertilized with one straw, each from frozen sperm with KE + methanol (control), KE + methanol + 1.5% CPLL and 50 µL fresh milt (negative control). After 1.5 h of fertilization, eggs were collected from all jars and a total of 200 eggs were counted. The fertilized eggs appeared clear and transparent while unfertilized eggs looked opaque with disintegrated nuclei. Sperm fertilization rate (%) was higher (p < 0.05) in extender KE + methanol + 1.5% CPLL (78.7 ± 0.5) compared to control (KE + methanol) (52.0 ± 0.4) however, it was lower compared to that of negative control, the fresh milt (85.2 ± 0.6). In conclusion, supplementation of carboxylated poly-l-lysine (1.5%) to modified Kurokura-2 extender having 10% methanol improves post-thaw motility, motility duration, viability, DNA integrity, anti-oxidant capacity (milt) and fertilizing ability of cryopreserved L. rohita sperm.


Subject(s)
Polylysine , Semen Preservation , Male , Female , Animals , Polylysine/pharmacology , Sperm Motility , Methanol , Antioxidants/pharmacology , Semen Preservation/veterinary , Cryoprotective Agents/pharmacology , Seeds , Spermatozoa , Cryopreservation/veterinary
9.
Microb Cell Fact ; 22(1): 51, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36918890

ABSTRACT

BACKGROUND: ε-Poly-L-lysine (ε-PL) is a natural and safe food preservative that is mainly produced by filamentous and aerobic bacteria Streptomyces albulus. During ε-PL biosynthesis, a large amount of ATP is used for the polymerization of L-lysine. A shortage of intracellular ATP is one of the major factors limiting the increase in ε-PL production. In previous studies, researchers have mainly tried to increase the oxygen supply to enhance intracellular ATP levels to improve ε-PL production, which can be achieved through the use of two-stage dissolved oxygen control, oxygen carriers, heterologous expression of hemoglobin, and supplementation with auxiliary energy substrates. However, the enhancement of the intracellular ATP supply by constructing an ATP regeneration system has not yet been considered. RESULTS: In this study, a polyphosphate kinase (PPK)-mediated ATP regeneration system was developed and introduced into S. albulus to successfully improve ε-PL production. First, polyP:AMP phosphotransferase (PAP) from Acinetobacter johnsonii was selected for catalyzing the conversion of AMP into ADP through an in vivo test. Moreover, three PPKs from different microbes were compared by in vitro and in vivo studies with respect to catalytic activity and polyphosphate (polyP) preference, and PPK2Bcg from Corynebacterium glutamicum was used for catalyzing the conversion of ADP into ATP. As a result, a recombinant strain PL05 carrying coexpressed pap and ppk2Bcg for catalyzing the conversion of AMP into ATP was constructed. ε-PL production of 2.34 g/L was achieved in shake-flask fermentation, which was an increase of 21.24% compared with S. albulus WG608; intracellular ATP was also increased by 71.56%. In addition, we attempted to develop a dynamic ATP regulation route, but the result was not as expected. Finally, the conditions of polyP6 addition were optimized in batch and fed-batch fermentations, and the maximum ε-PL production of strain PL05 in a 5-L fermenter was 59.25 g/L by fed-batch fermentation, which is the highest ε-PL production reported in genetically engineered strains. CONCLUSIONS: In this study, we proposed and developed a PPK-mediated ATP regeneration system in S. albulus for the first time and significantly enhanced ε-PL production. The study provides an efficient approach to improve the production of not only ε-PL but also other ATP-driven metabolites.


Subject(s)
Adenosine Triphosphate , Polylysine , Fermentation , Regeneration
10.
Food Chem ; 416: 135784, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-36889017

ABSTRACT

Postharvest longan fruits are subjected to Phomopsis longanae Chi (P. longanae) infection that lead to fruit quality deterioration. We hypothesized that ε-poly-l-lysine (ε-PL) could enhance fruit disease resistance in longans. Through physiological and transcriptomic analyses, the results showed that, compared to P. longanae-infected longan fruit, ε-PL + P. longanae treatment reduced the disease development of longan fruits. Additionally, ε-PL + P. longanae treatment increased the contents of disease-resistant substances (lignin and H2O2) and the activities of disease-resistance enzymes (CHI, PAL, PPO, C4H, CAD, GLU, 4CL, and POD). Furthermore, the expressions of genes relevant to the phenylpropanoid biosynthesis pathway and plant-pathogen interaction pathway (Rboh, FLS2, WRKY29, FRK1, and PR1) were up-regulated by ε-PL + P. longanae treatment. These findings demonstrated that ε-PL treatment inhibited the disease development of postharvest longan fruits were associated with the increased accumulation of disease-resistant related substances, as well as the raised activities and genes expressions of disease-resistance related enzymes.


Subject(s)
Fruit , Polylysine , Fruit/chemistry , Hydrogen Peroxide/metabolism
11.
Int J Mol Sci ; 24(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36769174

ABSTRACT

Pseudomonas aeruginosa is a major hospital-associated pathogen that can cause severe infections, most notably in patients with cystic fibrosis (CF) or those hospitalized in intensive care units. Given its remarkable ability to resist antibiotics, P. aeruginosa eradication has grown more challenging. Therefore, there is an urgent need to discover and develop new strategies that can counteract P. aeruginosa-resistant strains. Here, we evaluated the efficacy of poly-L-lysine (pLK) in combination with commonly used antibiotics as an alternative treatment option against P. aeruginosa. First, we demonstrated by scanning electron microscopy that pLK alters the integrity of the surface membrane of P. aeruginosa. We also showed using a fluorometry test that this results in an enhanced permeability of the bacteria membrane. Based on these data, we further evaluated the effect of the combinations of pLK with imipenem, ceftazidime, or aztreonam using the broth microdilution method in vitro. We found synergies in terms of bactericidal effects against either sensitive or resistant P. aeruginosa strains, with a reduction in bacterial growth (up to 5-log10 compared to the control). Similarly, these synergistic and bactericidal effects were confirmed ex vivo using a 3D model of human primary bronchial epithelial cells maintained in an air-liquid interface. In conclusion, pLK could be an innovative antipseudomonal molecule, opening its application as an adjuvant antibiotherapy against drug-resistant P. aeruginosa strains.


Subject(s)
Pseudomonas Infections , Pseudomonas aeruginosa , Humans , Polylysine/pharmacology , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology
12.
Cells Tissues Organs ; 212(1): 8-20, 2023.
Article in English | MEDLINE | ID: mdl-34937023

ABSTRACT

Human mesenchymal stromal cells (hMSCs) are multipotent cells that have been proposed for the treatment of immune-mediated diseases. Culturing hMSCs on tissue culture plastic reduces their therapeutic potential in part due to the lack of extracellular matrix components. The aim of this study is to evaluate multilayers of heparin and poly(L-lysine) (HEP/PLL) as a bioactive surface for hMSCs stimulated with soluble interferon gamma (IFN-γ). Multilayers were formed, via layer-by-layer assembly, with HEP as the final layer and supplemented with IFN-γ in the culture medium. Multilayer construction and chemistry were confirmed using Azure A staining, quartz crystal microbalance, and X-ray photoelectron spectroscopy. hMSCs adhesion, viability, and differentiation, were assessed. Results showed that (HEP/PLL) multilayer coatings were poorly adhesive for hMSCs. However, performing chemical crosslinking using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide significantly enhanced hMSCs adhesion and viability. The immunosuppressive properties of hMSCs cultured on crosslinked (HEP/PLL) multilayers were confirmed by measuring indoleamine 2,3-dioxygenase activity. Lastly, hMSCs cultured on crosslinked (HEP/PLL) multilayers in the presence of soluble IFN- γ successfully differentiated towards the osteogenic and adipogenic lineages as confirmed by Alizarin red, and oil-red O staining, as well as alkaline phosphatase activity. This study suggests that crosslinked (HEP/PLL) films can modulate hMSCs response to soluble factors, which may improve hMSCs-based therapies aimed at treating several immune diseases.


Subject(s)
Heparin , Mesenchymal Stem Cells , Humans , Heparin/pharmacology , Heparin/metabolism , Polylysine/pharmacology , Polylysine/chemistry , Polylysine/metabolism , Interferon-gamma/pharmacology , Interferon-gamma/metabolism , Osteogenesis , Cell Differentiation
13.
J Reprod Dev ; 69(1): 53-55, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36503905

ABSTRACT

The vitrification of zygotes is important for their use as donors for generating genome-edited mice. We previously reported the successful vitrification of mouse zygotes using carboxylated ε-poly-L-lysine (COOH-PLL). However, this vitrification solution contains fetal calf serum (FCS), which contains unknown factors and presents risks of pathogenic viral and microbial contamination. In this study, we examined whether polyvinyl alcohol (PVA) can be used as an alternative to FCS in vitrification solutions for mouse zygotes. When COOH-PLL was added to the vitrification solutions, zygotes vitrified with solutions containing 0.01% PVA (PV0.01) and those vitrified in a control solution containing FCS (75.6%) developed into blastocysts (78.4%). In addition, there were no significant differences in the ability to develop to term between the control solution (46.6%) and PV0.01 (44.1%) groups. In conclusion, we clearly demonstrated that PVA can replace FCS in our vitrification solution supplemented with COOH-PLL for mouse zygotes.


Subject(s)
Cryopreservation , Zygote , Mice , Animals , Polylysine , Polyvinyl Alcohol , Vitrification , Blastocyst
14.
Int J Pharm ; 628: 122288, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36252644

ABSTRACT

Surface modification of magnetic nanoparticles with poly-l-lysine, proline, and tryptophan was used to design potential theranostic agents for the application in cancer diagnosis and radionuclide-hyperthermia therapy. Characterization of bare and functionalized magnetic nanoparticles was performed in detail. The transparency of the examined magnetic nanoparticles was measured in the non-alternating magnetic field for a complete and better understanding of hyperthermia. For the first time amino acid-functionalized magnetic nanoparticles were labeled with theranostic radionuclides 131I and 177Lu. The specific absorption rate (SAR) procured for poly-l-lysine functionalized magnetic nanoparticles (SAR values of 99.7 W/g at H0 = 15.9 kA/m and resonant frequency of 252 kHz) demonstrated their possible application in magnetic hyperthermia. Poly-l-lysine functionalized magnetic nanoparticles labeled with 177Lu showed the highest radiochemical purity (>99.00 %) and in vitro stability in saline and serum (>98.00 % up to 96 h). The in vivo analysis performed after their intravenous administration in healthy Wistar rats presented good in vivo stability for several days. Encouraging results as well as magnetic and radiochemical properties of 177Lu-PLL-MNPs (80 °C) justify their further testing toward the potential use as theranostic agents for diagnostic and combined radionuclide-hyperthermia therapeutic applications.


Subject(s)
Hyperthermia, Induced , Magnetite Nanoparticles , Animals , Rats , Hyperthermia, Induced/methods , Magnetite Nanoparticles/chemistry , Polylysine , Tryptophan , Precision Medicine , Proline , Rats, Wistar , Iodine Radioisotopes
15.
Biosensors (Basel) ; 12(10)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36290913

ABSTRACT

A label-free fipronil aptasensor was built based on Polylysine-black phosphorus nanosheets composition (PLL-BPNSs) and Au nanoparticles (AuNPs). A PLL-BP modified glassy carbon electrode (GCE) was fabricated by combining BP NSs and PLL, which included a considerable quantity of -NH2. Au nanoparticles (AuNPs) were placed onto the GCE, and PLL-BPNSs bonded to Au NPs firmly by assembling. The thiolated primers were then added and fixed using an S-Au bond, and competitive binding of the fipronil aptamer was utilized for fipronil quantitative assessment. The sensor's performance was evaluated using differential pulse voltammetry (DPV) method. The linear equation is ΔI (µA) = 13.04 logC + 22.35, while linear correlation coefficient R2 is 0.998, and detection limit is 74 pg/mL (0.17 nM) when the concentration of fipronil is 0.1 ng/mL-10 µg/mL. This aptasensor can apply to quantitative detection of fipronil.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Metal Nanoparticles , Gold/chemistry , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Metal Nanoparticles/chemistry , Phosphorus , Polylysine , Electrodes , Carbon/chemistry , Limit of Detection , Electrochemical Techniques/methods
16.
Int J Food Microbiol ; 381: 109911, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36063682

ABSTRACT

Pork preservation and cooking are common processes in food production. This study analyzed the influence of cinnamon essential oil nanoemulsions (CEON), ε-polylysine (ε-PL) and CEON/ε-PL on microbial community and quality of pork during refrigerated storage and radio frequency (RF) cooking. Results showed that a stable CEON was prepared with soybean lecithin (oil: lecithin = 1:1 w/w). CEON and ε-PL inhibited the growth of total bacteria counts (TBC) of raw pork, and caused Salmonella reduction at refrigerated storage of 12 d. Photobacterium and Pseudomonas were dominant spoilage bacteria of raw pork during refrigerated period. The 0.25 % CEON and 0.125 % CEON + 0.25 % ε-PL had good antimicrobial effects against Photobacterium while 0.5 % ε-PL had a small effect. Pork treated by CEON and CEON/ε-PL had better freshness than control and ε-PL treated samples. RF cooking lowered cooking time compared to water bath cooking at 80 °C and a similar quality of cooked pork was observed. CEON/ε-PL promoted Salmonella and TBC inactivation during RF cooking. TVB-N content, pH, cooking loss and appearance of RF cooked pork were not influenced by the addition of CEON/ε-PL, but the odor was slightly affected. The hardness, springiness and chewiness were enhanced by the addition of CEON/ε-PL. The results revealed that CEON/ε-PL could be used in raw pork preservation and promote bacteria inactivation during RF cooking.


Subject(s)
Anti-Infective Agents , Microbiota , Oils, Volatile , Pork Meat , Red Meat , Animals , Anti-Infective Agents/pharmacology , Bacteria , Cinnamomum zeylanicum , Cooking/methods , Food Microbiology , Food Preservation/methods , Lecithins/pharmacology , Oils, Volatile/pharmacology , Polylysine/pharmacology , Red Meat/microbiology , Salmonella , Swine , Water/pharmacology
17.
J Mater Chem B ; 10(27): 5191-5202, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35726778

ABSTRACT

Severe systemic toxicity and side effects are major obstacles to the success of chemotherapy for tumors. Regardless of the choice of chemotherapy drugs, the safety of drug delivery materials is crucial, and therefore, there have been various efforts to improve the therapeutic effect and the biological safety of drug delivery systems (DDSs). In this study, a dual stimulus-response DDS (PLL-SS@DOX-BP) was constructed based on the biomaterials of black phosphorus (BP) nanosheets and poly-l-lysine (PLL) to enhance the treatment of doxorubicin hydrochloride (DOX) for breast cancer. The PLL derivative was nano-coated on the surface of drug-loaded BP nanosheets, and it prevented premature leakage of the drug and maintained the stability of the DDS. The introduced disulfide bonds and photothermal agent BP enabled the redox and near-infrared responsive drug release of the DDS, and the coated PLL derivative on the nanocarrier decreased premature leakage of the drug before the DDS reached the tumor tissues. The in vitro and in vivo experiments showed that the combination of biomaterial (PLL) and photothermal material (BP nanosheets) exhibited excellent biological safety and remarkable drug delivery capacity. Moreover, the pharmacodynamic studies indicated that PLL-SS@DOX-BP is a powerful vehicle for photothermal therapy in combination with chemotherapy. Compared with chemotherapy alone, the developed DDS displayed enhanced anti-tumor efficiency with decreased systemic toxicity, and thus, it has the potential to be a promising anti-tumor treatment strategy.


Subject(s)
Breast Neoplasms , Nanoparticles , Biocompatible Materials/chemistry , Breast Neoplasms/pathology , Female , Humans , Nanoparticles/chemistry , Phosphorus/chemistry , Phototherapy , Polylysine
18.
ACS Appl Mater Interfaces ; 14(18): 21392-21405, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35476424

ABSTRACT

An imperative processing way to produce 3D printed structures with enhanced multifunctional properties is printing inks in the form of a gel-like colloidal emulsion. The surface-modified microcrystalline cellulose (MCC) is an excipient of outstanding merit as a particulate emulsifier to manufacture a stable Pickering emulsion gel. The tuning of the MCC structure by cationic antimicrobial compounds, such as ε-polylysine (ε-PL), can offer a surface activity with an antimicrobial effect. However, the MCC/ε-PL lacks the appropriate emulsifying ability due to the development of electrostatic complexes. To overcome this challenge, (i) a surface-active MCC conjugate was synthesized by a sustainable dual-grafting technique (ii) to produce a highly stable therapeutic soy-based Pickering emulsion gel (iii) for potential application in 3D printing. In this regard, the tea polyphenols were initially introduced into MCC by the free-radical grafting method to decrease the charge density of anionic MCC. Then, the antioxidative MCC-g-tea polyphenols were reacted by ε-PL to produce a dual-grafted therapeutic MCC conjugate (micro-biosurfactant), stabilizing the soy-based emulsion system. The results indicated that the dual-grafted micro-biosurfactant formed a viscoelastic and thixotropic soy-based emulsion gel with reduced droplet size and long-term stability. Besides, there was an improvement in the interfacial adsorption features of soy-protein particles after micro-biosurfactant incorporation, where the interfacial pressure and surface dilatational viscoelastic moduli were enhanced. Consequently, it was revealed that the therapeutic Pickering emulsion gel was more suitable to manufacture a well-defined 3D architecture with high resolution and retained permanent deformation after unloading (i.e., a recoverable matrix). This work established that the modification of the MCC backbone by tea polyphenols and ε-PL advances its bioactive properties and emulsifying performance, which finally obtains a soy-based 3D printed structure with noteworthy mechanical strength.


Subject(s)
Anti-Infective Agents , Polyphenols , Anti-Bacterial Agents , Anti-Infective Agents/chemistry , Cations , Cellulose , Emulsions/chemistry , Polylysine/chemistry , Polyphenols/chemistry , Printing, Three-Dimensional , Tea
19.
Food Funct ; 13(7): 4069-4085, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35315841

ABSTRACT

This study aimed to assess the influence of dietary supplementation of ε-polylysine on the gut microbiota and host nutrient metabolism, which is not systematically discussed by multi-omics analysis. A total of 40 mice were randomly divided into two groups exposed to either a basal diet (AIN-76A) or a basal diet with 150 ppm ε-polylysine. Fecal samples were collected for gut bacteria identification. Liver and plasma samples were collected for metabolomic and proteomic analyses. The results showed that ε-polylysine decreased the body weight of mice and affected the presence of certain types of intestinal microorganisms. The richness of the microbiota and number of phyla increased with age. ε-Polylysine affected the presence of genera and species, and either regulated or took part in the metabolism of energy, nitrogen, amino acids, lipids, carbohydrates, glycans, cofactors, and vitamins. The metabolite profiling showed that lipid and lipid-like molecules metabolites occupied the majority percent of plasma and liver metabolites. Additionally, ε-polylysine regulated the key role of metabolites and related metabolic enzymes in the metabolic pathways, especially phospholipid metabolism. In conclusion, dietary ε-polylysine improved the immunity of growing mice, and had a greater effect on the anabolism of nutrients in adult mice.


Subject(s)
Gastrointestinal Microbiome , Animals , Diet , Lipid Metabolism , Mice , Polylysine , Proteomics
20.
Int J Mol Sci ; 23(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35163414

ABSTRACT

Liver cancer is currently regarded as the second leading cause of cancer-related mortality globally and is the sixth most diagnosed malignancy. Selenium nanoparticles (SeNPs) have attracted favorable attention as nanocarriers for gene therapy, as they possess beneficial antioxidant and anticancer properties. This study aimed to design, functionalize and characterize SeNPs to efficiently bind, protect and deliver pCMV-Luc DNA to hepatocellular carcinoma (HepG2) cells. The SeNPs were synthesized by ascorbic acid reduction and functionalized with poly-L-lysine (PLL) to stabilize and confer positive charges to the nanoparticles. The SeNPs were further decorated with lactobionic acid (LA) to target the asialoglycoprotein receptors abundantly expressed on the surface of the hepatocytes. All SeNPs were spherical, in the nanoscale range (<130 nm) and were capable of successfully binding, compacting and protecting the pDNA against nuclease degradation. The functionalized SeNP nanocomplexes exhibited minimal cytotoxicity (<30%) with enhanced transfection efficiency in the cell lines tested. Furthermore, the targeted SeNP (LA-PLL-SeNP) nanocomplex showed significant (* p < 0.05, ** p < 0.01, **** p < 0.0001) transgene expression in the HepG2 cells compared to the receptor-negative embryonic kidney (HEK293) cells, confirming receptor-mediated endocytosis. Overall, these functionalized SeNPs exhibit favorable features of suitable gene nanocarriers for the treatment of liver cancer.


Subject(s)
Disaccharides/chemistry , Gene Transfer Techniques , Liver/metabolism , Metal Nanoparticles/chemistry , Polylysine/chemistry , Selenium/chemistry , HEK293 Cells , HeLa Cells , Hep G2 Cells , Humans
SELECTION OF CITATIONS
SEARCH DETAIL