Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 204
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Curr Top Med Chem ; 23(25): 2394-2415, 2023.
Article in English | MEDLINE | ID: mdl-37828679

ABSTRACT

BACKGROUND: Piperine is a natural compound found in black pepper that has been traditionally used for various therapeutic purposes. In the ayurvedic system of medication there is a lot of evidence which shows that the piperine is widely used for different therapeutic purpose. In recent years, there has been an increasing interest in the pharmacological and therapeutic potential of piperine and its derivatives in modern medicine. In order to increase the bioavailability and therapeutic effectiveness of piperine and its analogs, researchers have been looking at various extraction methods and synthesis approaches. Many studies have been conducted in this area because of the promise of piperine as a natural substitute for synthetic medications. OBJECTIVES: The objective of this review article is to provide an up-to-date analysis of the literature on the synthesis of piperine analogs, including their extraction techniques and various biological activities such as antihypertensive, antidiabetic, insecticidal, antimicrobial, and antibiotic effects. Additionally, the review aims to discuss the potential of piperine in modern medicine, given its traditional use in various medicinal systems such as Ayurveda, Siddha, and Unani. The article also provides a comprehensive analysis of the plant from which piperine is derived. CONCLUSION: This review article provides a thorough examination of piperine and the source plant. The best extraction technique for the extraction of piperine and the synthesis of its analogs with various biological activities, including antihypertensive, antidiabetic, insecticidal, antibacterial, and antibiotic properties, are covered in the article. This review aims to provide an updated analysis of the literature on the synthesis of piperine analogs.


Subject(s)
Alkaloids , Antihypertensive Agents , Alkaloids/pharmacology , Polyunsaturated Alkamides/pharmacology , Benzodioxoles/pharmacology , Hypoglycemic Agents , Anti-Bacterial Agents
2.
Phytomedicine ; 121: 155113, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37748388

ABSTRACT

BACKGROUND: Accumulating evidence suggested increasing energy expenditure is a feasible strategy for combating obesity, and browning of white adipose tissue (WAT) to promote thermogenesis might be one of the attractive ways. Hydroxy-α-sanshool (HAS), a natural amide alkaloid extracted from the fruits of Zanthoxylum bungeanum Maxim, possesses lots of benefits in lipid metabolism regulation. METHODS: The anti-obesity effect of HAS was investigated by establishing an animal model of obesity and a 3T3-L1 differentiation cell model. Effects of HAS on the whole-body fat and liver of obese mice, and the role of HAS in inducing browning of white fat were studied by Micro CT, Metabolic cage detection, Cell mitochondrial pressure detection, transmission electron microscopy and cold exposure assays. Furthermore, the Real-time PCR (qPCR), digital PCR (dPCR), western blot, Co-immunoprecipitation (Co-IP), molecular docking, drug affinity responsive target stability (DARTS), Cellular thermal shift assay (CETSA) and other methods were used to investigate the target and mechanisms of HAS. RESULTS: We found that treatment with HAS helped mice combat obesity caused by a high fat diet (HFD) and improve metabolic characteristics. In addition, our results suggested that the anti-obesity effect of HAS is related to increase energy consumption and thermogenesis via induction of browning of WAT. The further investigations uncovered that HAS can up-regulate UCP-1 expression, increase mitochondria number, and elevate the cellular oxygen consumption rates (OCRs) of white adipocytes. Importantly, the results indicated that browning effects of HAS is closely associated with SIRT1-dependent PPAR-γ deacetylation through activating the TRPV1/AMPK pathway, and TRPV1 is the potential drug target of HAS for the browning effects of WAT. CONCLUSIONS: Our results suggested the HAS can promote browning of WAT via regulating AMPK/SIRT-1/PPARγ signaling, and the potential drug target of HAS is the membrane receptor of TRPV1.


Subject(s)
PPAR gamma , Zanthoxylum , Mice , Animals , PPAR gamma/metabolism , Fruit , Molecular Docking Simulation , AMP-Activated Protein Kinases/metabolism , Adipose Tissue, White , Obesity/drug therapy , Obesity/metabolism , Polyunsaturated Alkamides/pharmacology , Diet, High-Fat/adverse effects , 3T3-L1 Cells , TRPV Cation Channels/metabolism , TRPV Cation Channels/pharmacology
3.
Crit Rev Food Sci Nutr ; 63(22): 5813-5840, 2023.
Article in English | MEDLINE | ID: mdl-34996326

ABSTRACT

Translation of traditional knowledge of herbs into a viable product for clinical use is still an uphill task. Piperine, a pungent alkaloid molecule derived from Piper nigrum and Piper longum possesses diverse pharmacological effects. Traditionally, pepper is used for arthritis, bronchitis, gastritis, diarrhea, snake bite, menstrual pain, fever, and bacterial infections, etc. The anti-inflammatory, antioxidant and immunomodulatory actions of piperine are the possible mechanisms behind its therapeutic potential. Various in-silico and experimental studies have shown piperine as a possible promising molecule in coronavirus disease (COVID-19), ebola, and dengue due to its immunomodulatory and antiviral activities. The other important clinical applications of piperine are due to its bio enhancing effect on drugs, by modulating, absorption in the gastrointestinal tract, altering activities of transporters like p-glycoprotein substrates, and modulating drug metabolism by altering the expression of cytochrome P450 or UDP-glucuronosyltransferase enzymes. Piperine attracted clinicians in treating patients with arthritis, metabolic syndrome, diabetes, skin infections, gastric and liver disorders. This review focused on systematic, evidence-based insight into the use of piperine in clinical settings and mechanistic details behind its therapeutic actions. Also, highlights a number of clinical trials of piperine at various stages exploring its clinical application in cancer, neurological, respiratory, and viral disease, etc.


Subject(s)
Alkaloids , COVID-19 , Piper nigrum , Humans , Alkaloids/pharmacology , Alkaloids/therapeutic use , Piperidines/pharmacology , Piperidines/therapeutic use , Benzodioxoles/pharmacology , Benzodioxoles/therapeutic use , Polyunsaturated Alkamides/pharmacology , Polyunsaturated Alkamides/therapeutic use , Piper nigrum/chemistry
4.
Phytother Res ; 37(5): 1911-1923, 2023 May.
Article in English | MEDLINE | ID: mdl-36578266

ABSTRACT

Chemotherapy-induced neuropathy represents the main dose-limiting toxicity of several anticancer drugs, such as oxaliplatin, leading to chronic pain and an impairment of the quality of life. Echinacea purpurea n-hexane extract (EP4 -RE ; rich in alkamides) and butanolic extract (EP4 -RBU ; rich in polyphenols) have been characterized and tested in an in vivo model of oxaliplatin-induced neuropathic pain, addressing the endocannabinoid system with alkamides and counteracting the redox imbalance with polyphenols. Thermal hypersensitivity was evaluated by the Cold Plate test. EP4 -RE showed a dose-dependent anti-hyperalgesic profile. The extract was more effective than its main constituent, dodeca-2 E,4 E,8Z,10 E/Z-tetraenoic acid isobutylamide (18 mg kg-1 , twofold to equimolar EP4 -RE 30 mg kg-1 ), suggesting a synergy with other extract constituents. Administration of cannabinoid type 2 (CB2) receptor-selective antagonist completely blocked the anti-allodynic effect of EP4 -RE , differently from the antagonism of CB1 receptors. EP4 -RBU (30 mg kg-1 ) exhibited anti-neuropathic properties too. The effect was mainly exerted by chicoric acid, which administered alone (123 µg kg-1 , equimolar to EP4 -RBU 30 mg kg-1 ) completely reverted oxaliplatin-induced allodynia. A synergy between different polyphenols in the extract had not been highlighted. Echinacea extracts have therapeutic potential in the treatment of neuropathic pain, through both alkamides CB2-selective activity and polyphenols protective properties.


Subject(s)
Antineoplastic Agents , Echinacea , Neuralgia , Oxaliplatin , Quality of Life , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Neuralgia/drug therapy , Polyunsaturated Alkamides/pharmacology , Polyunsaturated Alkamides/therapeutic use
5.
Food Chem ; 405(Pt A): 134736, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36345102

ABSTRACT

Piper nigrum is an important aromatic plant, and its fruits (black and white pepper) are commonly used as food additives and spices. However, its stems were disposed as wastes. This research comprehensively investigated bioactive alkaloids of the stems, eight new dimeric amide alkaloids and eight known compounds were obtained. All obtained compounds showed excellent anti-inflammatory activity. Additionally, the dimeric amide alkaloids enhanced the anticancer effect of paclitaxel against cervical cancer cells. These results demonstrate that the stems of P. nigrum could be the sustainable source of bioactive alkaloids for development and utilization in the food and health fields.


Subject(s)
Alkaloids , Piper nigrum , Amides/pharmacology , Alkaloids/pharmacology , Plant Extracts/pharmacology , Fruit , Benzodioxoles , Polyunsaturated Alkamides/pharmacology
6.
Neurotox Res ; 40(6): 2027-2045, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36342584

ABSTRACT

Recently, studies conducted with astrocyte cells have drawn attention to neurodegeneration pathologies caused by aluminum exposure. In particular, investigating the potential of herbal therapeutic agents to prevent this effect of aluminum has gained importance. The purpose of this study was to investigate the therapeutic and preventive effects of piperine, curcumin, and the combination of these compounds on reactive primary astrocyte cells. In order to examine the preventive effect, certain concentrations of compounds were applied to the cells before the aluminum application, and to be able to determine the therapeutic effect, the compounds were examined after the aluminum application. The efficacy of the compounds was analyzed in terms of cell viability, apoptosis, necrosis, and cytokine release. In conclusion, the results of the study showed that the use of different concentrations of piperine, curcumin, and their combination had significantly higher % cell viability on aluminum-induced damage in astrocyte cells compared to the damaged control group. In addition, a decrease in the number of apoptotic and necrotic cells was observed in the same groups, which indicated that piperine increased curcumin activity. The decrease in the amount of IL-6 and TGF-ß cytokines also supported that piperine increased the effectiveness of curcumin. Considering all these results, it can be said that in terms of aluminum damage in astrocyte cells, the bioavailability-enhancing property of piperine on curcumin was shown for the first time in the literature. In line with these results, it is inevitable to carry out further studies.


Subject(s)
Alkaloids , Curcumin , Curcumin/pharmacology , Curcumin/therapeutic use , Aluminum/toxicity , Astrocytes , Alkaloids/pharmacology , Benzodioxoles/pharmacology , Polyunsaturated Alkamides/pharmacology
7.
Life Sci ; 293: 120279, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35032552

ABSTRACT

BACKGROUND: Curcumin is one of the compounds present in plants of the genus Curcuma sp., being very used not only as condiment but also with medicinal purposes. As an analgesic, papers highlight the efficacy of curcumin in the treatment of various types of pain. AIMS: In this study we evaluated the peripheral antinociceptive effect of curcumin and by which mechanisms this effect is induced. MAIN METHODS: The mice paw pressure test was used on animals which had increased pain sensitivity by intraplantar injection of carrageenan. All the drugs were administered in the right hind paw. KEY FINDINGS: Curcumin was administered to the right hind paw animals induced antinociceptive effect. Non -selective antagonist of opioid receptors naloxone reverted the antinociceptive effect induced by curcumin. Selective antagonists for µ, δ and κ opioid receptors clocinnamox, naltrindole and nor- binaltorphimine, respectively, reverted the antinociceptive effect induced by curcumin. Bestatin, enkephalinases inhibitor that degrade peptides opioids, did not change the nociceptive response. Selective antagonists for CB1 and CB2 cannabinoid receptors, AM251 and AM630, respectively, reversed the antinociceptive effect induced by curcumin. The MAFP inhibitor of the enzyme FAAH which breaks down anandamide, JZL184, enzyme inhibitor MAGL which breaks down the 2-AG, as well as the VDM11 anandamide reuptake inhibitor potentiated the antinociceptive effect of curcumin. SIGNIFICANCE: These results suggest that curcumin possibly peripheral antinociception induced by opioid and cannabinoid systems activation and possibly for endocannabinoids and opioids release.


Subject(s)
Analgesics/therapeutic use , Cannabinoid Receptor Agonists/therapeutic use , Curcumin/therapeutic use , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Receptors, Opioid/metabolism , Analgesics/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Arachidonic Acids/pharmacology , Arachidonic Acids/therapeutic use , Cannabinoid Receptor Agonists/pharmacology , Carrageenan/toxicity , Cinnamates/pharmacology , Curcumin/pharmacology , Dose-Response Relationship, Drug , Endocannabinoids/pharmacology , Endocannabinoids/therapeutic use , Hyperalgesia/chemically induced , Male , Mice , Morphine Derivatives/pharmacology , Narcotic Antagonists/pharmacology , Pain/chemically induced , Pain/drug therapy , Pain/metabolism , Polyunsaturated Alkamides/pharmacology , Polyunsaturated Alkamides/therapeutic use
8.
Pharm Biol ; 60(1): 96-107, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34962450

ABSTRACT

CONTEXT: Many natural extracts have been shown to minimize the toxicity of doxorubicin (Dox). Low piperine Piper nigrum L. (Piperaceae) extract (PFPE) is a natural extract containing many types of antioxidants that may reduce Dox toxicities. OBJECTIVE: To evaluate the effect of PFPE in attenuating the side effects of Dox. MATERIALS AND METHODS: Tumour-bearing Sprague Dawley rats were divided into five groups including normal, vehicle, 100 mg/kg BW of PFPE plus 2 mg/kg BW of Dox (P100 + Dox), 100 mg/kg BW of PFPE plus 2 mg/kg BW of Dox (P200 + Dox) and Dox. Rats were treated with Dox and/or PFPE three times/week for 4 weeks. Tumour burden, blood parameters, weight of internal organs and immunological data were investigated. RESULTS: The addition of 200 mg/kg PFPE significantly restored the levels of AST from 174.60 ± 45.67 U/L in the Dox group near to normal levels at 109.80 ± 4.99 U/L. The combination of PFPE and Dox also decreased the levels of CXCL7, TIMP-1, sICAM-1 and l-selectin about 1.4-1.6-fold compared to Dox group. Feeding rats with 200 mg/kg BW of PFPE combination with Dox slightly increased Th1 from 161.67 ± 14.28 cells in Dox group to 200.75 ± 5.8 cells meanwhile suppressed Treg from 3088 ± 78 cells in Dox to 2561 ± 71 cells. DISCUSSION AND CONCLUSIONS: This study showed that PFPE ameliorated Dox toxicity in many aspects indicating the role of antioxidant and other substances in the extract on toxicity attenuation. This suggested the using of PFPE may be valuable for Dox treated patients.


Subject(s)
Alkaloids/pharmacology , Benzodioxoles/pharmacology , Doxorubicin/toxicity , Piper nigrum/chemistry , Piperidines/pharmacology , Plant Extracts/pharmacology , Polyunsaturated Alkamides/pharmacology , Alkaloids/administration & dosage , Alkaloids/isolation & purification , Animals , Antibiotics, Antineoplastic/toxicity , Antioxidants/administration & dosage , Antioxidants/isolation & purification , Antioxidants/pharmacology , Benzodioxoles/administration & dosage , Benzodioxoles/isolation & purification , Dose-Response Relationship, Drug , Female , Mammary Neoplasms, Experimental/drug therapy , Piperidines/administration & dosage , Piperidines/isolation & purification , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Polyunsaturated Alkamides/administration & dosage , Polyunsaturated Alkamides/isolation & purification , Rats , Rats, Sprague-Dawley
9.
Planta Med ; 88(7): 527-537, 2022 Jun.
Article in English | MEDLINE | ID: mdl-33902130

ABSTRACT

Cancer is one of the major causes of death worldwide. In addition to standard regimens, tumor suppression ability has been demonstrated in many types of natural products, including Piper nigrum, or black pepper. In previous reports, we demonstrated the antitumor effect of low piperine fractional Piper nigrum extract in vitro and in vivo. However, the effects of low piperine fractional P. nigrum extract in the aspect of antitumor immunity has not yet been investigated. In this study, tumor-bearing rats were fed with 100 mg/kg BW or 200 mg/kg BW of low piperine fractional P. nigrum extract 3 times per week for 4 weeks. Tumor burden and hematological data were then evaluated. Immunological data was investigated using a cytokine array and flow cytometry. The results showed that both doses of low piperine fractional P. nigrum extract significantly suppressed tumor progression in N-nitrosomethylurea-induced mammary tumor rats. There were no significant changes observed in the total white blood cells, red blood cells, and hemoglobin. Low piperine fractional P. nigrum extract suppressed some cytokine and chemokine levels including CXCL7, sICAM-1, and L-selectin 0.2- to 0.6-fold. Interestingly, 200 mg/kg BW of low piperine fractional P. nigrum extract significantly promoted type 1 T helper cell, and suppressed neutrophil, basophil, type 2 T helper cell, and regulatory T cell compared to the control group. In summary, these results indicate that low piperine fractional P. nigrum extract had a high efficacy in supporting antitumor activity at immunological levels via regulating Th1/Th2/Treg cells.


Subject(s)
Piper nigrum , Alkaloids , Animals , Benzodioxoles/pharmacology , Carcinogenesis , Cytokines , Piperidines , Plant Extracts/pharmacology , Polyunsaturated Alkamides/pharmacology , Rats , T-Lymphocytes, Regulatory
10.
Food Chem ; 368: 130832, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34474242

ABSTRACT

Piper nigrum L. is commonly used worldwide and its pericarp, stalks, leaves will be major wastes materials. 42 amide alkaloids were identified in black, white pepper and pericarp by UHPLC-LTQ-Orbitrap HRMS method, followed by 40 constituents in stalks and 36 constituents in leaves. 8 amide alkaloids were reported for the first time in P. nigrum. An ultra-high-performance supercritical fluid chromatography (UHPSFC)-MS method was firstly applied to simultaneously determine 9 characteristic constituents (piperine, piperlonguminine, piperanine, pipercallosine, dehydropipernonaline, pipernonatine, retrofractamide B, pellitorine and guineensine). The most abundant compound in each extract was piperine with a concentration from 0.10 to 12.37 mg/g of dry weight. The fruits, pericarp and leaves extracts could improve cell viability in 6-OHDA-induced SK-N-SH and SH-SY5Y cells. The results showed the characteristics of amide alkaloids of different parts of P. nigrum and evaluated their neuroprotective activities.


Subject(s)
Alkaloids , Piper nigrum , Piper , Alkaloids/pharmacology , Benzodioxoles , Fruit , Plant Extracts/pharmacology , Plant Leaves , Polyunsaturated Alkamides/pharmacology
11.
Molecules ; 26(24)2021 Dec 18.
Article in English | MEDLINE | ID: mdl-34946751

ABSTRACT

Angiogenesis, the formation of new blood vessels, underlies tissue development and repair. Some medicinal plant-derived compounds can modulate the angiogenic response. Heliopsis longipes, a Mexican medicinal plant, is widely used because of its effects on pain and inflammation. The main bioactive phytochemicals from H. longipes roots are alkamides, where affinin is the most abundant. Scientific studies show various medical effects of organic extracts of H. longipes roots and affinin that share some molecular pathways with the angiogenesis process, with the vasodilation mechanism of action being the most recent. This study investigates whether pure affinin and the ethanolic extract from Heliopsis longipes roots (HLEE) promote angiogenesis. Using the aortic ring rat assay (ex vivo method) and the direct in vivo angiogenesis assay, where angioreactors were implanted in CD1 female mice, showed that affinin and the HLEE increased vascular growth in a dose-dependent manner in both bioassays. This is the first study showing the proangiogenic effect of H. longipes. Further studies should focus on the mechanism of action and its possible therapeutic use in diseases characterized by insufficient angiogenesis.


Subject(s)
Asteraceae/chemistry , Ethanol/chemistry , Neovascularization, Physiologic/drug effects , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Polyunsaturated Alkamides/pharmacology , Animals , Aorta, Thoracic/drug effects , Molecular Structure , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Roots/chemistry , Plants, Medicinal , Polyunsaturated Alkamides/chemistry , Polyunsaturated Alkamides/isolation & purification , Rats
12.
Food Chem Toxicol ; 158: 112700, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34838672

ABSTRACT

Bisphenol A (BPA) is a chemical agent which can exert detrimental effects on the male reproductive system, especially the prostate gland. In this study we described the efficacy of the dietary agent curcumin, alone or combined with piperine, to suppress the impact of BPA on the prostate. Adult gerbils were divided into nine experimental groups (n = 7 each group), regarding control (water and oil), exposed to BPA (50 µg/kg/day in water) or curcumin (100 mg/kg) and/or piperine (20 mg/kg). To evaluate the effects of the phytotherapic agents, the other groups received oral doses every two days, BPA plus curcumin (BCm), piperine (BP), and curcumin + piperine (BCmP). BPA promoted prostatic inflammation and morphological lesions in ventral and dorsolateral prostate lobes, associated with an increase in androgen receptor-positive cells and nuclear atypia, mainly in the ventral lobe. Curcumin and piperine helped to minimize these effects. BPA plus piperine or curcumin showed a reduction in nuclear atypical phenotype, indicating a beneficial effect of phytochemicals. Thus, these phytochemicals minimize the deleterious action of BPA in prostatic lobes, especially when administered in association. The protective action of curcumin and piperine consumption is associated with weight loss, anti-inflammatory potential, and control of prostate epithelial cell homeostasis.


Subject(s)
Alkaloids/pharmacology , Benzhydryl Compounds/toxicity , Benzodioxoles/pharmacology , Curcumin/pharmacology , Phenols/toxicity , Phytochemicals/pharmacology , Piperidines/pharmacology , Polyunsaturated Alkamides/pharmacology , Prostatic Neoplasms , Animals , Carcinogenesis/chemically induced , Endocrine Disruptors/toxicity , Gerbillinae , Male , Prostate/drug effects , Prostate/pathology , Prostatic Neoplasms/chemically induced , Prostatic Neoplasms/pathology , Protective Agents
13.
Int J Mol Sci ; 22(20)2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34681877

ABSTRACT

The activation of the human cannabinoid receptor type II (CB2R) is known to mediate analgesic and anti-inflammatory processes without the central adverse effects related to cannabinoid receptor type I (CB1R). In this work we describe the synthesis and evaluation of a novel series of N-aryl-2-pyridone-3-carboxamide derivatives tested as human cannabinoid receptor type II (CB2R) agonists. Different cycloalkanes linked to the N-aryl pyridone by an amide group displayed CB2R agonist activity as determined by intracellular [cAMP] levels. The most promising compound 8d exhibited a non-toxic profile and similar potency (EC50 = 112 nM) to endogenous agonists Anandamide (AEA) and 2-Arachidonoylglycerol (2-AG) providing new information for the development of small molecules activating CB2R. Molecular docking studies showed a binding pose consistent with two structurally different agonists WIN-55212-2 and AM12033 and suggested structural requirements on the pyridone substituents that can satisfy the orthosteric pocket and induce an agonist response. Our results provide additional evidence to support the 2-pyridone ring as a suitable scaffold for the design of CB2R agonists and represent a starting point for further optimization and development of novel compounds for the treatment of pain and inflammation.


Subject(s)
Cannabinoid Receptor Agonists/chemistry , Cannabinoid Receptor Agonists/pharmacology , Pyridones/chemistry , Receptor, Cannabinoid, CB2/agonists , Animals , Arachidonic Acids/chemistry , Arachidonic Acids/pharmacology , Benzoxazines/chemistry , Benzoxazines/pharmacology , Binding Sites , CHO Cells , Cannabinoid Receptor Agonists/chemical synthesis , Cell Survival/drug effects , Cricetulus , Cyclic AMP/metabolism , Drug Evaluation, Preclinical , Endocannabinoids/chemistry , Endocannabinoids/pharmacology , Glycerides/chemistry , Glycerides/pharmacology , HL-60 Cells , Hep G2 Cells , Humans , Molecular Docking Simulation , Morpholines/chemistry , Morpholines/pharmacology , Naphthalenes/chemistry , Naphthalenes/pharmacology , Polyunsaturated Alkamides/chemistry , Polyunsaturated Alkamides/pharmacology , Pyridones/pharmacology , Receptor, Cannabinoid, CB2/chemistry , Receptor, Cannabinoid, CB2/genetics , Receptor, Cannabinoid, CB2/metabolism , Structure-Activity Relationship
14.
Med Mycol ; 59(12): 1210-1224, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34468763

ABSTRACT

Spilanthol is a bioactive alkylamide from the native Amazon plant species, Acmella oleracea. However, antifungal activities of spilanthol and its application to the therapeutic treatment of candidiasis remain to be explored. This study sought to evaluate the in vitro and in vivo antifungal activity of spilanthol previously isolated from A. oleracea (spilanthol(AcO)) against Candida albicans ATCC® 10231™, a multidrug-resistant fungal strain. Microdilution methods were used to determine inhibitory and fungicidal concentrations of spilanthol(AcO). In planktonic cultures, the fungal growth kinetics, yeast cell metabolic activity, cell membrane permeability and cell wall integrity were investigated. The effect of spilanthol(AcO) on the proliferation and adhesion of fungal biofilms was evaluated by whole slide imaging and scanning electron microscopy. The biochemical composition of the biofilm matrix was also analyzed. In parallel, spilanthol(AcO) was tested in vivo in an experimental vulvovaginal candidiasis model. Our in vitro analyses in C. albicans planktonic cultures detected a significant inhibitory effect of spilanthol(AcO), which affects both yeast cell membrane and cell wall integrity, interfering with the fungus growth. C. albicans biofilm proliferation and adhesion, as well as, carbohydrates and DNA in biofilm matrix were reduced after spilanthol(AcO) treatment. Moreover, infected rats treated with spilanthol(AcO) showed consistent reduction of both fungal burden and inflammatory processes compared to the untreated animals. Altogether, our findings demonstrated that spilanthol(AcO) is an bioactive compound against planktonic and biofilm forms of a multidrug resistant C. albicans strain. Furthermore, spilanthol(AcO) can be potentially considered for therapeutical treatment of vulvovaginal candidiasis caused by C. albicans. LAY SUMMARY: This study sought to evaluate the antifungal activity of spilanthol against Candida albicans ATCC® 10 231™, a multidrug-resistant fungal strain. Our findings demonstrated that spilanthol(AcO) can be potentially considered for therapeutical treatment of vulvovaginal candidiasis caused by C. albicans.


Subject(s)
Candidiasis, Vulvovaginal , Rodent Diseases , Animals , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Biofilms , Candida albicans , Candidiasis, Vulvovaginal/drug therapy , Candidiasis, Vulvovaginal/veterinary , Microbial Sensitivity Tests/veterinary , Polyunsaturated Alkamides/pharmacology , Rats , Rodent Diseases/drug therapy
15.
An Acad Bras Cienc ; 93(suppl 3): e20201772, 2021.
Article in English | MEDLINE | ID: mdl-34550203

ABSTRACT

Piperine and capsaicin are important molecules with biological and pharmacological activities. This study aimed to evaluate the cytogenotoxic and protective effect of piperine and capsaicin on Allium cepa cells. A. cepa roots were exposed to negative (2% Dimethylsulfoxide) and positive (Methylmethanesulfonate, MMS, 10 µg/mL) controls, and four concentrations (25-200 µM) of piperine or capsaicin (alone) or associated before, simultaneously or after with the MMS. Only the lowest concentration of piperine (25 µM) showed a protective effect because it was not genotoxic. Piperine and capsaicin were cytotoxic (50, 100 and 200 µM). Piperine (50 to 200 µM) caused a significant increase in the total average of chromosomal alterations of in A. cepa cells. For capsaicin, the genotoxic effect was dose-dependent with a significant increase for all concentrations, highlighting the significant presence of micronuclei and nuclear buds for the two isolates. In general, bioactive compounds reduced the total average of chromosomal alterations against damage caused by MMS, mainly micronuclei and/or nuclear buds. Therefore, the two molecules were cytotoxic and genotoxic at the highest concentrations, and did not have cytoprotective action, and the lowest concentration of piperine demonstrated important chemopreventive activity.


Subject(s)
Capsaicin , Onions , Alkaloids , Benzodioxoles/toxicity , Capsaicin/toxicity , DNA Damage , Piperidines , Plant Roots , Polyunsaturated Alkamides/pharmacology
16.
Mol Neurobiol ; 58(11): 5473-5493, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34338970

ABSTRACT

Inflammation, demyelination, glial activation, and oxidative damage are the most pathological hallmarks of multiple sclerosis (MS). Piperine, a main bioactive alkaloid of black pepper, possesses antioxidant, anti-inflammatory, and neuroprotective properties whose therapeutic potential has been less studied in the experimental autoimmune encephalomyelitis (EAE) models. In this study, the efficiency of piperine on progression of EAE model and myelin repair mechanisms was investigated. EAE was induced in female Lewis rats and piperine and its vehicle were daily administrated intraperitoneally from day 8 to 29 post immunization. We found that piperine alleviated neurological deficits and EAE disease progression. Luxol fast blue and H&E staining and immunostaining of lumbar spinal cord cross sections confirmed that piperine significantly reduced the extent of demyelination, inflammation, immune cell infiltration, microglia, and astrocyte activation. Gene expression analysis in lumbar spinal cord showed that piperine treatment decreased the level of pro-inflammatory cytokines (TNF-α, IL-1ß) and iNOS and enhanced IL-10, Nrf2, HO-1, and MBP expressions. Piperine supplementation also enhanced the total antioxidant capacity (FRAP) and reduced the level of oxidative stress marker (MDA) in the CNS of EAE rats. Finally, we found that piperine has anti-apoptotic and neuroprotective effect in EAE through reducing caspase-3 (apoptosis marker) and enhancing BDNF and NeuN expressing cells. This study strongly indicates that piperine has a beneficial effect on the EAE progression and could be considered as a potential therapeutic target for MS treatment. Upcoming clinical trials will provide a deeper understanding of piperine's role for the treatment of the MS.


Subject(s)
Alkaloids/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Benzodioxoles/therapeutic use , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Neuroprotective Agents/therapeutic use , Piperidines/therapeutic use , Polyunsaturated Alkamides/therapeutic use , Alkaloids/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Apoptosis/drug effects , Astrocytes/metabolism , Benzodioxoles/pharmacology , Caspase 3/biosynthesis , Caspase 3/genetics , Cytokines/biosynthesis , Cytokines/genetics , Disease Progression , Drug Evaluation, Preclinical , Encephalomyelitis, Autoimmune, Experimental/metabolism , Female , Gene Expression Regulation/drug effects , Microglia/metabolism , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Piperidines/pharmacology , Polyunsaturated Alkamides/pharmacology , Random Allocation , Rats , Rats, Inbred Lew
17.
Fitoterapia ; 153: 104985, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34237389

ABSTRACT

Affinin is mainly recognized by its antinociceptive effect. Recently, our research group demonstrated that this compound produces vasodilation via activation of the gasotransmitters signaling pathways. However, the molecular targets of affinin were not identified. Considering the structural similarity of this alkamide with anandamide, we hypothesized that affinin-induced vasodilation could involve participation of TRP channels and cannabinoid receptors. In this work, by using the isolated rat aorta assay, we assessed involvement of TRP channels, the cannabinoid system, and the HNO-CGRP-TRPA1 pathway on the mechanism of action of affinin. Additionally, we measured NO and H2S levels elicited by affinin on rat aorta homogenates and carried out computer simulations of molecular interactions between affinin and the TRPA1 and TRPV1 channels and the CB1 receptor. Our results indicated that affinin induces an increase in aortic NO and H2S levels. We found evidence that the vasodilator effect induced by affinin involves activation of TRPA1 and TRPV1 channels and the CB1 and eCB receptors. In silico analyses showed that affinin is able to bind with high affinity to these molecular targets. Moreover, we also proved that affinin-induced vasodilation is partly mediated via activation of the HNO-TRPA1-CGRP pathway. Based on these results we propose a novel mechanism of action to explain the vasodilatory effect of affinin, which could be developed as an alternative drug to treat cardiovascular diseases.


Subject(s)
Polyunsaturated Alkamides/pharmacology , Receptors, Cannabinoid/metabolism , TRPV Cation Channels/metabolism , Vasodilation/drug effects , Animals , Aorta/drug effects , Hydrogen Sulfide , In Vitro Techniques , Male , Molecular Docking Simulation , Nitric Oxide , Rats , Rats, Wistar
18.
Chin J Nat Med ; 19(6): 412-421, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34092292

ABSTRACT

Although the etiology of sciatica remains uncertain, there is increasing evidence that the disease process of sciatica is associated with the levels of inflammatory factors. Piperine, an alkaloid isolated from Piper nigrum, has previously been demonstrated to inhibit inflammation and analgesic effects. The purpose of this study is to verify the regulatory relationship between miR-520a and p65 and to explore how miR-520a/P65 affects the level of cytokines under the action of piperine, so as to play a therapeutic role in sciatica. Through ELISA experiment, we confirmed that four inflammatory factors (IL-1ß, TNF-α, IL-10, TGF-ß1) can be used as evaluation indexes of sciatica. The differentially expressed miRNA was screened as miR-520a, by microarray technology, and the downstream target of miR-520a was P65 by bioinformatics. Real-time fluorescence quantitative PCR confirmed that the expression of miR-520a was negatively correlated with pro-inflammatory cytokines, positively correlated with anti-inflammatory cytokines and negatively correlated with p65 expression at mRNA level. The expression of p65 was positively correlated with pro-inflammatory cytokines and negatively correlated with anti-inflammatory cytokines at the protein level verified by ELISA and Western blot. HE staining analysis showed that the nerve fibers were repaired by piprine, the vacuoles were significantly reduced, and the degree of nerve fiber damage was also improved. Immunohistochemical analysis showed that the expression of p65 decreased after administration of piperine. Dual-luciferase reporter gene assay confirmed that the luciferase signal decreased significantly after cotransfection of miR-520a mimics and p65 3'UTR recombinant plasmid. To sum up, in the rat model of non-compressed lumbar disc herniation, piperine plays a significant role in analgesia. MiR-520a can specifically and directly target P65, and piperine can promote the expression of miR-520a, then inhibit the expression of p65, down-regulate the pro-inflammatory factors IL-1ß and TNF-α, and up-regulate the effects of anti-inflammatory factors IL-10 and TGF-ß1, so as to treat sciatica.


Subject(s)
Alkaloids/pharmacology , Benzodioxoles/pharmacology , MicroRNAs , Piperidines/pharmacology , Polyunsaturated Alkamides/pharmacology , Sciatica , Animals , Inflammation/drug therapy , Inflammation/genetics , MicroRNAs/genetics , Rats , Sciatica/drug therapy , Sciatica/genetics
19.
Phytomedicine ; 84: 153484, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33667839

ABSTRACT

BACKGROUND: Celecoxib (CXB), a selective COX-2 inhibitor NSAID, has exhibited prominent anti-proliferative potential against numerous cancers. However, its low bioavailability and long term exposure related cardiovascular side effects, limit its clinical application. In order to overcome these limitations, natural bioactive compounds with lower toxicity profile are used in combination with therapeutic drugs. Therfore, in this study Piperine (PIP), a natural chemo-preventive agent possessing drug bioavailability enhancing properties, was considered to be used in combination with low doses of CXB. PURPOSE: We hypothesized that the combination of PIP with CXB will have a synergistic anti-proliferative effect on colon cancer cells. STUDY DESIGN: The potency of PIP and CXB alone and in combination was evaluated in HT-29 human colon adenocarcinoma cells and mechanism of growth inhibition was investigated by analyzing the players in apoptotic and Wnt/ß-catenin signaling pathways. METHODS: The effect of PIP on the oral bioavailability of CXB in mice was investigated using HPLC analysis. The study investigated the synergistic anti-proliferative effect of CXB and PIP on HT-29 cells and IEC-6 non-tumorigenic rat intestinal epithelial cells by SRB cell viability assay. Further, the cellular and molecular mechanism(s) involved in the anti-proliferative combinatorial effect was extensively explored in HT-29 cells by flow cytometry and western blotting. The in vivo efficacy of this combination was studied in CT26.WT tumor syngeneic Balb/c mice model. RESULTS: PIP as a bioenhancer increased the oral bioavailability of CXB (129%). The IC50 of CXB and PIP were evaluated to select doses for combination treatment of HT-29 cells. The drug combinations having combination index (CI) less than 1 were screened using CompuSyn software. These combinations were significantly cytotoxic to HT-29 cells but IEC-6 were least effected. Further, the mechanism behind CXB and PIP mediated cell death was explored. The co-treatment led to reactive oxygen species generation, mitochondrial dysfunction, caspase activation and enhanced apoptosis in HT-29 cells. Additionally, the combination treatment synergistically modulated Wnt/ß-catenin pathway, downregulated the stemness markers and boosted therapeutic response in CT26 syngeneic Balb/c mice. CONCLUSION: The outcomes of the study suggests that combining CXB and PIP offers a novel approach for the treatment of colon cancer.


Subject(s)
Alkaloids/pharmacology , Antineoplastic Agents/pharmacology , Benzodioxoles/pharmacology , Celecoxib/pharmacology , Cell Proliferation/drug effects , Colonic Neoplasms/pathology , Piperidines/pharmacology , Polyunsaturated Alkamides/pharmacology , Wnt Signaling Pathway/drug effects , beta Catenin/metabolism , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Cyclooxygenase 2 Inhibitors/pharmacology , Drug Synergism , Humans , Mice , Rats
20.
J Environ Sci Health B ; 56(3): 282-291, 2021.
Article in English | MEDLINE | ID: mdl-33397190

ABSTRACT

In the present study, α-amylase and α-glucosidase inhibitory effect and antioxidant activity of capsaicin and piperine from the ethanolic extract of Capsicum chinense (EECch) and Piper nigrum (EEPn) fruits were investigated. Results revealed that EECch exhibited the highest phenolic (154 mg GAE/100 g of tissue) and flavonoid content (75 mg RtE/100 g of tissue) in comparison with EEPn. The predominant compound detected in EECch and EEPn by GC-EIMS analysis was the capsaicin and piperine, respectively. The capsaicin and piperine showed the highest α-amylase and α-glucosidase inhibitory effect and antioxidant activity rather than extracts. The EEPn (IC50= 216 µg/mL) and piperine (IC50= 105 µg/mL) present a highest α-amylase inhibitory effect, while the EECch (IC50= 225 µg/mL) and capsaicin (IC50= 117 µg/mL) showed highest anti-α-glucosidase activity. Molecular docking established that capsaicin and piperine bind at the α-glucosidase and α-amylase through hydrophobic interactions, hydrogen bond, and charge interactions with amino acid residues. The enzyme inhibitory activity and antioxidant properties exhibited by EECch and EEPn could be attributed to the capsaicin and piperine content and other compounds present such as phenolic compounds and flavonoids. These fruits are potential sources of natural antioxidant agents and α-amylase and α-glucosidase inhibitors.


Subject(s)
Alkaloids/pharmacology , Benzodioxoles/pharmacology , Capsaicin/pharmacology , Capsicum/chemistry , Enzyme Inhibitors/pharmacology , Piper nigrum/chemistry , Piperidines/pharmacology , Polyunsaturated Alkamides/pharmacology , alpha-Amylases/antagonists & inhibitors , Fruit/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Plant Extracts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL