Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Dairy Sci ; 107(2): 1228-1243, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37769944

ABSTRACT

The onset of lactation is characterized by substantially altered calcium (Ca) metabolism; recently, emphasis has been placed on understanding the dynamics of blood Ca in the peripartal cow in response to this change. Thus, the aim of our study was to delineate how prepartum dietary cation-anion difference (DCAD) diets and the magnitude of Ca decline at the onset of lactation altered blood Ca dynamics in the periparturient cow. Thirty-two multiparous Holstein cows were blocked by parity, previous 305-d milk yield and expected parturition date, and randomly allocated to either a positive (+120 mEq/kg) or negative (-120 mEq/kg) DCAD diet from 251 d of gestation until parturition (n = 16/diet). Immediately after parturition cows were continuously infused for 24 h with (1) an intravenous solution of 10% dextrose or (2) Ca gluconate (CaGlc) to maintain blood ionized (iCa) concentrations at ∼1.2 mM (normocalcemia) to form 4 treatment groups (n = 8/treatment). Blood was sampled every 6 h from 102 h before parturition until 96 h after parturition and every 30 min during 24 h continuous infusion. Cows fed a negative DCAD diet prepartum exhibited a less pronounced decline in blood iCa approaching parturition with lesser magnitude of decline relative to positive DCAD-fed cows. Cows fed a negative DCAD diet prepartum required lower rates of CaGlc infusion to maintain normocalcemia in the 24 h postpartum relative to positive DCAD-fed cows. Infusion of CaGlc disrupted blood Ca and P dynamics in the immediate 24 h after parturition and in the days following infusion. Collectively, these data demonstrate that prepartum negative DCAD diets facilitate a more transient hypocalcemia and improve blood Ca profiles at the onset of lactation whereas CaGlc infusion disrupts mineral metabolism.


Subject(s)
Calcium , Dietary Supplements , Pregnancy , Female , Cattle , Animals , Lactation/physiology , Diet/veterinary , Calcium, Dietary , Postpartum Period/metabolism , Anions , Minerals/metabolism , Cations , Animal Feed/analysis
2.
J Dairy Sci ; 107(5): 2864-2882, 2024 May.
Article in English | MEDLINE | ID: mdl-38101729

ABSTRACT

Rumen-protected choline (RPC) promotes benefits in milk production, immunity, and health in dairy cows by optimizing lipid metabolism during transition period management and early lactation. However, the RPC success in dairy cows depends on choline bioavailability, which is affected by the type of protection used in rumen-protected choline. Therefore, our objectives were to determine the effects of a novel RPC on dry matter intake (DMI), identify markers of metabolism and immunity, and evaluate lactation performance. Dry Holstein (n = 48) cows at 245 ± 3 d of gestation were blocked by parity and assigned to control or RPC treatment within each block. Cows enrolled in the RPC treatment received 15 g/d of CholiGEM (Kemin Industries, Cavriago RE, Italy) from 21 d prepartum and 30 g/d of CholiGEM from calving to 21 d postpartum. During the transition period, DMI was measured daily, and blood was sampled weekly for energy-related metabolites such as ß-hydroxybutyrate (BHB), glucose, and nonesterified fatty acids (NEFA), as well as immune function markers such as haptoglobin (Hp) and lipopolysaccharide-binding protein (LPB). Vaginal discharge samples were collected at the calving and 7 d postpartum and stored in microcentrifuge tubes at -80°C until 16S rRNA sequencing. The main responses of body condition score, body weight, DMI, milk yield, milk components, and immune function markers were analyzed using the GLIMMIX procedure of SAS with the effects of treatment, time, parity, and relevant covariates added to the models. The relative abundance of microbiome α-diversity was evaluated by 3 indexes (Chao1, Shannon, and Simpson) and ß-diversity by principal coordinate analysis and permutational multivariate ANOVA. We found no differences in DMI in the pre- and postpartum periods. Cows fed RPC increased the yields of energy- and 3.5% fat-corrected milk and fat yield in primiparous and multiparous cows, with an interaction between treatment and parity for these lactation variables. However, we found no differences in milk protein and lactose up to 150 DIM between treatments. Glucose, NEFA, and BHB had no differences between the treatments. However, RPC decreased BHB numerically (control = 1.07 ± 0.13 vs. RPC = 0.63 ± 0.13) in multiparous on the third week postpartum and tended to reduce the incidence of subclinical ketosis (12.7% vs. 4.2%). No effects for Hp and LPB were found in cows fed RPC. Chao1, Shannon, and Simpson indexes were lower at calving in the RPC treatment than in the Control. However, no differences were found 7 d later for Chao1, Shannon, and Simpson indexes. The vaginal discharge microbiome was altered in cows fed RPC at 7 d postpartum. Fusobacterium, a common pathogen associated with metritis, was reduced in cows fed RPC. Rumen-protected choline enhanced lactation performance and health and altered the vaginal discharge microbiome which is a potential proxy for uterine healthy in dairy cows. The current study's findings corroborate that RPC is a tool to support adaptation to lactation and shed light on opportunities for further research in reproductive health.


Subject(s)
Cattle Diseases , Vaginal Discharge , Pregnancy , Female , Cattle , Animals , Choline/pharmacology , Choline/metabolism , Diet/veterinary , Dietary Supplements/analysis , Fatty Acids, Nonesterified , Rumen/metabolism , RNA, Ribosomal, 16S/metabolism , Postpartum Period/metabolism , Lactation/physiology , Glucose/metabolism , Vaginal Discharge/veterinary , Cattle Diseases/metabolism
3.
J Dairy Sci ; 106(12): 9793-9806, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37641308

ABSTRACT

Objectives were to evaluate the effects of Bacillus subtilis PB6 (BSP) on gastrointestinal tract permeability, metabolism, inflammation, and production parameters in periparturient Holstein cows. Multiparous cows (n = 48) were stratified by previous 305-d mature equivalent milk yield and parity and assigned to 1 of 2 top-dressed dietary treatments 21 d before expected calving through 63 DIM: (1) control (CON; 13 g/d calcium carbonate; n = 24) or (2) BSP (13 g/d BSP; CLOSTAT, Kemin Industries, Des Moines, IA; n = 24). Gastrointestinal tract permeability was evaluated in vivo using the oral paracellular marker chromium (Cr)-EDTA. Effects of treatment, time, and treatment × time were assessed using PROC MIXED of SAS version 9.4 (SAS Institute Inc.). Prepartum dry matter intake (DMI) was unaffected by treatment; however, BSP supplementation decreased postpartum DMI relative to CON (0.7 kg). Milk yield, energy-corrected milk (ECM), fat-corrected milk (FCM), and solids-corrected milk (SCM) increased in BSP cows compared with CON (1.6, 1.8, 1.6, and 1.5 kg, respectively). Decreased DMI and increased production collectively improved feed efficiency of milk yield, ECM, FCM, and SCM for BSP cows (6, 5, 5, and 5%, respectively). No treatment differences were observed for concentrations of milk fat, protein, total solids, somatic cell count, somatic cell score, body weight, or body condition score. Milk urea nitrogen concentrations decreased (5%), whereas milk protein and lactose yield increased (5 and 2%, respectively) with BSP supplementation. Prepartum fecal pH did not differ among treatments; conversely, postpartum fecal pH was increased with BSP supplementation (0.09 pH units). Prepartum fecal dry matter percentage, starch, acetic acid, propionic acid, butyric acid, and ethanol did not differ among treatments. Postpartum concentrations of the aforementioned fecal parameters were also unaffected by treatment, but fecal propionic acid concentration was decreased (24%) in BSP cows relative to CON. Circulating glucose, nonesterified fatty acids, l-lactate, and insulin were similar between treatments both pre- and postpartum. Prepartum ß-hydroxybutyrate (BHB) did not differ between treatments, but postpartum BSP supplementation decreased (21%) circulating BHB relative to CON. Regardless of treatment, inflammatory markers (serum amyloid A and haptoglobin) peaked immediately following parturition and progressively decreased with time, but this pattern was not influenced by treatment. Postpartum lipopolysaccharide binding protein tended to be decreased on d 3 in BSP relative to CON cows (19%). Neither treatment nor time affected Cr-EDTA area under the curve. In summary, supplementing BSP had no detectable effects prepartum, but increased key postpartum production parameters. Bacillus subtilis PB6 consistently increased postpartum fecal pH and decreased fecal propionate concentrations but did not appear to have an effect on gastrointestinal tract permeability.


Subject(s)
Bacillus subtilis , Lactation , Pregnancy , Female , Cattle , Animals , Propionates , Edetic Acid , Postpartum Period/metabolism , Diet/veterinary , Dietary Supplements , Gastrointestinal Tract
4.
Anim Sci J ; 94(1): e13857, 2023.
Article in English | MEDLINE | ID: mdl-37496108

ABSTRACT

Fatty liver syndrome, a common health problem in dairy cows, occurs during the transition from pregnancy to lactation. If the energy supplied to the cow's body cannot meet its needs, a negative energy balance ensues, and the direct response is fat mobilization. Nicotinamide (NAM) has been reported to reduce the nonesterified fatty acid concentration of postpartum plasma. To study the biochemical adaptations underlying this physiologic dysregulation, 12 dairy cows were sequentially assigned to a NAM (45 g/day) treatment or control group. Blood samples were collected on day (D) 1 and D21 relative to parturition. Changes to the plasma lipid metabolism of dairy cows in the two groups were compared using lipidomics. There were significant increases in plasma sphingomyelins d18:1/18:0, d18:1/23:0, d18:1/24:1, d18:1/24:0, and d18:0/24:0 in the NAM group on D1 relative to parturition. In addition, fatty acids 18:2, 18:1, 18:0, 16:1, and 16:0 were obviously decreased on D21 relative to calving. This research has provided insights into how NAM supplementation improves lipid metabolism in perinatal dairy cows.


Subject(s)
Diet , Milk , Pregnancy , Female , Cattle , Animals , Diet/veterinary , Milk/metabolism , Niacinamide/pharmacology , Niacinamide/metabolism , Lipidomics , Postpartum Period/metabolism , Lactation/physiology , Fatty Acids, Nonesterified , Dietary Supplements , Energy Metabolism/physiology
5.
J Dairy Sci ; 106(7): 4896-4905, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37291041

ABSTRACT

Colostrum yield and quality are influenced by prepartum nutrition and the metabolic status of the cow; however, data considering these associations on multiple dairy farms are limited. Our objective was to identify cow-level prepartum metabolic indicators, as well as farm-level nutritional strategies associated with colostrum yield and the indicator of colostrum quality, Brix %. A convenience sample of 19 New York Holstein dairies (median: 1,325 cows; range: 620 to 4,600 cows) were enrolled in this observational study. Records for individual colostrum yield and Brix % were collected by farm personnel between October 2019 and February 2021. Farms were visited 4 times, approximately 3 mo apart, to obtain feed samples of the prepartum diets, collect blood samples from 24 pre- and postpartum cows, respectively, and determine prepartum body condition score. Feed samples were submitted for analysis of chemical composition, and particle size was determined on-farm using a particle separator. Prepartum serum samples (n = 762) were analyzed for glucose and nonesterified fatty acid concentrations. Whole blood from postpartum cows was analyzed for herd prevalence of hyperketonemia (proportion of samples with ß-hydroxybutyrate ≥1.2 mmol/L). A cohort of primiparous (PP; n = 1,337) and multiparous (MPS; n = 3,059) cows calving ± 14 d of each farm visit were included in the statistical analysis. Animals calving in this period were assigned results for the close-up diet composition and herd prevalence of hyperketonemia collected from the respective farm visit. Greatest colostrum yield from PP and MPS cows was associated with moderate starch [18.6-22.5% of dry matter (DM)] and a moderate herd prevalence of hyperketonemia (10.1-15.0%). Greatest colostrum yield from MPS cows was associated with moderate crude protein (13.6-15.5% of DM) and a less severe negative dietary cation-anion difference (DCAD; >-8 mEq/100 g), whereas greatest colostrum yield from PP cows was associated with low crude protein (≤13.5% of DM). In addition, a moderate proportion of the diet with particle length ≥19 mm (15.3-19.1%) was associated with lowest colostrum yield from PP and MPS cows. Highest colostrum Brix % was associated with prepartum dietary factors of low neutral detergent fiber (≤39.0% of DM) and high proportion of the diet with particle length ≥19 mm (>19.1%). In addition, low starch (≤18.5% of DM) and low and moderate DCAD level (≥-15.9 mEq/100 g) were associated with greatest Brix % from PP cows, whereas moderate DCAD (-15.9 to -8.0 mEq/100 g) was associated with greatest Brix % from MPS cows. Prepartum serum nonesterified fatty acid concentration ≥290 µEq/L was associated with increased colostrum yield, but prepartum serum glucose concentration and body condition score were not associated with colostrum yield or Brix %. These data provide nutritional and metabolic variables to consider when troubleshooting colostrum production on farms.


Subject(s)
Lactation , Milk , Animals , Cattle , Female , Pregnancy , Animal Feed/analysis , Colostrum , Diet/veterinary , Fatty Acids/metabolism , Milk/metabolism , New York , Postpartum Period/metabolism
6.
J Dairy Sci ; 106(7): 4559-4579, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37173256

ABSTRACT

Feeding supplemental choline and Met during the periparturient period can have positive effects on cow performance; however, the mechanisms by which these nutrients affect performance and metabolism are unclear. The objective of this experiment was to determine if providing rumen-protected choline, rumen-protected Met, or both during the periparturient period modifies the choline metabolitic profile of plasma and milk, plasma AA, and hepatic mRNA expression of genes associated with choline, Met, and lipid metabolism. Cows (25 primiparous, 29 multiparous) were blocked by expected calving date and parity and randomly assigned to 1 of 4 treatments: control (no rumen-protected choline or rumen-protected Met); CHO (13 g/d choline ion); MET (9 g/d DL-methionine prepartum; 13.5 g/d DL-methionine, postpartum); or CHO + MET. Treatments were applied daily as a top dress from ∼21 d prepartum through 35 d in milk (DIM). On the day of treatment enrollment (d -19 ± 2 relative to calving), blood samples were collected for covariate measurements. At 7 and 14 DIM, samples of blood and milk were collected for analysis of choline metabolites, including 16 species of phosphatidylcholine (PC) and 4 species of lysophosphatidylcholine (LPC). Blood was also analyzed for AA concentrations. Liver samples collected from multiparous cows on the day of treatment enrollment and at 7 DIM were used for gene expression analysis. There was no consistent effect of CHO or MET on milk or plasma free choline, betaine, sphingomyelin, or glycerophosphocholine. However, CHO increased milk secretion of total LPC irrespective of MET for multiparous cows and in absence of MET for primiparous cows. Furthermore, CHO increased or tended to increase milk secretion of LPC 16:0, LPC 18:1, and LPC 18:0 for primi- and multiparous cows, although the response varied with MET supplementation. Feeding CHO also increased plasma concentrations of LPC 16:0 and LPC 18:1 in absence of MET for multiparous cows. Although milk secretion of total PC was unaffected, CHO and MET increased secretion of 6 and 5 individual PC species for multiparous cows, respectively. Plasma concentrations of total PC and individual PC species were unaffected by CHO or MET for multiparous cows, but MET reduced total PC and 11 PC species during wk 2 postpartum for primiparous cows. Feeding MET consistently increased plasma Met concentrations for both primi- and multiparous cows. Additionally, MET decreased plasma serine concentrations during wk 2 postpartum and increased plasma phenylalanine in absence of CHO for multiparous cows. In absence of MET, CHO tended to increase hepatic mRNA levels of betaine-homocysteine methyltransferase and phosphate cytidylyltransferase 1 choline, α, but tended to decrease expression of 3-hydroxy-3-methylglutaryl-coenzyme A synthase 2 and peroxisome proliferator activated receptor α irrespective of MET. Although shifts in the milk and plasma PC profile were subtle and inconsistent between primi- and multiparous cows, gene expression results suggest that supplemental choline plays a probable role in promoting the cytidine diphosphate-choline and betaine-homocysteine S-methyltransferase pathways. However, interactive effects suggest that this response depends on Met availability, which may explain the inconsistent results observed among studies when supplemental choline is fed.


Subject(s)
Amino Acids , Methionine , Pregnancy , Female , Cattle , Animals , Methionine/metabolism , Amino Acids/metabolism , Choline/metabolism , Dietary Supplements/analysis , Diet/veterinary , Lipid Metabolism , Lactation , Postpartum Period/metabolism , Milk/chemistry , Racemethionine/metabolism , Racemethionine/pharmacology , Betaine/metabolism , Liver/metabolism , Lecithins
7.
J Dairy Sci ; 106(9): 5988-6004, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37225582

ABSTRACT

Peripartum rumen-protected choline (RPC) supplementation is beneficial for cow health and production, yet the optimal dose is unknown. In vivo and in vitro supplementation of choline modulates hepatic lipid, glucose, and methyl donor metabolism. The objective of this experiment was to determine the effects of increasing the dose of prepartum RPC supplementation on milk production and blood biomarkers. Pregnant multiparous Holstein cows (n = 116) were randomly assigned to one of 4 prepartum choline treatments that were fed from -21 d relative to calving (DRTC) until calving. From calving until +21 DRTC, cows were fed diets targeting 0 g/d choline ion (control, CTL) or the recommended dose (15 g/d choline ion; RD) of the same RPC product that they were fed prepartum. The resulting treatments targeted: (1) 0 g/d pre- and postpartum [0.0 ± 0.000 choline ion, percent of dry matter (%DM); CTL]; (2) 15 g/d pre- and postpartum of choline ion from an established product (prepartum: 0.10 ± 0.004 choline ion, %DM; postpartum: 0.05 ± 0.004 choline ion, %DM; ReaShure, Balchem Corp.; RPC1RD▸RD); (3) 15 g/d pre- and postpartum of choline ion from a concentrated RPC prototype (prepartum: 0.09 ± 0.004 choline ion, %DM; postpartum: 0.05 ± 0.003 choline ion, %DM; RPC2, Balchem Corp.; RPC2RD▸RD); or (4) 22 g/d prepartum and 15 g/d postpartum from RPC2 [prepartum: 0.13 ± 0.005 choline ion, %DM; postpartum: 0.05 ± 0.003 choline ion, %DM; high prepartum dose (HD), RPC2HD▸RD]. Treatments were mixed into a total mixed ration, and cows had ad libitum access via a roughage intake control system (Hokofarm Group). From calving to +21 DRTC, all cows were fed a common base diet and treatments were mixed into the total mixed ration (supplementation period, SP). Thereafter, all cows were fed a common diet (0 g/d choline ion) until +100 DRTC (postsupplementation period, postSP). Milk yield was recorded daily and composition analyzed weekly. Blood samples were obtained via tail vessel upon enrollment, approximately every other day from -7 to +21 DRTC, and at +56 and +100 DRTC. Feeding any RPC treatment reduced prepartum dry matter intake compared with CTL. During the SP, no evidence for a treatment effect on energy-corrected milk (ECM) yield was found, but during the postSP, RPC1RD▸RD and RPC2RD▸RD treatments tended to increase ECM, protein, and fat yields. During the postSP, the RPC1RD▸RD and RPC2RD▸RD treatments tended to increase, and RPC2HD▸RD increased, the de novo proportion of total milk fatty acids. During the early lactation SP, RPC2HD▸RD tended to increase plasma fatty acids and ß-hydroxybutyrate concentrations, and RPC1RD▸RD and RPC2RD▸RD reduced blood urea nitrogen concentrations compared with CTL. The RPC2HD▸RD treatment reduced early lactation serum lipopolysaccharide binding protein compared with CTL. Overall, peripartum RPC supplementation at the recommended dose tended to increase ECM yield postSP, but no evidence was seen of an additional benefit on milk production with an increased prepartum dose of choline ion. The effects of RPC on metabolic and inflammatory biomarkers support the potential for RPC supplementation to affect transition cow metabolism and health and may support the production gains observed.


Subject(s)
Choline , Milk , Pregnancy , Female , Cattle , Animals , Milk/chemistry , Dietary Supplements , Rumen/metabolism , Diet/veterinary , Lactation , Postpartum Period/metabolism , Fatty Acids/analysis , Biomarkers/analysis
8.
J Dairy Sci ; 106(1): 187-201, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36357210

ABSTRACT

The periparturient period is a metabolically demanding time for dairy animals because of increased nutrient requirements for milk yield. The objective of this study was to investigate the effect of feeding Saccharomyces cerevisiae boulardii (CNCM I-1079), a commercial active dry yeast (ADY), in dairy cows on productive and metabolic measures during the periparturient period. Primiparous (n = 33) and multiparous (n = 35) cows were fed a close-up total mixed ration (TMR) before calving and a lactation TMR postpartum. Three weeks before expected calving time, animals were blocked by parity and body weight and then randomly assigned to either control group (control; n = 34) or treatment (ADY; n = 34). All animals were housed in a tie-stall barn with individual feed bunks; the ADY animals received supplementary Saccharomyces cerevisiae boulardii (CNCM I-1079), top dressed daily at a predicted dosage of 1.0 × 1010 cfu (12.5 g) per head. Blood samples were collected weekly along with milk yield and milk composition data; feed intake data were collected daily. Serum samples were analyzed for glucose, nonesterified fatty acid, ß-hydroxybutyrate, haptoglobin (Hp), and the cytokines tumor necrosis factor-α, IL-6, and IL-18. Colostrum samples collected within the first 6 to 10 h were analyzed for somatic cell score and IgG, IgA, and IgM concentrations. Data were analyzed using PROC GLIMMIX in SAS with time as a repeated measure; model included time, parity, treatment, and their interactions. The ADY groups had greater milk yield (39.0 ± 2.4 vs. 36.7 ± 2.3 kg/d) and tended to produce more energy-corrected milk with better feed efficiency. There was no difference in plasma glucose, serum nonesterified fatty acid, serum ß-hydroxybutyrate, Hp, IL-6, or IL-18 due to ADY treatment. The tumor necrosis factor-α increased in ADY-supplemented animals (1.17 ± 0.69 vs. 4.96 ± 7.7 ng/mL), though week, parity, and their interactions had no effect. Serum amyloid A tended to increase in ADY-supplemented animals when compared to control animals and was additionally affected by week and parity; there were no significant interactions. No difference in colostrum IgG, IgA, and IgM was observed between treatments. Supplementing transition cow TMR with ADY (CNCM I-1079) improved milk production and tended to improve efficiency in early lactation; markers of inflammation were also influenced by ADY treatment, though the immunological effect was inconsistent.


Subject(s)
Saccharomyces boulardii , Saccharomyces cerevisiae , Pregnancy , Female , Cattle , Animals , Saccharomyces cerevisiae/metabolism , Interleukin-18/metabolism , 3-Hydroxybutyric Acid , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Diet/veterinary , Energy Metabolism , Lactation , Milk/metabolism , Eating , Postpartum Period/metabolism , Fatty Acids, Nonesterified , Immunoglobulin A/metabolism , Immunoglobulin G/metabolism , Immunoglobulin M , Animal Feed/analysis
9.
J Dairy Res ; 90(4): 347-352, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38420732

ABSTRACT

This study aimed to evaluate the effect of shortening the dry period in high-yielding cows of different body condition scores (BCS). We report colostrum and milk quality, some serum metabolites, BCS changes, and some reproductive parameters with measurements being made over the first two months of lactation. Cows were grouped based on the length of the dry period (normal: about 50 d and short: about 28 d) and BCS (moderate: 2.75 to 3.5 and high ≥ 3.5). Short dry period decreased colostrum volume and, in combination with high BCS only, caused a decrease in milk production. Short dry period moderate BCS cows had the highest serum insulin concentration on day 14 after calving and highest glucose concentration on day 28, but neither differed significantly when measured over the whole period. By contrast, short dry period cows had significantly lower concentrations of non-esterified fatty acids and beta-hydroxybutyrate measured over the whole period. Post-partum loss of BCS was less in short and especially so in the short, moderate BCS group. Following a synchronization protocol at 35 d postpartum. The cows with a short dry period and moderate BCS had lower open days, days to first postpartum estrus and services per conception. It was concluded that short dry periods and moderate BCS had a positive influence on serum metabolites, BCS changes and reproductive parameters.


Subject(s)
Colostrum , Milk , Pregnancy , Female , Cattle , Animals , Milk/metabolism , Reproduction , Lactation , Postpartum Period/metabolism
10.
J Dairy Sci ; 105(7): 5796-5812, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35570040

ABSTRACT

Our objective was to determine the effects of feeding 25-hydroxyvitamin D3 [25(OH)D3], or vitamin D3 (cholecalciferol) on plasma, mineral, and metabolite concentrations, mineral balance, mineral excretion, rumination, energy balance, and milk production of dairy cows. We hypothesized that supplementing 3 mg/d of 25(OH)D3 during the prepartum period would be more effective than supplementing vitamin D3 at the National Research Council (2001) levels to minimize calcium imbalance during the transition period and improve milk production of dairy cows. Forty multiparous, pregnant nonlactating-Holstein cows were enrolled in this study. Body weight, body condition score, parity, and milk yield in the previous lactation (mean ± standard deviation) were 661 ± 59.2, 3.46 ± 0.35, 1.79 ± 0.87, and 33.2 ± 6.43 kg/d, respectively. Cows were enrolled into the blocks (n = 20 for each treatment) at 30 d of the expected day of calving to receive an acidogenic diet (373 g/kg of neutral detergent fiber and 136 g/kg of crude protein, dry matter basis; -110 mEq/kg) associated with the treatments: (1) control (CTRL), vitamin D3 at 0.625 mg/d (equivalent to 25,000 IU of vitamin D3/d) or (2) 25(OH)D3 at 3 mg/d (equivalent to 120,000 IU of vitamin D3/d). All cows were fed with the base ration for 49 d after calving. Blood samples were taken on d 7, 0, 1, 2, 21, and 42, relative to calving. No effect of treatment was observed for prepartum dry matter intake or body condition score. A trend for increase of ionized Ca was observed for the cows fed 25(OH)D3, compared with the CTRL, but no effect of treatment was detected for total Ca or total P. Feeding 25(OH)D3 increased colostrum yield. The plasmatic concentration of 25-hydroxyvitamin D3 was increased with 25(OH)D3 supplementation. 25-Hydroxyvitamin D3 supplementation increased plasma glucose concentration at parturition. The postpartum dry matter intake was not influenced by treatments. Feeding 25(OH)D3 increases milk yield, 3.5% fat-corrected milk, and energy-corrected milk and improves milk yield components in early lactation. Overall, these findings suggest that 25(OH)D3 at 3 mg/d can improve the energy metabolism and lactation performance, compared with the current-feeding practice of supplementing vitamin D3 at 0.625 mg/d.


Subject(s)
Calcifediol , Diet , Animals , Cattle , Cholecalciferol , Diet/veterinary , Energy Metabolism , Female , Lactation , Milk/metabolism , Minerals/metabolism , Postpartum Period/metabolism , Pregnancy , Vitamin D/analogs & derivatives
11.
Anim Sci J ; 93(1): e13715, 2022.
Article in English | MEDLINE | ID: mdl-35384147

ABSTRACT

We determined effects of pre- and postpartum dietary cation-anion difference (DCAD) on urine pH, serum calcium and hormone concentrations, and milk production with 48 multiparous Holstein cows (average body weight = 706 ± 7.3 kg). Treatments were 3 prepartum DCAD concentrations (0, -100, or -180 mEq/kg dry matter [DM]) and 2 postpartum DCAD concentrations (+250 or +350 mEq/kg DM) starting 29 days before parturition through 90 days in milk. Prepartum urine pH was lower (p < 0.05) for -180 than for -100 or 0 DCAD, and postpartum urine pH was higher (p < 0.05) for +350 than for +250 DCAD. Prepartum serum total and ionized calcium and hydroxyproline were greater (p < 0.05) for -180 than for -100 and 0 DCAD, whereas parathyroid hormone was greater (p < 0.05) for 0 than for -100 and -180 DCAD. After calving, negative prepartum DCAD increased (p < 0.05) serum total and ionized calcium, but effects varied by sampling day. Pre- and postpartum DCAD did not affect milk yield or milk fat, but milk protein percent and total solids were increased (p < 0.05) by negative prepartum DCAD. Feeding an acidogenic diet prepartum improved postpartum calcium status without major effects on milk yield and composition.


Subject(s)
Calcium , Lactation , Animal Feed/analysis , Animals , Anions , Calcium/pharmacology , Cations , Cattle , Diet/veterinary , Dietary Supplements , Female , Postpartum Period/metabolism
12.
J Dairy Sci ; 105(5): 4144-4155, 2022 May.
Article in English | MEDLINE | ID: mdl-35307174

ABSTRACT

Dairy cattle experience inflammation during the calving transition period, and butyrate and nonsteroidal anti-inflammatory drugs (NSAID) are expected to reduce the inflammation. Our objective was to evaluate the effects of dietary butyrate supplementation and oral NSAID administration on feed intake, serum inflammatory markers, plasma metabolites, and milk production of dairy cows during the calving transition period. Eighty-three Holstein cows were used in the experiment with a 2 × 2 factorial arrangement of treatments. The cows were blocked by parity and calving date, and randomly assigned to a dietary butyrate or control supplement, and NSAID or a placebo oral administration. Experimental diets were iso-energetic containing calcium butyrate at 1.42% of diet dry matter (DM) or the control supplement (1.04% commercial fat supplement and 0.38% calcium carbonate of diet DM). The close-up diets contained 13.3% starch and 42.4% neutral detergent fiber on a DM basis, and were fed from 28 d before expected calving date until calving. The postpartum diets contained 22.1% starch and 34.1% neutral detergent fiber on a DM basis and were fed from calving to 24 d after calving. Oral NSAID (1 mg of meloxicam/kg of body weight) or placebo (food dye) was administered 12 to 24 h after calving. Dietary butyrate supplementation and oral NSAID administration did not affect milk yield or postpartum serum concentrations of amyloid A and haptoglobin. However, butyrate-fed cows increased plasma fatty acid concentration on d -4 relative to calving (501 vs. 340 µEq/L) and tended to increase serum haptoglobin concentration (0.23 vs. 0.10 mg/mL). There was a supplement by drug interaction effect on plasma glucose concentration on d 4; in cows administered the placebo drug, butyrate supplementation decreased plasma glucose concentration compared with control-fed cows (62.8 vs. 70.1 mg/dL). Butyrate-fed cows tended to have lower milk crude protein yield compared with cows fed the control diet (1.21 vs. 1.27 kg/d). Dietary butyrate supplementation and oral NSAID administration did not have overall positive effects on production performance of dairy cows during the calving transition period.


Subject(s)
Cattle Diseases , Lactation , Administration, Oral , Animals , Anti-Inflammatory Agents, Non-Steroidal , Blood Glucose/metabolism , Butyrates/metabolism , Cattle , Cattle Diseases/metabolism , Detergents/metabolism , Diet/veterinary , Dietary Fiber/metabolism , Dietary Supplements , Female , Haptoglobins/metabolism , Inflammation/metabolism , Inflammation/veterinary , Milk/metabolism , Postpartum Period/metabolism , Pregnancy , Starch/metabolism
13.
J Dairy Sci ; 105(4): 3129-3141, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35086702

ABSTRACT

The objective of this study was to evaluate the effects of feeding rumen-protected glutamate during the periparturient period (d -21 ± 3 to d 21 ± 3 relative to calving) on apparent total-tract digestibility (ATTD), inflammation, metabolic responses, and production performance of dairy cows. Fifty-two multiparous Holstein cows were blocked by parity, body condition score, and expected calving date, and randomly assigned to one of the experimental diets with rumen-protected monosodium glutamate (RP-Glu; intestinally available Glu = 8.8%) or without RP-Glu (control) at d -21 ± 3 relative to expected calving date. The RP-Glu was fed at 4% and 3% of dietary dry matter, before and after calving, respectively. Prepartum diets contained 17.1% and 16.5% crude protein, and 13.1% and 13.3% starch, and postpartum diets contained 18.8% and 18.3% crude protein, and 22.5% and 22.7% starch on a dry matter basis, respectively for RP-Glu and control treatments. A subset of 19 cows was used to measure ATTD. Cows fed the RP-Glu had greater ATTD of dry matter (70.6 vs. 69.1%), crude protein (75.1 vs. 72.6%), and ether extract (66.0 vs 61.2%) on d 5 ± 1 after calving. Cows fed the RP-Glu also had greater dry matter intake (15.7 vs. 13.7 kg/d) on d 1 after calving. Cows fed the RP-Glu had greater plasma concentrations of Glu (4.60 vs. 3.89 µmol/dL) and insulin-like growth factor-1 (44.2 vs. 30.1 mg/mL), lower serum concentrations of free fatty acids (670 vs. 981 µEq/L) and total bilirubin (0.22 vs. 0.34 mg/dL), and lower plasma 3-methylhistidine concentration (1.28 vs. 1.50 µmol/dL) on d 4 after calving. However, these treatment effects observed between d 1 and d 5 ± 1 immediately after calving did not continue until d 21 after calving. Concentrations of serum amyloid A, serum haptoglobin, and plasma lipopolysaccharide binding protein were not affected by the treatment. In addition, no differences were observed for serum ß-hydroxybutyrate concentration and milk yield during the postpartum period between the 2 groups, and cows fed the RP-Glu had a decreased lactose yield. These findings suggest that feeding RP-Glu during the periparturient period can increase digestive capacity and feed intake, and decrease mobilization of body fat and protein immediately after calving without increasing milk production.


Subject(s)
Cattle Diseases , Rumen , Animals , Cattle , Cattle Diseases/metabolism , Diet/veterinary , Dietary Supplements , Female , Glutamic Acid , Inflammation/metabolism , Inflammation/veterinary , Lactation/physiology , Milk/metabolism , Postpartum Period/metabolism , Pregnancy , Rumen/metabolism
14.
Article in English | MEDLINE | ID: mdl-34896909

ABSTRACT

INTRODUCTION: Perinatal women often experience mood disorders and postpartum depression due to the physical load and the rapid changes in hormone levels caused by pregnancy, childbirth, and nursing. When the mother's emotions become unstable, their parental behavior (maternal behavior) may decline, the child's attachment may weaken, and the formation of mother-child bonding can become hindered. As a result, the growth of the child may be adversely affected. The objective of this study was to investigate the effect of ω3 fatty acid deficiency in the perinatal period on maternal behavior and the oxytocin concentration and fatty acid composition in brain tissue. MATERIALS AND METHODS: Virgin female C57BL/6 J mice fed a ω3 fatty acid-deficient (ω3-Def) or adequate (ω3-Adq) diet were mated for use in this study. To assess maternal behavior, nest shape was evaluated at a fixed time from gestational day (GD) 15 to postpartum day (PD) 13, and a retrieval test was conducted on PD 3. For neurochemical measurement, brains were removed from PD 1-6 dams and hippocampal fatty acids and hypothalamic oxytocin concentrations were assessed. RESULTS: Peripartum nest shape scores were similar to those reported previously (Harauma et al., 2016); nests in the ω3-Def group were small and of poor quality whereas those in the ω3-Adq group were large and elaborate. The inferiority of nest shape in the ω3-Def group continued from PD 0-7. In the retrieval test performed on PD 3, dams in the ω3-Def group took longer on several parameters compared with those in the ω3-Adq group, including time to make contact with pups (sniffing time), time to start retrieving the next pup (interval time), and time to retrieve the last pup to the nest (grouping time). Hypothalamic oxytocin concentrations on PD 1-6 were lower in the ω3-Def group than in the ω3-Adq group. DISCUSSION: Our data show that ω3 fatty acid deficiency reduces maternal behavior, a state that continued during pup rearing. This was supported by the observed decrease in hypothalamic oxytocin concentration in the ω3-Def group. These results suggest that ω3 fatty acid supplementation during the perinatal period is not only effective in delivering ω3 fatty acids to infants but is also necessary to activate high-quality parental behavior in mothers.


Subject(s)
Diet/methods , Dietary Supplements , Fatty Acids, Omega-3/administration & dosage , Maternal Behavior/drug effects , Oxytocin/biosynthesis , Paraventricular Hypothalamic Nucleus/metabolism , Parturition/metabolism , Postpartum Period/metabolism , Signal Transduction/drug effects , Animals , Animals, Newborn/metabolism , Female , Gestational Age , Hippocampus/chemistry , Male , Mice , Mice, Inbred C57BL , Parturition/drug effects , Postpartum Period/drug effects , Pregnancy
15.
BMC Vet Res ; 17(1): 178, 2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33926466

ABSTRACT

BACKGROUND: Hypocalcemia has detrimental effects on health and performance of dairy cows. As hypocalcemic cows show reduced feed intake, we hypothesized that cows with reduced combined rumination and eating time (CRET) may benefit from Ca supplementation. The objective was to evaluate the effect of postpartum oral Ca administration on metabolic status (Calcium [Ca], fatty acids [FA], and ß-Hydroxybutyrate [BHB] serum concentrations) and incidence of puerperal metritis (PM) in dairy cows with reduced postpartum CRET. Cows in an organic-certified dairy, diagnosed with reduced CRET (< 489 min/d; n = 88) during the first day postpartum were assigned into 1 of 2 treatments: i) Calcium administration (CA; n = 45) that received 1 Ca oral capsule (Bovikalc bolus, Boehringer Ingelheim, St. Joseph, MO) containing CaCl2 and CaSO4 (43 g of Ca) once per day, for 3 consecutive days, starting at d 1 postpartum; and ii) Control (CON; n = 43) that did not receive oral Ca. A convenience group consisting of cows with CRET ≥489 min/d was used for comparison and did not receive oral Ca (NOR; n = 96). RESULTS: At day 1 postpartum cows with reduced CRET had lower Ca serum concentrations (CA = 2.08 mmol/L; CON = 2.06 mmol/L) compared with NOR cows (2.17 mmol/L). Calcium concentrations at d 3, 5, and 12 postpartum were not different among the three groups. Serum FA concentrations at d 1, 3 and 5 postpartum were higher in both CA and CON cows compared with NOR. At d 12, only CA cows had higher FA concentrations than NOR cows. Serum BHB concentrations at d 3 were highest in CA, with no difference between CON and NOR. At d 5, BHB concentrations were higher in CA, followed by CON, and NOR. No effect was observed for Ca administration on incidence of PM and reproductive performance. CON cows had lower survival at 30 DIM (86.5%) than NOR cows (97.9%). CONCLUSIONS: The use of remote sensor technology identified cows with reduced rumination and eating time that had lower postpartum serum concentrations of calcium and altered metabolic status. However, oral calcium administration to cows with reduced CRET did not affect incidence of metabolic disorders nor reproductive health and subsequent pregnancy. Although survival at 30 days postpartum was lower for non-Ca supplemented cows, the identification of effective interventions in cows with reduced CRET requires further consideration.


Subject(s)
Calcium/administration & dosage , Cattle Diseases/diet therapy , Cattle Diseases/metabolism , Postpartum Period/metabolism , 3-Hydroxybutyric Acid/blood , Animals , Calcium/blood , Cattle , Dairying , Dietary Supplements , Endometritis/veterinary , Fatty Acids/blood , Feeding Behavior , Female , Pregnancy , Rumination, Digestive
16.
Biomed Pharmacother ; 138: 111455, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33711553

ABSTRACT

BACKGROUND: Women with postpartum psychiatric disorders are prone to severe anorexia. Clinical studies have revealed the efficacy of 919 syrup, a traditional Chinese medicine mixture against postpartum illnesses, such as in regulating maternal mood and improving postpartum anorexia. AIM: This study investigated the mechanisms through which 919 syrup improved anorexia induced by postpartum stress, focussing on the combined peroxisome proliferator-activated receptor gamma (PPARγ) and leptin signalling pathway, and its effects on the structure of the gut flora. METHODS: Mice were randomly divided into five groups-control group, immobilisation stressed (IS) group (normal saline), pioglitazone (Piog; western medicine control) group, 919 syrup low-dose (TJD; 13.5 g/kg) group, and 919 syrup high-dose (TJG; 27.0 g/kg) group. The control group was housed normally. The other groups received IS for 3 h daily for 21 days. The treatments were initiated following the first postnatal day and were administered by gastric gavage. All mice were sacrificed under anaesthesia on postnatal day 22. Blood, hypothalamus, stomach, and faecal specimens were collected. Gene and protein expression levels of components of the PPARγ-leptin signalling pathway in the serum, hypothalamus, and stomach were determined. Immunofluorescence staining for proopiomelanocortin (POMC), phosphorylated signal transducer and activator of transcription 3 (pSTAT3), and leptin was performed to observe their spatial distributions in the hypothalamus and stomach. 16s rRNA gene sequencing and bioinformatics analysis of fecal specimens were performed. RESULTS: After IS, postpartum mice showed significantly reduced appetite and body weight, accompanied by abnormalities in the structure of the gut flora. Treatment with 919 syrup (27.0 g/kg) downregulated malondialdehyde and upregulated catalase, glutathione peroxidase, and superoxide dismutase by activating PPARγ, thereby affecting the expression of leptin signalling pathway components (leptin, leptin receptor, pSTAT3, POMC, and cocaine and amphetamine-related transcript and neuropeptide Y), and modulated the gut flora in stressed mice. CONCLUSION: 919 syrup improved appetite in mice with postnatal stress by activating PPARγ to induce crosstalk with the leptin signalling pathway, this mechanism was similar to that of PPARγ agonists. 919 syrup also improved gut flora structure, and the changes in the relative abundances of the gut flora strongly correlated with the expression levels of PPARγ and leptin pathway components.


Subject(s)
Anorexia/metabolism , Gastrointestinal Microbiome/drug effects , Leptin/toxicity , PPAR gamma/metabolism , Plant Extracts/therapeutic use , Reactive Oxygen Species/metabolism , Actinidia , Animals , Anorexia/chemically induced , Anorexia/drug therapy , Appetite/drug effects , Appetite/physiology , Body Weight/drug effects , Body Weight/physiology , Female , Gastrointestinal Microbiome/physiology , Male , Mice , PPAR gamma/agonists , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Postpartum Period/drug effects , Postpartum Period/metabolism , Pregnancy
17.
J Dairy Sci ; 103(12): 11449-11460, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33222857

ABSTRACT

Our objective was to determine the temporal effects of increasing supply of propionate on propionate metabolism in liver tissue of dairy cows in the postpartum (PP) period. A total of 6 dairy cows [primiparous: n = 3, 9.00 ± 1.00 d PP (mean ± SD) and multiparous: n = 3; 4.67 ± 1.15 d PP] were biopsied for liver explants in a block-design experiment. Explants were treated with 3 concentrations of [13C3]sodium propionate of 1, 2, or 4 mM. Explants were incubated in 2 mL of Medium 199 supplemented with 1% BSA, 0.6 mM oleic acid, 2 mM sodium l-lactate, 0.2 mM sodium pyruvate, and 0.5 mMl-glutamine at 38°C and sampled at 0.5, 15, and 60 min. Increasing the concentration of [13C3]propionate increased total 13C% enrichment of propionyl coenzyme A (CoA), succinate, fumarate, malate, and citrate with time. Concentration of propionate did not affect total 13C% enrichment of hepatic glucose or acetyl CoA, but total 13C% enrichment increased with time for hepatic glucose. The 13C labeling from propionate was incorporated into acetyl CoA, but increased concentrations of propionate did not result in greater labeling of acetyl CoA. However, increases in 13C% enrichment of [M+4]citrate and [M+5]citrate concentrations of [13C3]propionate indicate propionate conversion to acetyl CoA and subsequent entry of acetyl CoA into the tricarboxylic acid cycle in dairy cows in the PP period. This research presents evidence that despite an increase in hepatic acetyl CoA concentration and general consensus on the upregulation of gluconeogenesis of dairy cows during the PP period, carbon derived from propionate contributes to the pool of acetyl CoA, which increases as concentration of propionate increases, in addition to stimulating oxidation of acetyl CoA from other sources. Because of the hypophagic effects of propionate, but importance of propionate as a glucose precursor, a balance of propionate supply to dairy cows could lead to improvements in dry matter intake, and subsequently, health and production in dairy cows.


Subject(s)
Cattle/metabolism , Liver/drug effects , Liver/metabolism , Postpartum Period/metabolism , Propionates/administration & dosage , Acetyl Coenzyme A/metabolism , Animals , Citric Acid/metabolism , Citric Acid Cycle , Dietary Supplements , Dose-Response Relationship, Drug , Female , Fumarates/metabolism , Gluconeogenesis , Glucose/metabolism , Lactation/physiology , Malates/metabolism , Propionates/metabolism
18.
J Dairy Sci ; 103(12): 11762-11768, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33041044

ABSTRACT

Although incidence of clinical hypocalcemia in postpartum dairy cows is low in US dairies, subclinical hypocalcemia after calving is common and has been associated with metabolic and infectious disease. It is widespread farm practice to feed a diet rich in anions to prepartum dairy cattle to support calcium homeostasis. However, this diet is typically discontinued at parturition, when calcium needs are still high. The objective of this trial was to determine the effects of extending metabolic acidification into the first 3 d of lactation in multiparous Holstein cows with the use of magnesium chloride (MgCl2) hexahydrate drenches on blood ionized calcium concentrations. Adult Holstein cows at a commercial dairy in their second or higher lactation, with a urine pH of 6.8 or less on the day of calving, were randomly assigned to either treatment or control groups, resulting in 13 cows in the treatment group and 14 cows in the control group. Treatment cows received 480 g of oral MgCl2 hexahydrate once daily for 3 d for continued acidification starting on the day of calving, whereas cows in the control group received no treatment. Urine pH was measured daily for 5 d, starting on the day of calving (0 DIM), to assess acidification status; blood was collected on day of calving (0 DIM), 2 DIM, and 4 DIM and analyzed for ionized calcium concentrations. Differences in blood ionized calcium and urine pH over time were compared using longitudinal data analysis. Urine pH was lower in treatment cows compared with control cows at 1, 2, and 3 DIM. Blood ionized calcium concentrations were different from baseline, taken at enrollment (0 DIM) and at 2 and 4 DIM in both treatment and control cows. However, no difference was detectable between treatment and control cows at 2 or 4 DIM with respect to blood ionized calcium concentrations. Oral supplementation with MgCl2 hexahydrate resulted in the desired acidification of urine pH in the treatment group, similar to feeding of an anionic close-up diet. Continued acidification of dairy cows until 2 DIM did not result in clinically meaningful higher blood calcium concentrations compared with controls, and further research is needed, to identify physiological reasons for this finding.


Subject(s)
Animal Feed , Calcium/blood , Cattle/blood , Lactation , Magnesium Chloride/pharmacology , Animals , Anions/administration & dosage , Diet/veterinary , Female , Homeostasis/physiology , Hydrogen-Ion Concentration , Lactation/physiology , Milk/chemistry , Postpartum Period/metabolism , Urine
20.
Res Vet Sci ; 132: 250-256, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32659488

ABSTRACT

Objectives of this study were to evaluate the alleviating effects of a commercial beta-1,3-glucan product (Aleta, containing 50% beta-1,3-glucan, Kemin Industries) on metabolic stress in transition Holstein cows as reflected by circulating metabolites and enzymes. Fifty-four multiparous Holstein cows were randomly allocated to three groups with 18 cows each. Cows in each group received a commercial basal diet or the basal diet supplemented with Aleta calculated to supply 5 or 10 g of Aleta per cow per day. Blood samples were collected at day -21, 1, and 21 relative to calving for determination of serum triglyceride (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDLC), very low density lipoprotein (VLDL), glucose, insulin, ß-hydroxybutyric acid (BHBA), aspartate aminotransferase (AST), alanine aminotransferase (ALT), glutamyl transpeptidase (GGT), and non-esterified fatty acid (NEFA). Supplementation with Aleta markedly elevated serum concentrations of TG, TC, HDLC, LDL-C and VLDL, implying its positive effect on lipid metabolism in transition dairy cows. Aleta treatment significantly decreased the serum concentrations of NEFA and BHBA, but markedly elevated the serum concentrations of glucose and insulin. Also, Aleta treatment significantly elevated the dry matter intake and milk production in postpartum cows, indicating the alleviating effect of Aleta on negative energy balance in transition cows. Moreover, Aleta treatment significantly reduced the serum activities of AST, ALT and GGT, indicating its hepatoprotective effect on transition cows. These results suggest that Aleta supplementation may help to improve fat metabolism disorder initiated by negative energy balance in transition dairy cows.


Subject(s)
Cattle/blood , Dietary Supplements , beta-Glucans/pharmacology , 3-Hydroxybutyric Acid/blood , Animal Feed , Animals , Cattle/metabolism , Diet/veterinary , Energy Metabolism , Fatty Acids, Nonesterified/blood , Female , Glucose , Insulin/blood , Lactation , Lipid Metabolism , Postpartum Period/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL