Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Nutrients ; 16(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38542807

ABSTRACT

Despite the known beneficial effects of creatine in treating exercise-induced muscle damage (EIMD), its effectiveness remains unclear. This study investigates the recovery effect of creatine monohydrate (CrM) on EIMD. Twenty healthy men (21-36 years) were subjected to stratified, randomized, double-blind assignments. The creatine (CRE) and placebo (PLA) groups ingested creatine and crystalline cellulose, respectively, for 28 days. They subsequently performed dumbbell exercises while emphasizing eccentric contraction of the elbow flexors. The EIMD was evaluated before and after exercise. The range of motion was significantly higher in the CRE group than in the PLA group 24 h (h) post exercise. A similar difference was detected in maximum voluntary contraction at 0, 48, 96, and 168 h post exercise (p = 0.017-0.047). The upper arm circumference was significantly lower in the CRE group than in the PLA group at 48, 72, 96, and 168 h post exercise (p = 0.002-0.030). Similar variation was observed in the shear modulus of the biceps brachii muscle at 96 and 168 h post exercise (p = 0.003-0.021) and in muscle fatigue at 0 and 168 h post exercise (p = 0.012-0.032). These findings demonstrate CrM-mediated accelerated recovery from EIMD, suggesting that CrM is an effective supplement for EIMD recovery.


Subject(s)
Creatine , Myalgia , Male , Humans , Creatine/pharmacology , Post-Exercise Recovery , Muscle, Skeletal , Dietary Supplements , Polyesters
2.
J Am Nutr Assoc ; 43(4): 384-396, 2024.
Article in English | MEDLINE | ID: mdl-38241335

ABSTRACT

Objective: This overview of systematic reviews (OoSRs) aimed, firstly, to systematically review, summarize, and appraise the findings of published systematic reviews with or without meta-analyses that investigate the effects of branched-chain amino acids (BCAA) on post-exercise recovery of muscle damage biomarkers, muscle soreness, and muscle performance. The secondary objective was to re-analyze and standardize the results of meta-analyses using the random-effects Hartung-Knapp-Sidik-Jonkman (HKSJ) method.Methods: The methodological quality of the reviews was assessed using A Measurement Tool to Assess Systematic Reviews 2.We searched on five databases (i.e., PubMed, Web of Science, Scopus, SPORTDiscus, ProQuest) for systematic reviews with or without meta-analyses that investigated the effects of BCAA supplementation on the post-exercise recovery of muscle damage biomarkers, muscle soreness, and muscle performance.Results: Eleven systematic reviews (seven with meta-analyses) of individual studies were included. Evidence suggests BCAA ingestion attenuates creatine kinase (CK) levels (medium effects) and muscle soreness (small effects) immediately post-exercise and accelerates their recovery process, with trivial-to-large effects for CK levels and small-to-large effects for muscle soreness. BCAA supplementation has no effect on lactate dehydrogenase, myoglobin, and muscle performance recovery. The re-analyses with HKSJ method using the original data reported a slight change in results significance, concluding the same evidence as the original results. The major flaws found in the analyzed reviews were the absence of justification for excluding studies, and the lack of provision of sources of funding for primary studies and sources of conflict of interest and/or funding description.Conclusions: BCAA supplementation is an effective method to reduce post-exercise muscle damage biomarkers, particularly CK levels, and muscle soreness, with no effect on muscle performance. Future systematic reviews with/without meta-analyses, with greater methodological rigor, are needed.


This is the first overview of systematic reviews investigating the impact of BCAA supplementation on muscle damage biomarkers, muscle soreness, and muscle performance post-exercise recovery.BCAA supplementation reduces creatine kinase levels and muscle soreness, especially when consuming a high dose of BCAA longitudinally.BCAA supplementation has no effect on muscle performance post-exercise recovery.


Subject(s)
Amino Acids, Branched-Chain , Dietary Supplements , Exercise , Muscle, Skeletal , Myalgia , Humans , Amino Acids, Branched-Chain/administration & dosage , Biomarkers/blood , Creatine Kinase/blood , Exercise/physiology , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiology , Muscle, Skeletal/metabolism , Post-Exercise Recovery , Systematic Reviews as Topic
3.
Endocrine ; 83(2): 302-321, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37658244

ABSTRACT

PURPOSE: Melatonin supplementation has been disclosed as an ergogenic substance. However, the effectiveness of melatonin supplementation in healthy subjects has not been systematically investigated. The present study analyzed the effects of melatonin supplementation on physical performance and recovery. In addition, it was investigated whether exercise bout or training alter melatonin secretion in athletes and exercise practitioners. METHODS: This systematic review and meta-analysis were conducted and reported according to the guidelines outlined in the PRISMA statement. Based on the search and inclusion criteria, 21 studies were included in the systematic review, and 19 were included in the meta-analysis. RESULTS: Melatonin supplementation did not affect aerobic performance relative to time trial (-0.04; 95% CI: -0.51 to 0.44) and relative to VO2 (0.00; 95% CI: -0.57 to 0.57). Also, melatonin supplementation did not affect strength performance (0.19; 95% CI: -0.28 to 0.65). Only Glutathione Peroxidase (GPx) secretion increased after melatonin supplementation (1.40; 95% CI: 0.29 to 2.51). Post-exercise melatonin secretion was not changed immediately after an exercise session (0.56; 95% CI: -0.29 to 1.41) and 60 min after exercise (0.56; 95% CI: -0.29 to 1.41). CONCLUSION: The data indicate that melatonin is not an ergogenic hormone. In contrast, melatonin supplementation improves post-exercise recovery, even without altering its secretion.


Subject(s)
Melatonin , Performance-Enhancing Substances , Humans , Dietary Supplements , Exercise , Post-Exercise Recovery
SELECTION OF CITATIONS
SEARCH DETAIL