Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 726
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Ethnopharmacol ; 330: 118102, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38561057

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Xiaoqinglong Decotion (XQLD) is a commonly used Chinese herbal formula in clinical practice, especially for allergic diseases such as asthma. However, its intrinsic mechanism for the treatment of neutrophilic asthma (NA) remains unclear. AIM OF THE STUDY: The aim of this study was to evaluate the efficacy and potential mechanisms of XQLD on NA using network pharmacology and in vivo experiments. MATERIALS AND METHODS: First, the active compounds, potential targets and mechanisms of XQLD against NA were initially elucidated by network pharmacology. Then, OVA/CFA-induced NA mice were treated with XQLD to assess its efficacy. Proteins were then analyzed and quantified using a Tandem Mass Tags approach for differentially expressed proteins (DEPs) to further reveal the mechanisms of NA treatment by XQLD. Finally, the hub genes, critical DEPs and potential pathways were validated. RESULTS: 176 active compounds and 180 targets against NA were identified in XQLD. Protein-protein interaction (PPI) network revealed CXCL10, CX3CR1, TLR7, NCF1 and FABP4 as hub genes. In vivo experiments showed that XQLD attenuated inflammatory infiltrates, airway mucus secretion and remodeling in the lungs of NA mice. Moreover, XQLD significantly alleviated airway neutrophil inflammation in NA mice by decreasing the expression of IL-8, MPO and NE. XQLD also reduced the levels of CXCL10, CX3CR1, TLR7, NCF1 and FABP4, which are closely associated with neutrophil inflammation. Proteomics analysis identified 28 overlapping DEPs in the control, NA and XQLD groups, and we found that XQLD inhibited ferroptosis signal pathway (elevated GPX4 and decreased ASCL3) as well as the expression of ARG1, MMP12 and SPP1, while activating the Rap1 signaling pathway. CONCLUSION: This study revealed that inhibition of ARG1, MMP12 and SPP1 expression as well as ferroptosis pathways, and activation of the Rap1 signaling pathway contribute to the therapeutic effect of XQLD on NA.


Subject(s)
Asthma , Drugs, Chinese Herbal , Network Pharmacology , Proteomics , Animals , Asthma/drug therapy , Drugs, Chinese Herbal/pharmacology , Mice , Protein Interaction Maps , Female , Neutrophils/drug effects , Neutrophils/metabolism , Mice, Inbred BALB C , Lung/drug effects , Lung/metabolism , Lung/pathology , Anti-Asthmatic Agents/pharmacology , Disease Models, Animal , Ovalbumin , Male
2.
Gene ; 916: 148438, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38579905

ABSTRACT

AIM: of the study: This study used network pharmacology and the Gene Expression Omnibus (GEO) database to investigate the therapeutic effects of Corbrin capsules on acute kidney injury (AKI)-COVID-19 (coronavirus disease 2019). MATERIALS AND METHODS: The active constituents and specific molecular targets of Corbrin capsules were obtained from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) and Swiss Target Prediction databases. The targets related to AKI and COVID-19 disease were obtained from the Online Mendelian Inheritance in Man (OMIM), GeneCards, and GEO databases. A protein-protein interaction (PPI) network was constructed by utilizing Cytoscape. To enhance the analysis of pathways associated with the pathogenesis of AKI-COVID-19, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. Furthermore, immune infiltration analysis was performed by using single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT. Molecular docking was used to assess interactions between differentially expressed genes and active ingredients. Verification was performed by utilizing GEO databases and in vivo assays. RESULTS: This study revealed an overlap of 18 significantly differentially expressed genes between the Corbrin capsules group and the AKI-COVID-19 target group. Analysis of the PPI network identified TP53, JAK2, PIK3CA, PTGS2, KEAP1, and MCL1 as the top six core protein targets with the highest degrees. The results obtained from GO and KEGG analyses demonstrated that the target genes were primarily enriched in the apoptosis and JAK-STAT signaling pathways. Moreover, the analysis of immune infiltration revealed a notable disparity in the percentage of quiescent memory CD4 + T cells. Western blot analyses provided compelling evidence suggesting that the dysregulation of 6 core protein targets could be effectively reversed by Corbrin capsules. CONCLUSION: This study revealed the key components, targets, and pathways involved in treating AKI-related COVID-19 using Corbrin capsules. This study also provided a new understanding of the molecular mechanisms underlying this treatment.


Subject(s)
Acute Kidney Injury , COVID-19 Drug Treatment , Molecular Docking Simulation , Network Pharmacology , Protein Interaction Maps , Acute Kidney Injury/drug therapy , Acute Kidney Injury/genetics , Protein Interaction Maps/drug effects , Humans , COVID-19/genetics , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Databases, Genetic , Capsules , SARS-CoV-2 , Signal Transduction/drug effects , Rats , Male , Gene Ontology , Medicine, Chinese Traditional/methods
3.
Int Immunopharmacol ; 133: 112044, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38648716

ABSTRACT

BACKGROUND: The prevalence of type 2 diabetic nephropathy (T2DN) ranges from 20 % to 40 % among individuals with type 2 diabetes. Multiple immune pathways play a pivotal role in the pathogenesis of T2DN. This study aimed to investigate the immunomodulatory effects of active ingredients derived from 14 traditional Chinese medicines (TCMs) on T2DN. METHODS: By removing batch effect on the GSE30528 and GSE96804 datasets, we employed a combination of weighted gene co-expression network analysis, least absolute shrinkage and selection operator analysis, protein-protein interaction network analysis, and the CIBERSORT algorithm to identify the active ingredients of TCMs as well as potential hub biomarkers associated with immune cells. Functional analysis was conducted using Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and gene set variation analysis (GSVA). Additionally, molecular docking was employed to evaluate interactions between active ingredients and potential immunotherapy targets. RESULTS: A total of 638 differentially expressed genes (DEGs) were identified in this study, comprising 5 hub genes along with 4 potential biomarkers. Notably, CXCR1, CXCR2, and FOS exhibit significant associations with immune cells while displaying robust or favorable affinities towards the active ingredients kaempferol, quercetin, and luteolin. Furthermore, functional analysis unveiled intricate involvement of DEGs, hub genes and potential biomarkers in pathways closely linked to immunity and diabetes. CONCLUSION: The potential hub biomarkers and immunotherapy targets associated with immune cells of T2DN comprise CXCR1, CXCR2, and FOS. Furthermore, kaempferol, quercetin, and luteolin demonstrate potential immunomodulatory effects in modulating T2DN through the regulation of CXCR1, CXCR2, and FOS expression.


Subject(s)
Computational Biology , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Drugs, Chinese Herbal , Medicine, Chinese Traditional , Molecular Docking Simulation , Network Pharmacology , Protein Interaction Maps , Receptors, Interleukin-8B , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/genetics , Diabetic Nephropathies/immunology , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/genetics , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/metabolism , Receptors, Interleukin-8A/genetics , Receptors, Interleukin-8A/metabolism , Gene Regulatory Networks/drug effects
4.
Medicine (Baltimore) ; 103(14): e37512, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38579077

ABSTRACT

ShenGui capsule (SGC), as a herbal compound, has significant effects on the treatment of heart failure (HF), but its mechanism of action is unclear. In this study, we aimed to explore the potential pharmacological targets and mechanisms of SGC in the treatment of HF using network pharmacology and molecular docking approaches. Potential active ingredients of SGC were obtained from the traditional Chinese medicine systems pharmacology database and analysis platform database and screened by pharmacokinetic parameters. Target genes of HF were identified by comparing the toxicogenomics database, GeneCards, and DisGeNET databases. Protein interaction networks and gene-disorder-target networks were constructed using Cytoscape for visual analysis. Gene ontology and Kyoto Encyclopedia of Genes and Genomes were also performed to identify protein functional annotations and potential target signaling pathways through the DAVID database. CB-DOCK was used for molecular docking to explore the role of IL-1ß with SGC compounds. Sixteen active ingredients in SGC were screened from the traditional Chinese medicine systems pharmacology database and analysis platform, of which 36 target genes intersected with HF target genes. Protein-protein interactions suggested that each target gene was closely related, and interleukin-1ß (IL-1ß) was identified as Hub gene. The network pharmacology analysis suggested that these active ingredients were well correlated with HF. Kyoto Encyclopedia of Genes and Genomes enrichment analysis suggested that target genes were highly enriched in pathways such as inflammation. Molecular docking results showed that IL-1ß binds tightly to SGC active components. This experiment provides an important research basis for the mechanism of action of SGC in the treatment of HF. In this study, the active compounds of SGC were found to bind IL-1ß for the treatment of heart failure.


Subject(s)
Drugs, Chinese Herbal , Heart Failure , Humans , Molecular Docking Simulation , Network Pharmacology , Heart Failure/drug therapy , Protein Interaction Maps , Databases, Factual , Interleukin-1beta , Medicine, Chinese Traditional , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
5.
J Ethnopharmacol ; 329: 118129, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38582151

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Shenlingbaizhu (SLBZ) formula, a classical traditional Chinese medicinal (TCM) formula, has been widely used for treating antibiotic-associated diarrhea (AAD). However, the underlying pharmacological mechanisms have not yet been investigated thoroughly. AIM OF THE STUDY: To explore the remission mechanism of SLBZ in the treatment of AAD, we conducted network pharmacological analysis and experimental validation in vitro and in vivo. MATERIALS AND METHODS: In this study, the main compounds of SLBZ were identified by ultra-high-performance liquid chromatography-mass spectroscopy (UHPLC-MS) and online databases. The targets of the active components and AAD-related targets were predicted by network pharmacology, and the potential targets of SLBZ against AAD were obtained. Then the core targets were recognized after Protein-Protein Interaction (PPI) analysis. Based on these, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analyses were conducted, and the key pathway was screened. Subsequently, molecular docking was performed using Auto Dock Vina to find the key components that played a crucial role in that pathway. Molecular dynamics simulation was performed by Gromacs software to detect the binding mode. Finally, the results were confirmed by in vitro and in vivo experiments. RESULTS: A total of 66 active ingredients of SLBZ were detected by UHPLC-MS, and 128 active ingredients were screened out by network pharmacological analysis. Additionally, 935 drug targets and 1686 AAD-related targets were obtained. Seventy-eight intersected genes were selected as potential therapeutic targets and 19 genes were excavated as core targets. Enrichment analysis revealed PI3K-AKT signaling pathway was the key pathway in SLBZ against AAD. Topological analysis further revealed that JAK2, MTOR, TLR4, and SYK were the key targets affected by SLBZ on the PI3K-AKT pathway, and 52 components of SLBZ were associated with them. Molecular docking and dynamics simulation revealed strong binding affinities between MTOR and diosgenin. Subsequently, after SLBZ treatment, the expression levels of JAK2, MTOR, TLR4, and SYK were found significantly upregulated in the AAD model rats (p < 0.05). The cell experiment further validated the good binding ability between MTOR and diosgenin. CONCLUSION: We demonstrate that the therapeutic effect of SLBZ on AAD was achieved in part by inhibiting the PI3K-AKT pathway.


Subject(s)
Anti-Bacterial Agents , Diarrhea , Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Animals , Diarrhea/drug therapy , Diarrhea/chemically induced , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/toxicity , Male , Rats , Signal Transduction/drug effects , Rats, Sprague-Dawley , Protein Interaction Maps , Molecular Dynamics Simulation , Mice
6.
J Ethnopharmacol ; 329: 118157, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38588987

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Astragalus mongholicus Bunge (AMB) is a herb with wide application in traditional Chinese medicine, exerting a wealth of pharmacological effects. AMB has been proven to have an evident therapeutic effect on ischemic cerebrovascular diseases, including cerebral ischemia-reperfusion injury (CIRI). However, the specific mechanism underlying AMB in CIRI remains unclear. AIM OF THE STUDY: This study aimed to investigate the potential role of AMB in CIRI through a comprehensive approach of network pharmacology and in vivo experimental research. METHODS: The intersection genes of drugs and diseases were obtained through analysis of the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database and Gene Expression Omnibus (GEO) database. The protein-protein interaction (PPI) network was created through the string website. Meanwhile, the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was carried out using R studio, and thereafter the key genes were screened. Then, the molecular docking prediction was made between the main active ingredients and target genes, and hub genes with high binding energy were obtained. In addition, molecular dynamic (MD) simulation was used to validate the result of molecular docking. Based on the results of network pharmacology, we used animal experiments to verify the predicted hub genes. First, the rat middle cerebral artery occlusion and reperfusion (MACO/R) model was established and the effective dose of AMB in CIRI was determined by behavioral detection and 2,3,5-Triphenyltetrazolium chloride (TTC) staining. Then the target proteins corresponding to the hub genes were measured by Western blot. Moreover, the level of neuronal death was measured using hematoxylin and eosin (HE) and Nissl staining. RESULTS: Based on the analysis of the TCMSP database and GEO database, a total of 62 intersection target genes of diseases and drugs were obtained. The KEGG enrichment analysis showed that the therapeutic effect of AMB on CIRI might be realized through the advanced glycation endproduct-the receptor of advanced glycation endproduct (AGE-RAGE) signaling pathway in diabetic complications, nuclear factor kappa-B (NF-κB) signaling pathway and other pathways. Molecular docking results showed that the active ingredients of AMB had good binding potential with hub genes that included Prkcb, Ikbkb, Gsk3b, Fos and Rela. Animal experiments showed that AWE (60 g/kg) could alleviate CIRI by regulating the phosphorylation of PKCß, IKKß, GSK3ß, c-Fos and NF-κB p65 proteins. CONCLUSION: AMB exerts multi-target and multi-pathway effects against CIRI, and the underlying mechanism may be related to anti-apoptosis, anti-inflammation, anti-oxidative stress and inhibiting calcium overload.


Subject(s)
Astragalus Plant , Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Protein Interaction Maps , Rats, Sprague-Dawley , Reperfusion Injury , Animals , Reperfusion Injury/drug therapy , Astragalus Plant/chemistry , Male , Rats , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Infarction, Middle Cerebral Artery/drug therapy , Signal Transduction/drug effects , Molecular Dynamics Simulation
7.
Zhen Ci Yan Jiu ; 49(4): 415-423, 2024 Apr 25.
Article in English, Chinese | MEDLINE | ID: mdl-38649211

ABSTRACT

OBJECTIVES: To explore the mechanism of core points in acupuncture and moxibustion treatment for epilepsy by using data mining technique, so as to provide a reference for clinical practice and experimental research. METHODS: The data comes from relevant documents collected from CNKI, Wanfang, SinoMed, VIP, PubMed, Embase, Cochrane Library, EBSCO, Web of Science databases. The selected acupoints were analyzed in descriptive statistics, high-frequency acupoints group and core acupoint prescription. Further, potential target mining, "core acupoint prescription-target-epilepsy" network construction, protein-protein interactions (PPI) network establishment and core target extraction, gene ontology (GO) and KEGG gene enrichment analysis of the core acupoint prescription were carried out to predict its anti-epileptic potential mechanism. RESULTS: A total of 122 acupoint prescriptions were included. The core acupoint prescriptions were Baihui (GV20), Hegu (LI4), Neiguan (PC6), Shuigou (GV26) and Taichong (LR3). 277 potential targets were identified, among which 134 were shared with epilepsy. The core targets were extracted by PPI network topology analysis, including signal transducer and activator of transcription 3, tumor necrosis factor (TNF), interleukin (IL)-6, protein kinase B1, c-Jun N-terminal kinase, brain-derived neurotrophic factor, tumor protein 53, vascular endothelial growth factor A, Caspase-3, epidermal growth factor receptor, etc. The main anti-epileptic pathways of the core acupoints were predicted by KEGG enrichment, including lipid and atherosclerosis, neurodegeneration, phosphatidylinositol-3-kinase/protein B kinase signaling pathway, mitogen-activated protein kinase signaling pathway, cyclic adenosine monophosphate signaling pathway, TNF signaling pathway, IL-17 signaling pathway, hypoxia-inducible factor-1 signaling pathway, apoptosis, etc., involving neuronal death, synaptic plasticity, oxidative stress, inflammation and other related biological process. CONCLUSIONS: The core acupoint prescription of acupuncture and moxibustion intervention for epilepsy can act on multiple targets and multiple pathways to exert anti-epileptic effects, which can provide a theoretical basis for further clinical application and mechanism research.


Subject(s)
Acupuncture Points , Acupuncture Therapy , Data Mining , Epilepsy , Moxibustion , Humans , Epilepsy/therapy , Epilepsy/genetics , Epilepsy/metabolism , Protein Interaction Maps , Signal Transduction
8.
Article in English | MEDLINE | ID: mdl-38529478

ABSTRACT

Background: Chronic obstructive pulmonary disease (COPD) is a common respiratory disorder in pulmonology. Chuanbeimu (CBM) is a traditional Chinese medicinal herb for treating COPD and has been widely utilized in clinical practice. However, the mechanism of CBM in the treatment of COPD remains incompletely understood. This study aims to investigate the underlying therapeutic mechanism of CBM for COPD using network pharmacology and experimental approaches. Methods: Active ingredients and their targets were obtained from the Traditional Chinese Medicine Systems Pharmacology database. COPD-associated targets were retrieved from the GeneCards database. The common targets for CBM and COPD were identified through Venn diagram analysis. Protein-protein interaction (PPI) networks and disease-herb-ingredient-target networks were constructed. Subsequently, the results of the network pharmacology were validated by molecular docking and in vitro experiments. Results: Seven active ingredients and 32 potential targets for CBM were identified as closely associated with COPD. The results of the disease-herb-ingredient-target network and PPI network showed that peimisine emerged as the core ingredient, and SRC, ADRB2, MMP2, and NOS3 were the potential targets for CBM in treating COPD. Molecular docking analysis confirmed that peimisine exhibited high binding affinity with SRC, ADRB2, MMP2, and NOS3. In vitro experiments demonstrated that peimisine significantly upregulated the expression of ADRB2 and NOS3 and downregulated the expression of SRC and MMP2. Conclusion: These findings indicate that CBM may modulate the expression of SRC, ADRB2, MMP2, and NOS3, thereby exerting a protective effect against COPD.


Subject(s)
Drugs, Chinese Herbal , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/drug therapy , Molecular Docking Simulation , Matrix Metalloproteinase 2 , Network Pharmacology , Protein Interaction Maps , Medicine, Chinese Traditional , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
9.
Aging (Albany NY) ; 16(8): 6745-6756, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38546402

ABSTRACT

Ginsenoside Rb1 is the major active constituent of ginseng, which is widely used in traditional Chinese medicine for the atherosclerosis treatment by anti-inflammatory, anti-oxidant and reducing lipid accumulation. We explored cellular target and molecular mechanisms of ginsenoside Rb1 based on network pharmacology and in vitro experimental validation. In this study, we predicted 17 potential therapeutic targets for ginsenoside Rb1 with atherosclerosis from public databases. We then used protein-protein interaction network to screen the hub targets. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway enrichment showed that the effects of ginsenoside Rb1 were meditated through multiple targets and pathways. Next, molecular docking results revealed that in the 10 core targets, CCND1 has the highest binding energy with ginsenoside Rb1. Vascular cell proliferation plays a critical role in atherosclerosis development. However, the effect and direct target of ginsenoside Rb1 in regulating vascular cell proliferation in atherosclerosis remains unclear. Edu straining results indicated that ginsenoside Rb1 inhibited the cell proliferation of endothelial cells, macrophages, and vascular smooth muscle cells. The protein immunoprecipitation (IP) analysis showed that ginsenoside Rb1 inhibited the vascular cell proliferation by suppressing the interaction of CCDN1 and CDK4. These findings systematically reveal that the anti-atherosclerosis mechanism of ginsenoside Rb1 by integrating network pharmacology and experimental validation, which provide evidence to treat atherosclerosis by using ginsenoside Rb1 and targeting CCND1.


Subject(s)
Atherosclerosis , Cell Proliferation , Ginsenosides , Molecular Docking Simulation , Protein Interaction Maps , Ginsenosides/pharmacology , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Cell Proliferation/drug effects , Humans , Network Pharmacology , Animals , Cyclin D1/metabolism , Cyclin D1/genetics , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Mice , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 4/genetics
10.
Phytomedicine ; 128: 155488, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38493718

ABSTRACT

BACKGROUND: This research aimed to investigate the anti-tumor effects and underlying genetic mechanisms of herbal medicine Triphala (TRP) in oral squamous cell carcinoma (OSCC). METHODS: The target genes of Triphala (TRP) in oral squamous cell carcinoma (OSCC) were identified, and subsequent functional enrichment analysis was conducted to determine the enriched signaling pathways. Based on these genes, a protein-protein interaction network was constructed to identify the top 10 genes with the highest degree. Genes deregulated in OSCC tumor samples were identified to be hub genes among the top 10 genes. In vitro experiments were performed to investigate the influence of TRP extracts on the cell metabolic activity, migration, invasion, apoptosis, and proliferation of two OSCC cell lines (CAL-27 and SCC-9). The functional rescue assay was conducted to investigate the effect of applying the inhibitor and activator of an enriched pathway on the phenotypes of cancer cells. In addition, the zebrafish xenograft tumor model was established to investigate the influence of TRP extracts on tumor growth and metastasis in vivo. RESULTS: The target genes of TRP in OSCC were prominently enriched in the PI3K-Akt signaling pathway, with the identification of five hub genes (JUN, EGFR, ESR1, RELA, and AKT1). TRP extracts significantly inhibited cell metabolic activity, migration, invasion, and proliferation and promoted cell apoptosis in OSCC cells. Notably, the application of TRP extracts exhibited the capacity to downregulate mRNA and phosphorylated protein levels of AKT1 and ESR1, while concomitantly inducing upregulation of mRNA and phosphorylated protein levels in the remaining three hub genes (EGFR, JUN, and RELA). The functional rescue assay demonstrated that the co-administration of TRP and the PI3K activator 740Y-P effectively reversed the impact of TRP on the phenotypes of OSCC cells. Conversely, the combination of TRP and the PI3K inhibitor LY294002 further enhanced the effect of TRP on the phenotypes of OSCC cells. Remarkably, treatment with TRP in zebrafish xenograft models demonstrated a significant reduction in both tumor growth and metastatic spread. CONCLUSIONS: Triphala exerted significant inhibitory effects on cell metabolic activity, migration, invasion, and proliferation in OSCC cell lines, accompanied by the induction of apoptosis, which was mediated through the inactivation of the PI3K/Akt pathway.


Subject(s)
Apoptosis , Cell Movement , Cell Proliferation , Molecular Docking Simulation , Mouth Neoplasms , Network Pharmacology , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Zebrafish , Animals , Mouth Neoplasms/drug therapy , Humans , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Cell Line, Tumor , Phosphatidylinositol 3-Kinases/metabolism , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Movement/drug effects , Plant Extracts/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Protein Interaction Maps , Carcinoma, Squamous Cell/drug therapy , Xenograft Model Antitumor Assays , Chromones/pharmacology , Morpholines/pharmacology
11.
Phytomedicine ; 128: 155300, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518639

ABSTRACT

BACKGROUND: This study was conducted to elucidate the critical molecular pathways underlying the protective effects of remifentanil against hepatic ischemia-reperfusion injury in rats. Our approach integrated network pharmacology analysis with high-throughput sequencing to achieve a comprehensive understanding of the mechanisms involved. STUDY DESIGN/METHODS: The study utilized GSE24430 gene expression data from GEO to investigate remifentanil's impact on Hepatic Ischemia-Reperfusion Injury in rats. Weighted Correlation Network Analysis (WGCNA) was employed to pinpoint crucial genes and identify modules of co-expressed genes. Differential analysis with the "Limma" package revealed genes differentially expressed in IRI vs. control groups. PubChem and PharmMapper provided target genes affected by remifentanil. Protein-protein interaction networks were constructed via GeneCards and STRING. Functional analysis pinpointed core genes involved in remifentanil's IRI alleviation. IRI rat models were established, and hepatic injury indicators, liver structure via H&E staining, autophagosome counts via electron microscopy, and gene/protein expression via RT-qPCR and Western blot were assessed. High-throughput sequencing analyzed molecular pathways affected by varying remifentanil doses in IRI rats. RESULTS: In the study, we discovered four primary co-expression modules associated with hepatic IRI, and the grey module exhibited the highest correlation with hepatic IRI.A total of sixty-eight genes that were differentially expressed were found to have a connection with hepatic IRI.Network pharmacology analysis found that remifentanil may alleviate hepatic IRI through Fmol.found that the Fmol/Parkin signaling pathway may alleviate hepatic IRI via Additionally, the database autophagy. The established hepatic IRI rat models further confirmed the above findings. CONCLUSION: Our study established that remifentanil triggers the Fmol/Parkin signaling cascade, amplifying the expression levels of Fmol and Parkin. This process culminates in the activation of autophagy within hepatic cells, ultimately alleviating hepatic ischemia-reperfusion injury (IRI).


Subject(s)
Liver , Network Pharmacology , Rats, Sprague-Dawley , Remifentanil , Reperfusion Injury , Signal Transduction , Ubiquitin-Protein Ligases , Animals , Reperfusion Injury/drug therapy , Remifentanil/pharmacology , Signal Transduction/drug effects , Male , Liver/drug effects , Liver/metabolism , Rats , Ubiquitin-Protein Ligases/metabolism , High-Throughput Nucleotide Sequencing , Protein Interaction Maps
12.
Curr Pharm Des ; 30(5): 377-405, 2024.
Article in English | MEDLINE | ID: mdl-38310567

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is a prevalent and life-threatening form of cancer, with Shelian Capsule (SLC), a traditional Chinese medicine (TCM) formulation, being recommended for clinical treatment. However, the mechanisms underlying its efficacy remain elusive. This study sought to uncover the potential mechanisms of SLC in HCC treatment using bioinformatics methods. METHODS: Bioactive components of SLC were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and HCC-related microarray chip data were sourced from the Gene Expression Omnibus (GEO) database. The selection criteria for components included OB ≧ 30% and DL ≧ 0.18. By integrating the results of differential expression analysis and weighted gene co-expression network analysis (WGCNA), disease-related genes were identified. Therapeutic targets were determined as shared items between candidate targets and disease genes. Protein-protein interaction (PPI) network analysis was conducted for concatenated genes, with core protein clusters identified using the MCODE plugin. Machine learning algorithms were applied to identify signature genes within therapeutic targets. Subsequently, immune cell infiltration analysis, single-cell RNA sequencing (sc-RNA seq) analysis, molecular docking, and ADME analysis were performed for the screened genes. RESULTS: A total of 153 SLC ingredients and 170 candidate targets were identified, along with 494 HCCrelated disease genes. Overlapping items between disease genes and drug candidates represented therapeutic genes, and PPI network analysis was conducted using concatenated genes. MCODE1 and MCODE2 cluster genes underwent Disease Ontology (DO), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Four signature genes (TOP2A, CYP1A2, CYP2B6, and IGFBP3) were identified from 28 therapeutic genes using 3 machine learning algorithms, with ROC curves plotted. Molecular docking validated the interaction modes and binding abilities between signature genes and corresponding compounds, with free binding energy all <-7 kcal/mol. Finally, ADME analysis revealed similarities between certain SLC components and the clinical drugs Sorafenib and Lenvatinib. CONCLUSION: In summary, our study revealed that the mechanism underlying the anti-HCC effects of SLC involves interactions at three levels: components (quercetin, beta-sitosterol, kaempferol, baicalein, stigmasterol, and luteolin), pathways (PI3K-Akt signaling pathway, TNF signaling pathway, and IL-17 signaling pathway), and targets (TOP2A, CYP1A2, CYP2B6, and IGFBP3). This study provides preliminary insights into the potential pharmacological mechanisms of SLC in HCC treatment, aiming to support its clinical application and serve as a reference for future laboratory investigations.


Subject(s)
Carcinoma, Hepatocellular , Computational Biology , Drugs, Chinese Herbal , Liver Neoplasms , Machine Learning , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Algorithms , Medicine, Chinese Traditional , Capsules , Molecular Docking Simulation , Protein Interaction Maps
13.
Theriogenology ; 216: 168-176, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38185016

ABSTRACT

Testicular size is an excellent proxy for selecting high-fertility rams. The hypothalamus-pituitary-gonadal (HPG) axis plays an important role in regulating reproductive capacity in vertebrates, while key genes and regulatory pathways within the HPG axis associated with testicular size remain largely unknown in sheep. This study comprehensively compared the transcriptomic profiles in the hypothalamus, pituitary and testis of rams after sexual maturity between the large-testis group (LTG, testicular weight = 454.29 ± 54.24 g) and the small-testis group (STG, testicular weight = 77.29 ± 10.76 g). In total, 914, 795 and 10518 differentially expressed genes (DEGs) were identified in the hypothalamus, pituitary and testis between LTG and STG, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that these DEGs were mainly involved in the biological processes of reproduction, biological regulation, and development process. Notably, the neuroactive ligand-receptor interaction and cAMP signaling pathways, commonly enriched by the DEGs in the hypothalamus and pituitary between two groups, were considered as two key signal pathways regulating testicular development through the HPGs axis. Weighted gene co-expression network analysis (WGCNA) identified two modules that were significantly associated with testicular size, and 97 key genes were selected with high module membership (MM) and gene significance (GS) in these two modules. Finally, a protein-protein interaction (PPI) network was constructed, and ten genes with the highest degree were represented as hub genes, including FOS, NPY, SST, F2, AGT, NTS, OXT, EDN1, VIP and TAC1. Taken together, these results provide new insights into the molecular mechanism underlying the HPG axis regulating testicular size of Hu sheep.


Subject(s)
Gene Expression Profiling , Hypothalamic-Pituitary-Gonadal Axis , Male , Sheep/genetics , Animals , Gene Expression Profiling/veterinary , Gene Expression Profiling/methods , Protein Interaction Maps/genetics , Transcriptome , Hypothalamus , Gene Regulatory Networks
14.
Altern Ther Health Med ; 30(1): 134-141, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37773661

ABSTRACT

Objective: To analyze the enrichment pathway, hub gene, and Protein-protein interaction (PPI) network of rheumatoid arthritis (RA) and construct peripheral blood subtypes based on integrated bioinformatics analysis. Methods: Suitable datasets were screened from the GEO database based on titles and abstracts, batch positive analysis was performed using R language, and KEGG enrichment analysis and GO enrichment analysis were performed. After screening the differential genes, the PPI network was constructed, and the hubba plug-in of Cytoscape software was used to obtain the top 10 hub genes(key regulatory genes). hub genes were used as the typing condition to identify the molecular subtypes of synovial tissue and peripheral blood of arthritis. Results: GSE12021 and GSE93272 have been chosen for analysis. GSE12021 presents the transcriptome analysis of human joint synovial tissue, comprising 12 samples from patients with rheumatoid arthritis and 9 samples from normal healthy individuals. On the other hand, GSE93272 includes human peripheral blood samples, comprising 232 samples from patients with rheumatoid arthritis and 43 samples from normal healthy individuals. The main results of GSE12021 KEGG enrichment were Parathyroid hormone synthesis, Relaxin signaling pathway, TNF signaling pathway, Rheumatoid arthritis, T cell receptor signaling pathway, Th1 and Th2 cell differentiation, Th17 cell differentiation, Toll-like receptor signaling pathway and so on. The main results of GSE12021 GO enrichment were regulation of feeding behavior, regulation of neuron death, positive regulation of cell-cell adhesion, and positive regulation of leukocyte activation. The top 10 hub genes were CD8A, JUN, CTLA4, CD19, LCK, FOS, CCL5, IL7R, CCR7 and CD247. Synovial tissue and peripheral blood subtypes of rheumatoid arthritis showed that the two classification methods maintained consistency. Conclusion: Identifying the Hub gene in peripheral blood helps screen molecular subtypes of rheumatoid arthritis.


Subject(s)
Arthritis, Rheumatoid , Protein Interaction Maps , Humans , Protein Interaction Maps/genetics , Transcriptome , Arthritis, Rheumatoid/genetics , Gene Expression Profiling/methods
15.
Medicine (Baltimore) ; 102(46): e36146, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37986298

ABSTRACT

Huangbaichen Sanwei formulation (HBCS) has been reported to have a good hypoglycemic effect, but its pharmacological mechanism of action remains unclear. We used network pharmacology and molecular docking to explore the potential mechanism of action of HBCS against type-2 diabetes mellitus (T2DM). Fifty-five active components from HBCS interfered with T2DM. Twenty-five core targets, such as AKT1, INS, INSR, MAPK1 were identified. Enrichment analyses showed that HBCS was involved mainly including insulin receptor signaling pathway, extracellular region, and insulin-like growth factor receptor binding and other biological processes; common targets had roles in treating T2DM by regulating diabetic cardiomyopathy and insulin resistance. Molecular docking verified that components combined with core targets. HBCS play a part in treating T2DM through multiple components and targets at the molecular level, which lays a theoretical foundation for research using HBCS to treat T2DM. The components, predicted targets, and T2DM targets of HBCS were searched through databases, and common targets were determined. Further screening of the core targets was conducted through the establishment of a protein -protein interaction network. The core targets were analyzed by Gene Ontology (GO) annotation utilizing the DAVID platform. And the enrichment of signaling pathways was explored by employing the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Cytoscape 3.9.1 was employed to construct a "TCM-components-core target-pathway" network. Autodock Vina was used to dock molecules to compare the binding activity of active molecules with targets.


Subject(s)
Diabetes Mellitus, Type 2 , Drugs, Chinese Herbal , Humans , Molecular Docking Simulation , Network Pharmacology , Diabetes Mellitus, Type 2/drug therapy , Protein Interaction Maps , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional
16.
Medicine (Baltimore) ; 102(46): e35248, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37986321

ABSTRACT

BACKGROUND: Atherosclerosis (AS) is the cause of most cardiovascular diseases and imposes a huge economic burden on society. Erchen decoction (ECD) is an effective formula for treating AS, but its therapeutic mechanism remains unclear. This study will explore the mechanism of ECD mechanism for treating AS using network pharmacology and molecular docking. METHODS: We searched ECD chemical composition information and related targets via Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and SwissTargetPrediction databases, and gene names correction was performed using the UniProt database. AS-related targets were retrieved from OMIM, GeneCards, and DrugBank databases, and Venny 2.1 were used for intersection analysis. Protein-protein interaction network was constructed by the STRING database, and an interactive network of the drug-component-target-disease was drawn using the Cytoscape 3.9.0 software. Gene ontology and Kyoto Gene and Genome Encyclopedia enrichment analysis were performed by the DAVID database, and molecular docking validation of vital active ingredients and action targets of ECD was performed using AutoDock Vina software. RESULTS: The 127 active components of ECD act on AS by regulating 231 targets and 151 pathways. The 6 core components are quercetin, polyporenic acid C, 18α-hydroxyglycyrrhetic acid, glyuranolide, 3beta-hydroxychloroxy-24-methylene-8-lanostene-21-oic acid, and obacunone. They may regulate AS by regulating core target genes, such as JUN, SRC, AKT1, PTGS2, ESR1, AR, MAPK1, MAPK3, and RELA, and acting on multiple vital pathways, such as AGE-RAGE signaling pathway in diabetic complications, Lipid and AS, and Fluid shear stress and AS. Molecular docking showed that the selected target protein had good binding activity to the active ingredient. CONCLUSIONS: ECD has the characteristics of multi-components, multi-targets and multi-pathways in the treatment of AS. The results provide a theoretical basis for the clinical application of ECD and its mechanism.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Drugs, Chinese Herbal , Humans , Molecular Docking Simulation , Network Pharmacology , Protein Interaction Maps , Atherosclerosis/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional
17.
Medicine (Baltimore) ; 102(44): e35793, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37932972

ABSTRACT

Depression is characterized by a significant and persistent decline in mood and is currently a major threat to physical and mental health. Traditional Chinese medicine can effectively treat depression with few adverse effects. Therefore, this study aimed to examine the use of reverse network pharmacology and computer simulations to identify effective ingredients and herbs for treating depression. Differentially expressed genes associated with depression were obtained from the Gene Expression Omnibus database, after which enrichment analyses were performed. A protein-protein interaction network was constructed using the STRING database to screen core targets. The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform database was used to screen ingredients related to these core targets, and the core ingredients were screened by constructing the "Targets-Ingredients-Herbs" network. Drug evaluation analysis was performed using the SwissADME and ADMETlab platforms, according to Lipinski Rule of 5. The binding between the targets and ingredients was simulated using molecular docking software. The binding stability was determined using molecular dynamics analysis. The "Ingredients-Herbs" network was constructed, and we annotated it for its characteristics and meridians. Finally, the selected herbs were classified to determine the formulation for treating depression in traditional Chinese medicine. The pathogenesis of depression was associated with changes in SPP1, Plasminogen activator inhibitor 1, CCNB1 protein, CCL3, and other genes. Computer simulations have verified the use of quercetin, luteolin, apigenin, and other ingredients as drugs for treating depression. Most of the top 10 herbs containing these ingredients were attributed to the liver meridian, and their taste was symplectic. Perilla Frutescen, Cyperi Rhizoma, and Linderae Radix, the main components of "Tianxiang Zhengqi Powder," can treat depression owing to Qi stagnation. Epimedium and Citicola, the main traditional Chinese herbs in "Wenshen Yiqi Decoction," have a positive effect on depression of the Yang asthenia type. Fructus Ligustri Lucidi and Ecliptae Herba are from the classic prescription "Erzhi Pills" and can treat depression of the Yin deficiency type. This study identified the key targets and effective medicinal herbs for treating depression. It provides herbal blend references for treating different types of depression according to the theory of traditional Chinese medicine.


Subject(s)
Drugs, Chinese Herbal , Molecular Dynamics Simulation , Humans , Molecular Docking Simulation , Network Pharmacology , Protein Interaction Maps , Antidepressive Agents , Medicine, Chinese Traditional
18.
Medicine (Baltimore) ; 102(44): e35734, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37932998

ABSTRACT

BACKGROUND: Goji berries (Lycium barbarum L) are herbal medicine that have a long history of use and multiple pharmacological activities. In this study, we investigated the potential therapeutic effects of Goji berries on atherosclerosis (AS) using network pharmacology and molecular docking. METHODS: The active compounds of Goji berries were identified using the Traditional Chinese Medicine Systems Pharmacology platform, as well as the literature and the targets of each active compound were obtained using the Swiss Target Prediction database. The AS-related targets were collected from the GeneCards and OMIM databases to obtain the common targets of Goji berries and AS. The drug-compound-target-disease network and protein-protein interaction network were constructed using the Cytoscape software to obtain the core target proteins of Goji berries related to AS. Gene ontology analysis of the core targets and Kyoto encyclopedia of genes and genomes pathway enrichment analysis were performed by Metascape. The target-chemical correlations were verified using AutoDock molecular docking. RESULTS: After analysis, 44 active compounds within Goji berries were obtained that exhibit associations with AS. Among these, the proteins exhibiting the highest degrees of interaction within the compound-targeted protein protein-protein interaction network were AKT1, SRC, MAPK3, MAPK1, RELA, and STAT3. The gene ontology-biology process analysis showed that compound-targeted proteins were mainly involved in regulating small molecule metabolic process, cellular response to chemical stress, reactive oxygen species metabolic process, and regulation of inflammatory response. Kyoto encyclopedia of genes and genomes pathway mainly included lipid and AS in which AKT1, SRC, MAPK3, and MAPK1 were involved. Advanced glycation end-product-receptor for advanced glycation end-product signaling pathway in diabetic complications, Chagas disease, and pancreatic disease. Molecular docking assessment showed that fucosterol is bound to AKT1, MAPK3, and SRC. CONCLUSION: This study demonstrates that network pharmacology and molecular docking analyses contribute to a better understanding of Goji berries active compounds and targets as potential therapeutic drugs for treating AS.


Subject(s)
Atherosclerosis , Drugs, Chinese Herbal , Lycium , Humans , Molecular Docking Simulation , Network Pharmacology , Protein Interaction Maps , Medicine, Chinese Traditional
19.
BMC Musculoskelet Disord ; 24(1): 772, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37784117

ABSTRACT

BACKGROUND: Through bioinformatics analysis to identify the hub genes of Intervertebral disc degeneration (IVDD) associated with basement membranes (BMs) and find out the potential molecular targets and drugs for BMs-related annulus fibrosus (AF) degeneration based on bioinformatic analysis and molecular approach. METHODS: Intervertebral disc degeneration (IVDD) related targets were obtained from GeneCards, DisGenet and OMIM databases. BMs related genes were obtained from Basement membraneBASE database. The intersection targets were identified and subjected to protein-to-protein interaction (PPI) construction via STRING. Hub genes were identified and conducted Gene ontology (GO) and pathway enrichment analysis through MCODE and Clue GO in Cytospace respectively. DSigDB database was retrieved to predict therapeutic drugs and molecular docking was performed through PyMOL, AutoDock 1.5.6 to verify the binding energy between the drug and the different expressed hub genes. Finally, GSE70362 from GEO database was obtained to verify the different expression and correlation of each hub gene for AF degeneration. RESULTS: We identified 41 intersection genes between 3 disease targets databases and Basement membraneBASE database. PPI network revealed 25 hub genes and they were mainly enriched in GO terms relating to glycosaminoglycan catabolic process, the TGF-ß signaling pathway. 4 core targets were found to be significant via comparison of microarray samples and they showed strong correlation. The molecular docking results showed that the core targets have strong binding energy with predicting drugs including chitosamine and retinoic acid. CONCLUSIONS: In this study, we identified hub genes, pathways, potential targets, and drugs for treatment in BMs-related AF degeneration and IVDD.


Subject(s)
Drugs, Chinese Herbal , Intervertebral Disc Degeneration , Humans , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/metabolism , Molecular Docking Simulation , Protein Interaction Maps/genetics , Microarray Analysis , Computational Biology/methods
20.
Medicine (Baltimore) ; 102(43): e35581, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37904445

ABSTRACT

You-Gui-Yin (YGY) is a classic prescription for warming up kidney-Yang and filling in kidney essence in traditional Chinese medicine, and has been used to treat osteonecrosis of the femoral head (ONFH) effectively. However, the underlying mechanisms are still unknown. This study is aimed at exploring the possible mechanisms of action of the YGY in the treatment of ONFH based on network pharmacology and molecular docking. TCMSP was used to screen the active components and targets of YGY. The disease targets of ONFH were collected in several public databases. The protein-protein interaction (PPI) Network was constructed using the STRING platform. The Metascape database platform was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The key active components and core target proteins of YGY in the treatment of ONFH were verified by the molecular docking. 120 active components were obtained from YGY, among which 73 components were hit by the 117 drug-disease intersection targets. Key effective components included quercetin, kaempferol, beta-sitosterol, glycitein, beta-carotene, and so on. Core target proteins included ALB, AKT1, TNF, IL6, TP53, and so on. According to GO and KEGG analyses, there were 1762 biological processes, 94 cellular component, 138 molecular function and 187 signaling pathways involved. we selected the top 20 biological processes (BP), cellular components (CC), molecular functions (MF) and signaling pathways to draw the heat maps, showing that Lipid and atherosclerosis signaling pathway, IL-17 signaling pathway, HIF-1 signaling pathway, relaxin signaling pathway and MAPK signaling pathway and other pathways may play a key role in the treatment of ONFH by YGY. The results of molecular docking showed that key effective components and corresponding core target proteins exhibited the good binding activity. YGY can treat ONFH through multicomponents, multitargets, and multipathways, which provides a reference for the subsequent research, development of targeted drugs and clinical application.


Subject(s)
Drugs, Chinese Herbal , Femur Head , Humans , Molecular Docking Simulation , Network Pharmacology , Protein Interaction Maps , MAP Kinase Signaling System , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional
SELECTION OF CITATIONS
SEARCH DETAIL