Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
1.
J Virol ; 86(5): 2632-40, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22205744

ABSTRACT

Orthopoxviruses include the prototypical vaccinia virus, the emerging infectious agent monkeypox virus, and the potential biothreat variola virus (the causative agent of smallpox). There is currently no FDA-approved drug for humans infected with orthopoxviruses. We screened a diversity-oriented synthesis library for new scaffolds with activity against vaccinia virus. This screen identified a nonnucleoside analog that blocked postreplicative intermediate and late gene expression. Viral genome replication was unaffected, and inhibition could be elicited late in infection and persisted upon drug removal. Sequencing of drug-resistant viruses revealed mutations predicted to be on the periphery of the highly conserved viral RNA polymerase large subunit. Consistent with this, the compound had broad-spectrum activity against orthopoxviruses in vitro. These findings indicate that novel chemical synthesis approaches are a potential source for new infectious disease therapeutics and identify a potentially promising candidate for development to treat orthopoxvirus-infected individuals.


Subject(s)
Antiviral Agents/pharmacology , Drug Evaluation, Preclinical , Orthopoxvirus/drug effects , Pyrimidinones/pharmacology , Small Molecule Libraries/pharmacology , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cell Line , Humans , Molecular Structure , Orthopoxvirus/genetics , Orthopoxvirus/physiology , Poxviridae Infections/virology , Pyrimidinones/chemical synthesis , Pyrimidinones/chemistry , Small Molecule Libraries/chemical synthesis , Virus Replication
3.
J Virol ; 79(20): 13139-49, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16189015

ABSTRACT

ST-246 is a low-molecular-weight compound (molecular weight = 376), that is potent (concentration that inhibited virus replication by 50% = 0.010 microM), selective (concentration of compound that inhibited cell viability by 50% = >40 microM), and active against multiple orthopoxviruses, including vaccinia, monkeypox, camelpox, cowpox, ectromelia (mousepox), and variola viruses. Cowpox virus variants selected in cell culture for resistance to ST-246 were found to have a single amino acid change in the V061 gene. Reengineering this change back into the wild-type cowpox virus genome conferred resistance to ST-246, suggesting that V061 is the target of ST-246 antiviral activity. The cowpox virus V061 gene is homologous to vaccinia virus F13L, which encodes a major envelope protein (p37) required for production of extracellular virus. In cell culture, ST-246 inhibited plaque formation and virus-induced cytopathic effects. In single-cycle growth assays, ST-246 reduced extracellular virus formation by 10 fold relative to untreated controls, while having little effect on the production of intracellular virus. In vivo oral administration of ST-246 protected BALB/c mice from lethal infection, following intranasal inoculation with 10x 50% lethal dose (LD(50)) of vaccinia virus strain IHD-J. ST-246-treated mice that survived infection acquired protective immunity and were resistant to subsequent challenge with a lethal dose (10x LD(50)) of vaccinia virus. Orally administered ST-246 also protected A/NCr mice from lethal infection, following intranasal inoculation with 40,000x LD(50) of ectromelia virus. Infectious virus titers at day 8 postinfection in liver, spleen, and lung from ST-246-treated animals were below the limits of detection (<10 PFU/ml). In contrast, mean virus titers in liver, spleen, and lung tissues from placebo-treated mice were 6.2 x 10(7), 5.2 x 10(7), and 1.8 x 10(5) PFU/ml, respectively. Finally, oral administration of ST-246 inhibited vaccinia virus-induced tail lesions in Naval Medical Research Institute mice inoculated via the tail vein. Taken together, these results validate F13L as an antiviral target and demonstrate that an inhibitor of extracellular virus formation can protect mice from orthopoxvirus-induced disease.


Subject(s)
Antiviral Agents/pharmacology , Benzamides/pharmacology , Indoles/pharmacology , Orthopoxvirus/drug effects , Poxviridae Infections/prevention & control , Administration, Oral , Amino Acid Sequence , Animals , Antiviral Agents/adverse effects , Antiviral Agents/chemistry , Benzamides/adverse effects , Benzamides/chemistry , Cytopathogenic Effect, Viral/drug effects , Drug Evaluation, Preclinical , Ectromelia virus/isolation & purification , Ectromelia, Infectious/prevention & control , Female , Indoles/adverse effects , Indoles/chemistry , Isoindoles , Liver/virology , Lung/virology , Membrane Proteins/drug effects , Membrane Proteins/genetics , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Molecular Weight , Orthopoxvirus/isolation & purification , Orthopoxvirus/physiology , Poxviridae Infections/virology , Sequence Alignment , Spleen/virology , Vaccinia/prevention & control , Viral Envelope Proteins/drug effects , Viral Envelope Proteins/genetics , Viral Plaque Assay , Virus Assembly/drug effects
4.
Antiviral Res ; 57(1-2): 13-23, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12615299

ABSTRACT

We assessed the activities of 24 different antiviral compounds against smallpox (two strains of variola major and one of variola minor), monkeypox, vaccinia and cowpox viruses by a neutral red uptake assay. To establish assay parameters, we examined viral replication and its inhibition at various times postinfection and at several multiplicities of infection. Drugs were selected to target a range of functions involved in viral replication. Eight compounds (cidofovir, cyclic HPMPC (cHPMPC), HPMPA, ribavirin, tiazofurin, carbocyclic 3-deazaadenosine, 3-deazaneplanocin A and DFBA (1-(2,4-difluorobenzyloxy)adenosine perchlorate)-a derivative of adenosine N1-oxide) inhibited the replication of all three variola strains and the other orthopoxviruses at drug concentrations within a pharmacologically achievable range. Two others (methisazone and bis-POM-PMEA) showed a lesser degree of antiviral effect, while the remainder were inactive. To examine possible naturally occurring drug resistance among a large number of variola isolates obtained from different geographical regions and at different times, we examined the sensitivity of 35 different strains of variola as well as other orthopoxviruses to a subset of three of the most active compounds: cidofovir, cHPMPC, and ribavirin. Preliminary data indicate that nearly all isolates appear to have similar drug sensitivities. These findings are currently being verified and expanded.


Subject(s)
Antiviral Agents/pharmacology , Monkeypox virus/drug effects , Orthopoxvirus/drug effects , Poxviridae Infections/virology , Variola virus/drug effects , Animals , Antiviral Agents/therapeutic use , Cell Line , Chlorocebus aethiops , Humans , Microbial Sensitivity Tests , Monkeypox virus/growth & development , Neutral Red/metabolism , Orthopoxvirus/growth & development , Poxviridae Infections/drug therapy , Variola virus/growth & development , Vero Cells , Viral Plaque Assay , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL