Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 253
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Adv Sci (Weinh) ; 11(25): e2308186, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38664976

ABSTRACT

Natural products, while valuable for drug discovery, encounter limitations like uncertainty in targets and toxicity. As an important active ingredient in traditional Chinese medicine, celastrol exhibits a wide range of biological activities, yet its mechanism remains unclear. In this study, they introduced an innovative "Degradation-based protein profiling (DBPP)" strategy, which combined PROteolysis TArgeting Chimeras (PROTAC) technology with quantitative proteomics and Immunoprecipitation-Mass Spectrometry (IP-MS) techniques, to identify multiple targets of natural products using a toolbox of degraders. Taking celastrol as an example, they successfully identified its known targets, including inhibitor of nuclear factor kappa B kinase subunit beta (IKKß), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PI3Kα), and cellular inhibitor of PP2A (CIP2A), as well as potential new targets such as checkpoint kinase 1 (CHK1), O-GlcNAcase (OGA), and DNA excision repair protein ERCC-6-like (ERCC6L). Furthermore, the first glycosidase degrader is developed in this work. Finally, by employing a mixed PROTAC toolbox in quantitative proteomics, they also achieved multi-target identification of celastrol, significantly reducing costs while improving efficiency. Taken together, they believe that the DBPP strategy can complement existing target identification strategies, thereby facilitating the rapid advancement of the pharmaceutical field.


Subject(s)
Pentacyclic Triterpenes , Proteomics , Triterpenes , Proteomics/methods , Humans , Triterpenes/pharmacology , Triterpenes/metabolism , Proteolysis/drug effects , Mass Spectrometry/methods , Immunoprecipitation/methods
2.
Angew Chem Int Ed Engl ; 61(8): e202114957, 2022 02 14.
Article in English | MEDLINE | ID: mdl-34927316

ABSTRACT

Protease inhibitors can modulate intratumoral metabolic processes to reprogram the immunosuppressive tumor microenvironment (TME), which however suffer from the limited efficacy and off-targeted side effects. We report smart nano-proteolysis targeting chimeras (nano-PROTACs) with phototherapeutic ablation and cancer-specific protein degradation to reprogram the TME for photo-metabolic cancer immunotherapy. This nano-PROTAC has a semiconducting polymer backbone linked with a cyclooxygenase 1/2 (COX-1/2)-targeting PROTAC peptide (CPP) via a cathepsin B (CatB)-cleavable segment. CPP can be activated by the tumor-overexpressed CatB to induce the degradation of COX-1/2 via the ubiquitin-proteasome system. The persistent degradation of COX-1/2 depletes their metabolite prostaglandin E2 which is responsible for activation of immune suppressor cells. Such a smart PROTAC strategy synergized with phototherapy specifically reprograms the immunosuppressive TME and reinvigorates antitumor immunity.


Subject(s)
Antineoplastic Agents/pharmacology , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Immunotherapy , Neoplasms/therapy , Peptides/pharmacology , Photosensitizing Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Cathepsin B/metabolism , Dinoprostone/metabolism , Humans , Neoplasms/metabolism , Peptides/chemistry , Peptides/metabolism , Photosensitizing Agents/chemistry , Photosensitizing Agents/metabolism , Phototherapy , Proteolysis/drug effects , Tumor Microenvironment/drug effects
3.
Toxins (Basel) ; 13(12)2021 12 07.
Article in English | MEDLINE | ID: mdl-34941712

ABSTRACT

Fumonisin B1 (FB1) is the most common food-borne mycotoxin produced by the Fusarium species, posing a potential threat to human and animal health. Pigs are more sensitive to FB1 ingested from feed compared to other farmed livestock. Enzymatic degradation is an ideal detoxification method that has attracted much attention. This study aimed to explore the functional characteristics of the carboxylesterase FumDSB in growing pigs from the perspective of brain-gut regulation. A total of 24 growing pigs were divided into three groups. The control group was fed a basal diet, the FB1 group was supplemented with FB1 at 5 mg/kg feed, and the FumDSB group received added FumDSB based on the diet of the FB1 group. After 35 days of animal trials, samples from the hypothalamus and jejunum were analyzed through HE staining, qRT-PCR and immunohistochemistry. The results demonstrated that the ingestion of FB1 can reduce the feed intake and weight gain of growing pigs, indicating that several appetite-related brain-gut peptides (including NPY, PYY, ghrelin and obestatin, etc.) play important roles in the anorexia response induced by FB1. After adding FumDSB as detoxifying enzymes, however, the anorexia effects of FB1 were alleviated, and the expression and distribution of the corresponding brain-gut peptides exhibited a certain degree of regulation. In conclusion, the addition of FumDSB can reduce the anorexia effects of FB1 by regulating several brain-gut peptides in both the hypothalamus and the jejunum of growing pigs.


Subject(s)
Carboxylesterase/metabolism , Fumonisins/metabolism , Fumonisins/toxicity , Growth and Development/drug effects , Hypothalamus/drug effects , Jejunum/drug effects , Proteolysis/drug effects , Swine/growth & development , Animals , Hypothalamus/metabolism , Jejunum/metabolism , Poisons/metabolism , Poisons/toxicity
4.
Cells ; 10(12)2021 11 23.
Article in English | MEDLINE | ID: mdl-34943780

ABSTRACT

Skeletal muscle atrophy occurs in several pathological conditions, such as cancer, especially during cancer-induced cachexia. This condition is associated with increased morbidity and poor treatment response, decreased quality of life, and increased mortality in cancer patients. A leucine-rich diet could be used as a coadjutant therapy to prevent muscle atrophy in patients suffering from cancer cachexia. Besides muscle atrophy, muscle function loss is even more important to patient quality of life. Therefore, this study aimed to investigate the potential beneficial effects of leucine supplementation on whole-body functional/movement properties, as well as some markers of muscle breakdown and inflammatory status. Adult Wistar rats were randomly distributed into four experimental groups. Two groups were fed with a control diet (18% protein): Control (C) and Walker 256 tumour-bearing (W), and two other groups were fed with a leucine-rich diet (18% protein + 3% leucine): Leucine Control (L) and Leucine Walker 256 tumour-bearing (LW). A functional analysis (walking, behaviour, and strength tests) was performed before and after tumour inoculation. Cachexia parameters such as body weight loss, muscle and fat mass, pro-inflammatory cytokine profile, and molecular and morphological aspects of skeletal muscle were also determined. As expected, Walker 256 tumour growth led to muscle function decline, cachexia manifestation symptoms, muscle fibre cross-section area reduction, and classical muscle protein degradation pathway activation, with upregulation of FoxO1, MuRF-1, and 20S proteins. On the other hand, despite having no effect on the walking test, inflammation status or muscle oxidative capacity, the leucine-rich diet improved muscle strength and behaviour performance, maintained body weight, fat and muscle mass and decreased some protein degradation markers in Walker 256 tumour-bearing rats. Indeed, a leucine-rich diet alone could not completely revert cachexia but could potentially diminish muscle protein degradation, leading to better muscle functional performance in cancer cachexia.


Subject(s)
Cachexia/diet therapy , Forkhead Box Protein O1/genetics , Leucine/pharmacology , Muscle Proteins/genetics , Muscular Atrophy/diet therapy , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Animals , Cachexia/genetics , Cachexia/pathology , Dietary Supplements , Humans , Inflammation/diet therapy , Inflammation/genetics , Inflammation/pathology , Leucine/metabolism , Muscular Atrophy/genetics , Muscular Atrophy/pathology , Neoplasms/complications , Neoplasms/diet therapy , Neoplasms/genetics , Proteolysis/drug effects , Quality of Life , Rats
5.
Nutrients ; 13(12)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34959741

ABSTRACT

A good quality of life requires maintaining adequate skeletal muscle mass and strength, but therapeutic agents are lacking for this. We developed a bioassay-guided fractionation approach to identify molecules with hypertrophy-promoting effect in human skeletal muscle cells. We found that extracts from rosemary leaves induce muscle cell hypertrophy. By bioassay-guided purification we identified the phenolic diterpene carnosol as the compound responsible for the hypertrophy-promoting activity of rosemary leaf extracts. We then evaluated the impact of carnosol on the different signaling pathways involved in the control of muscle cell size. We found that activation of the NRF2 signaling pathway by carnosol is not sufficient to mediate its hypertrophy-promoting effect. Moreover, carnosol inhibits the expression of the ubiquitin ligase E3 Muscle RING Finger protein-1 that plays an important role in muscle remodeling, but has no effect on the protein synthesis pathway controlled by the protein kinase B/mechanistic target of rapamycin pathway. By measuring the chymotrypsin-like activity of the proteasome, we found that proteasome activity was significantly decreased by carnosol and Muscle RING Finger 1 inactivation. These results strongly suggest that carnosol can induce skeletal muscle hypertrophy by repressing the ubiquitin-proteasome system-dependent protein degradation pathway through inhibition of the E3 ubiquitin ligase Muscle RING Finger protein-1.


Subject(s)
Abietanes/pharmacology , Hypertrophy/chemically induced , Muscle Fibers, Skeletal/drug effects , Plant Extracts/chemistry , Rosmarinus/chemistry , Signal Transduction/drug effects , Abietanes/isolation & purification , Biological Assay , Chemical Fractionation , Humans , Muscle, Skeletal/cytology , Phenols/isolation & purification , Phenols/pharmacology , Polycomb Repressive Complex 1/antagonists & inhibitors , Proteasome Endopeptidase Complex/metabolism , Proteolysis/drug effects , Ubiquitin/metabolism
6.
Biochem Soc Trans ; 49(5): 2021-2035, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34623375

ABSTRACT

The RAS superfamily of small GTPases regulates major physiological cellular processes. Mutation or deregulation of these small GTPases, their regulators and/or their effectors are associated with many diseases including cancer. Hence, targeting these classes of proteins is an important therapeutic strategy in cancer. This has been recently achieved with the approval of the first KRASG12C covalent inhibitors for the clinic. However, many other mutants and small GTPases are still considered as 'undruggable' with small molecule inhibitors because of a lack of well-defined pocket(s) at their surface. Therefore, alternative therapeutic strategies have been developed to target these proteins. In this review, we discuss the use of intracellular antibodies and derivatives - reagents that bind their antigen inside the cells - for the discovery of novel inhibitory mechanisms, targetable features and therapeutic strategies to inhibit small GTPases and their downstream pathways. These reagents are also versatile tools used to better understand the biological mechanisms regulated by small GTPases and to accelerate the drug discovery process.


Subject(s)
Antibodies/metabolism , Designed Ankyrin Repeat Proteins/metabolism , Drug Discovery/methods , Monomeric GTP-Binding Proteins/metabolism , Neoplasms/enzymology , Signal Transduction/drug effects , Single-Domain Antibodies/metabolism , Animals , Antibodies/immunology , Antibodies/pharmacology , Designed Ankyrin Repeat Proteins/pharmacology , Humans , Molecular Targeted Therapy/methods , Monomeric GTP-Binding Proteins/antagonists & inhibitors , Monomeric GTP-Binding Proteins/immunology , Neoplasms/drug therapy , Protein Binding , Proteolysis/drug effects , Single-Domain Antibodies/immunology , Single-Domain Antibodies/pharmacology
7.
FASEB J ; 35(9): e21870, 2021 09.
Article in English | MEDLINE | ID: mdl-34436790

ABSTRACT

COVID-19 is often characterized by dysregulated inflammatory and immune responses. It has been shown that the Traditional Chinese Medicine formulation Qing-Fei-Pai-Du decoction (QFPDD) is effective in the treatment of the disease, especially for patients in the early stage. Our network pharmacology analyses indicated that many inflammation and immune-related molecules were the targets of the active components of QFPDD, which propelled us to examine the effects of the decoction on inflammation. We found in the present study that QFPDD effectively alleviated dextran sulfate sodium-induced intestinal inflammation in mice. It inhibited the production of pro-inflammatory cytokines IL-6 and TNFα, and promoted the expression of anti-inflammatory cytokine IL-10 by macrophagic cells. Further investigations found that QFPDD and one of its active components wogonoside markedly reduced LPS-stimulated phosphorylation of transcription factor ATF2, an important regulator of multiple cytokines expression. Our data revealed that both QFPDD and wogonoside decreased the half-life of ATF2 and promoted its proteasomal degradation. Of note, QFPDD and wogonoside down-regulated deubiquitinating enzyme USP14 along with inducing ATF2 degradation. Inhibition of USP14 with the small molecular inhibitor IU1 also led to the decrease of ATF2 in the cells, indicating that QFPDD and wogonoside may act through regulating USP14 to promote ATF2 degradation. To further assess the importance of ubiquitination in regulating ATF2, we generated mice that were intestinal-specific KLHL5 deficiency, a CUL3-interacting protein participating in substrate recognition of E3s. In these mice, QFPDD mitigated inflammatory reaction in the spleen, but not intestinal inflammation, suggesting CUL3-KLHL5 may function as an E3 for ATF2 degradation.


Subject(s)
Activating Transcription Factor 2/metabolism , Down-Regulation/drug effects , Drugs, Chinese Herbal/pharmacology , Flavanones/pharmacology , Glucosides/pharmacology , Inflammation/drug therapy , Proteolysis/drug effects , Ubiquitin Thiolesterase/deficiency , Animals , Cell Line , Colitis/chemically induced , Colitis/drug therapy , Cullin Proteins/metabolism , Cytokines/metabolism , Dextran Sulfate/pharmacology , Dextran Sulfate/therapeutic use , Drugs, Chinese Herbal/therapeutic use , Flavanones/therapeutic use , Glucosides/therapeutic use , Inflammation/chemically induced , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Phosphorylation/drug effects , Proteasome Endopeptidase Complex/drug effects , Proteasome Endopeptidase Complex/metabolism , Pyrroles/pharmacology , Pyrrolidines/pharmacology , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitination
8.
Nutrients ; 13(8)2021 Aug 14.
Article in English | MEDLINE | ID: mdl-34444950

ABSTRACT

The purpose of this research was to investigate the prophylactic effects of glutamine on muscle protein synthesis and degradation in rats with ethanol-induced liver injury. For the first 2 weeks, Wistar rats were divided into two groups and fed a control (n = 16) or glutamine-containing diet (n = 24). For the following 6 weeks, rats fed the control diet were further divided into two groups (n = 8 per group) according to whether their diet contained no ethanol (CC) or did contain ethanol (CE). Rats fed the glutamine-containing diet were also further divided into three groups (n = 8 per group), including a GG group (glutamine-containing diet without ethanol), GE group (control diet with ethanol), and GEG group (glutamine-containing diet with ethanol). After 6 weeks, results showed that hepatic fatty change, inflammation, altered liver function, and hyperammonemia had occurred in the CE group, but these were attenuated in the GE and GEG groups. Elevated intestinal permeability and a higher plasma endotoxin level were observed in the CE group, but both were lower in the GE and GEG groups. The level of a protein synthesis marker (p70S6K) was reduced in the CE group but was higher in both the GE and GEG groups. In conclusion, glutamine supplementation might elevate muscle protein synthesis by improving intestinal health and ameliorating liver damage in rats with chronic ethanol intake.


Subject(s)
Glutamine/administration & dosage , Liver Diseases, Alcoholic/prevention & control , Muscle Proteins/metabolism , Protein Biosynthesis/drug effects , Proteolysis/drug effects , Animals , Dietary Supplements , Disease Models, Animal , Ethanol , Inflammation , Intestinal Mucosa/metabolism , Liver/metabolism , Liver Diseases, Alcoholic/etiology , Rats , Rats, Wistar
9.
Exp Eye Res ; 210: 108697, 2021 09.
Article in English | MEDLINE | ID: mdl-34233175

ABSTRACT

Hyperbaric oxygen (HBO) treatment of animals or ocular lenses in culture recapitulates many molecular changes observed in human age-related nuclear cataract. The guinea pig HBO model has been one of the best examples of such treatment leading to dose-dependent development of lens nuclear opacities. In this study, complimentary mass spectrometry methods were employed to examine protein truncation after HBO treatment of aged guinea pigs. Quantitative liquid chromatography-mass spectrometry (LC-MS) analysis of the membrane fraction of guinea pig lenses showed statistically significant increases in aquaporin-0 (AQP0) C-terminal truncation, consistent with previous reports of accelerated loss of membrane and cytoskeletal proteins. In addition, imaging mass spectrometry (IMS) analysis spatially mapped the acceleration of age-related αA-crystallin truncation in the lens nucleus. The truncation sites in αA-crystallin closely match those observed in human lenses with age. Taken together, our results suggest that HBO accelerates the normal lens aging process and leads to nuclear cataract.


Subject(s)
Aging/physiology , Cataract/etiology , Crystallins/metabolism , Hyperbaric Oxygenation/adverse effects , Lens Nucleus, Crystalline/metabolism , Proteolysis/drug effects , Animals , Aquaporins/metabolism , Cataract/metabolism , Cataract/pathology , Chromatography, Liquid , Cytoskeletal Proteins/metabolism , Disease Models, Animal , Eye Proteins/metabolism , Guinea Pigs , Lens Nucleus, Crystalline/pathology , Tandem Mass Spectrometry , alpha-Crystallin A Chain/metabolism
10.
SLAS Discov ; 26(7): 885-895, 2021 08.
Article in English | MEDLINE | ID: mdl-34041938

ABSTRACT

Targeted protein degradation is an emerging new strategy for the modulation of intracellular protein levels with applications in chemical biology and drug discovery. One approach to enable this strategy is to redirect the ubiquitin-proteasome system to mark and degrade target proteins of interest (POIs) through the use of proteolysis targeting chimeras (PROTACs). Although great progress has been made in enabling PROTACs as a platform, there are still a limited number of E3 ligases that have been employed for PROTAC design. Herein we report a novel phenotypic screening approach for the identification of E3 ligase binders. The key concept underlying this approach is the high-throughput modification of screening compounds with a chloroalkane moiety to generate HaloPROTACs in situ, which were then evaluated for their ability to degrade a GFP-HaloTag fusion protein in a cellular context. As proof of concept, we demonstrated that we could generate and detect functional HaloPROTACs in situ, using a validated Von Hippel-Lindau (VHL) binder that successfully degraded the GFP-HaloTag fusion protein in living cells. We then used this method to prepare and screen a library of approximately 2000 prospective E3 ligase-recruiting molecules.


Subject(s)
Drug Discovery/methods , Drug Evaluation, Preclinical/methods , Proteolysis/drug effects , Humans , Protein Binding , Small Molecule Libraries , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
11.
Neurochem Res ; 46(5): 1068-1080, 2021 May.
Article in English | MEDLINE | ID: mdl-33683629

ABSTRACT

Alzheimer's disease (AD) process is characterized classically by two hallmark pathologies: ß-amyloid (Aß) plaque deposition and neurofibrillary tangles of hyperphosphorylated tau. Aß peptides play an important role in AD, but despite much effort the molecular mechanisms of how Aß contributes to AD remain unclear. The present study evaluated the effects of the active components of Epimedium, Astragalus and Radix Puerariae induced HAMP on key enzymes in the hydrolysis of APP in HT22 cells. The active components of Epimedium, Astragalus and Radix Puerariae could effectively up-regulate the expression of HAMP, alleviate the iron overload in the brain tissues of mice, significantly improve the learning and memory ability of AD, down-regulate the expression of Aß and reduce the deposition of SP in an APPswe/PS1ΔE9 transgenic mouse model of AD. HAMP and Aß25-35 induced HT22 cells are used as AD cell models in this study to investigate the effect of the compound consisting of the effective components of Epimedium, Astragalus and Pueraria on the key enzymes in the hydrolysis of APP. After the administration of traditional Chinese medicine (TCM), the expression levels of ADAM10 and ADAM17 were increased while the expression level of BACE1 decreased. This indicates that TCM can promote the expression level of ADAM10 and ADAM17, inhibit the expression level of BACE1, thus further inhibiting the production of amyloid protein and reducing the production of Aß and SP. Compared with RNAi group, the expression level of ADAM10 and ADAM17 in Aß + RNAi group was decreased while the expression level of BACE1 increased. Compared with the Aß + RNAi group the expression level of ADAM10 and ADAM17 in the Aß + RNAi + TCM group was increased while the expression level of BACE1 was decreased. The present study indicated the effects of the active components of Epimedium, Astragalus and Radix Puerariae may alleviate AD by up-regulating the expression of HAMP, thus reducing brain iron overload, promoting the expression of ADAM10 and ADAM17, inhibiting the expression of BACE1, and reducing the deposition of Aß.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid beta-Protein Precursor/metabolism , Drugs, Chinese Herbal/pharmacology , Hepcidins/metabolism , Neuroprotective Agents/pharmacology , Proteolysis/drug effects , ADAM10 Protein/metabolism , ADAM17 Protein/metabolism , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/pharmacology , Animals , Aspartic Acid Endopeptidases/metabolism , Cell Line , Down-Regulation/drug effects , Membrane Proteins/metabolism , Mice , Peptide Fragments/pharmacology , Up-Regulation/drug effects
12.
Int J Mol Sci ; 22(4)2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33672769

ABSTRACT

Traditional endocrine therapy for prostate cancer (PCa) has been directed at suppression of the androgen receptor (AR) signaling axis since Huggins et al. discovered that diethylstilbestrol (DES; an estrogen) produced chemical castration and PCa tumor regression. Androgen deprivation therapy (ADT) still remains the first-line PCa therapy. Insufficiency of ADT over time leads to castration-resistant PCa (CRPC) in which the AR axis is still active, despite castrate levels of circulating androgens. Despite the approval and use of multiple generations of competitive AR antagonists (antiandrogens), antiandrogen resistance emerges rapidly in CRPC due to several mechanisms, mostly converging in the AR axis. Recent evidence from multiple groups have defined noncompetitive or noncanonical direct binding sites on AR that can be targeted to inhibit the AR axis. This review discusses new developments in the PCa treatment paradigm that includes the next-generation molecules to noncanonical sites, proteolysis targeting chimera (PROTAC), or noncanonical N-terminal domain (NTD)-binding of selective AR degraders (SARDs). A few lead compounds targeting each of these novel noncanonical sites or with SARD activity are discussed. Many of these ligands are still in preclinical development, and a few early clinical leads have emerged, but successful late-stage clinical data are still lacking. The breadth and diversity of targets provide hope that optimized noncanonical inhibitors and/or SARDs will be able to overcome antiandrogen-resistant CRPC.


Subject(s)
Androgen Receptor Antagonists/therapeutic use , Molecular Targeted Therapy , Prostatic Neoplasms/drug therapy , Receptors, Androgen/metabolism , Androgen Receptor Antagonists/chemistry , Androgen Receptor Antagonists/pharmacology , Animals , Drug Evaluation, Preclinical , Humans , Male , Proteolysis/drug effects
13.
Nutrients ; 13(2)2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33567796

ABSTRACT

Estrogen exerts cardioprotective effects in menopausal women. Phytoestrogens are plant-derived substances exhibiting estrogenic activity that could beneficially affect vascular health. We previously demonstrated that blackcurrant (Ribes nigrum L.) extract (BCE) treatment exerted beneficial effects on vascular health via phytoestrogenic activity in ovariectomized (OVX) rats, which are widely used as menopausal animal models. Here, we examined whether BCE treatment reduced elastin degradation and prevented pathological vascular remodeling in OVX rats fed a regular diet (OVX Control) or a 3% BCE-supplemented diet (OVX BCE), compared with sham surgery rats fed a regular diet (Sham) for 3 months. The results indicated a lower staining intensity of elastic fibers, greater elastin fragmentation, and higher α-smooth muscle actin protein expression in OVX Control rats than in OVX BCE and Sham rats. Pathological vascular remodeling was only observed in OVX Control rats. Additionally, we investigated matrix metalloproteinase (MMP)-12 mRNA expression levels to elucidate the mechanism underlying elastin degradation, revealing significantly upregulated MMP-12 mRNA expression in OVX Control rats compared with that in Sham and OVX BCE rats. Together, we identify BCE as exerting a vascular protective effect through reduced MMP-12 expression and vascular smooth muscle cell proliferation. To our knowledge, this is the first report indicating that BCE might protect against elastin degradation and pathological vascular remodeling during menopause.


Subject(s)
Elastin/metabolism , Phytoestrogens/pharmacology , Plant Extracts/pharmacology , Proteolysis/drug effects , Ribes , Vascular Remodeling/drug effects , Animals , Diet/methods , Dietary Supplements , Female , Menopause/physiology , Models, Animal , Ovariectomy , Protective Agents/pharmacology , Rats , Rats, Sprague-Dawley
14.
Biol Pharm Bull ; 44(3): 379-388, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33390389

ABSTRACT

Lipopolysaccharide (LPS)-induced inflammation is the leading cause of multiple organ failure in sepsis. Pyruvate kinase 2 (PKM2) is a protein kinase and transcriptional coactivator that plays an important role in glycolysis. Recent studies have confirmed that glycolysis maintains the M1 differentiation and induces immune activation in macrophages. Lycium barbarum polysaccharide (LBP), the main bioactive component of Chinese wolfberry, suppresses glycolysis and inflammation. Here, RAW264.7 macrophages were treated with LBP for evaluating its effects against LPS-induced inflammation. The differentiation of M1/M2 macrophages was assessed by flow cytometry for assessing the cell surface markers, CD86 and CD206. The enrichment of hypoxia inducible factor (HIF)-1α and ubiquitin in the PKM2 protein complex was determined by co-immunoprecipitation. LBP suppressed LPS-induced glycolysis, differentiation of M1 macrophages, and the production of interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, and high mobility group (HMG) 1 proteins. The suppressive effects of LBP were similar to those of PKM2 knockdown, but were abolished by the overexpression of PKM2. LPS elevated the mRNA and protein levels of PKM2. LBP reduced the LPS-induced expression of PKM2 protein, but had no effects on the expression of PKM2 mRNA. LPS inhibited the ubiquitination of PKM2, probably by downregulating the expression of ubiquitin ligases, including Nedd4L, Nedd4, and Gnb2. LBP interfered with the inhibition of PKM2 ubiquitination by upregulating the expression of Nedd4L, Nedd4, and Gnb2. In conclusion, LBP suppressed the LPS-induced inflammation by altering glycolysis and the M1 differentiation of macrophages. The effects of LBP were mediated by the downregulation of PKM2 via enhanced ubiquitination.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Glycolysis/drug effects , Pyruvate Kinase/metabolism , Animals , Cell Differentiation/drug effects , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Glucose/metabolism , Inflammation/chemically induced , Inflammation/genetics , Inflammation/metabolism , Lactic Acid/metabolism , Lipopolysaccharides , Mice , Nedd4 Ubiquitin Protein Ligases/genetics , Nedd4 Ubiquitin Protein Ligases/metabolism , Proteolysis/drug effects , Pyruvate Kinase/genetics , RAW 264.7 Cells , Ubiquitination/drug effects
15.
Expert Rev Gastroenterol Hepatol ; 15(2): 181-194, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32993404

ABSTRACT

INTRODUCTION: Metabolic and hormonal disorders resulting from chronic liver diseases culminate in increased proteolysis and decreased protein synthesis, which contributes to the development and progression of malnutrition and, consequently, sarcopenia. Nutritional management of sarcopenia in liver cirrhosis is a continuously evolving field and data on essential amino acid supplementation in chronic liver diseases is scarce. AREAS COVERED: This review encompasses the current literature on oral amino acids supplementation in patients with chronic liver disease or patients with liver cirrhosis to try to elucidate the possible effects of L-branched-chain amino acids and isolated L-leucine as a therapeutic approach to malnutrition and sarcopenia. EXPERT COMMENTARY: To ensure an optimal nutritional status and to reduce sarcopenia, it is necessary to assess nutritional status in all patients with liver cirrhosis and to apply nutritional interventions accordingly. The supply of calories, proteins, and essential amino acids is necessary for the maintenance of muscle mass and function. Although supplementation of L-branched-chain amino acids plays an important role in liver disease, L-leucine has been described as the main amino acid involved in protein turnover, reducing proteolysis, and stimulating protein synthesis.


Subject(s)
Amino Acids, Branched-Chain/therapeutic use , Leucine/therapeutic use , Liver Diseases/drug therapy , Malnutrition/drug therapy , Sarcopenia/drug therapy , Administration, Oral , Amino Acids, Branched-Chain/administration & dosage , Chronic Disease , Dietary Supplements , Disease Progression , Leucine/administration & dosage , Liver Diseases/complications , Malnutrition/etiology , Proteolysis/drug effects , Sarcopenia/etiology
16.
J Cell Physiol ; 236(3): 1950-1966, 2021 03.
Article in English | MEDLINE | ID: mdl-32722851

ABSTRACT

Osteolysis is a common medical condition characterized by excessive activity of osteoclasts and bone resorption, leading to severe poor quality of life. It is essential to identify the medications that can effectively suppress the excessive differentiation and function of osteoclasts to prevent and reduce the osteolytic conditions. It has been reported that Carnosol (Car), isolated from rosemary and salvia, has anti-inflammatory, antioxidative, and anticancer effects, but its activity on osteolysis has not been determined. In this study, we found that Car has a strong inhibitory effect on the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation dose-dependently without any observable cytotoxicity. Moreover, Car can inhibit the RANKL-induced osteoclastogenesis and resorptive function via suppressing NFATc1, which is a result of affecting MAPK, NF-κB and Ca2+ signaling pathways. Moreover, the particle-induced osteolysis mouse model confirmed that Car could be effective for the treatment of bone loss in vivo. Taken together, by suppressing the formation and function of RANKL-induced osteoclast, Car, may be a therapeutic supplementary in the prevention or the treatment of osteolysis.


Subject(s)
Abietanes/therapeutic use , Osteogenesis , Osteolysis/chemically induced , Osteolysis/drug therapy , RANK Ligand/pharmacology , Titanium/adverse effects , Abietanes/pharmacology , Animals , Bone Resorption/complications , Bone Resorption/genetics , Bone Resorption/pathology , Calcium Signaling/drug effects , Female , Gene Expression Regulation/drug effects , MAP Kinase Signaling System/drug effects , Male , Mice, Inbred C57BL , Models, Biological , NF-KappaB Inhibitor alpha/metabolism , NF-kappa B/metabolism , NFATC Transcription Factors/metabolism , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteoclasts/pathology , Osteogenesis/drug effects , Osteogenesis/genetics , Osteolysis/genetics , Osteolysis/pathology , Proteolysis/drug effects , Skull/drug effects , Skull/pathology
17.
J Nutr Biochem ; 89: 108569, 2021 03.
Article in English | MEDLINE | ID: mdl-33321185

ABSTRACT

Cumulative evidence indicates that excessive consumption of calories from saturated fat contributes to the development of Alzheimer's disease (AD). Here, we assess the triggering and progression of AD pathology induced by a high-fat diet (HFD), and the effects of resveratrol, a polyphenol found in common dietary sources with pleiotropic neuroprotective activities. Over 16 weeks, male wild type (WT) and AD transgenic 5XFAD mice were fed a control diet, HFD (60% kcal from fat), or HFD supplemented with 0.1% resveratrol. Resveratrol protected against HFD-induced memory loss in WT mice and prevented memory loss in 5XFAD mice. Resveratrol also reduced the amyloid burden aggravated by HFD in 5XFAD, and protected against HFD-induced tau pathology in both WT and 5XFAD strains. At the mechanistic level, resveratrol inhibited the HFD-increased amyloidogenic processing of the amyloid precursor protein in both strains; it also restored abnormal high levels in the proteolytic activity of the ubiquitin-proteasome system induced by HFD, suggesting the presence of a compensatory mechanism to counteract the accumulation of aberrant proteins. Thus, our data suggest that resveratrol can correct the harmful effects of HFD in the brain and may be a potential therapeutic agent against obesity-related disorders and AD pathology.


Subject(s)
Alzheimer Disease/drug therapy , Neuroprotective Agents/pharmacology , Resveratrol/pharmacology , Alzheimer Disease/pathology , Amyloid/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/metabolism , Cognitive Dysfunction/prevention & control , Diet, High-Fat/adverse effects , Disease Models, Animal , Fatty Acids/adverse effects , Humans , Male , Memory Disorders/prevention & control , Mice , Mice, Transgenic , Neuroprotection , Obesity/drug therapy , Obesity/pathology , Proteasome Endopeptidase Complex/metabolism , Proteolysis/drug effects , Ubiquitin/metabolism
18.
Cienc. tecnol. salud ; 8(1): 10-23, 2021. il 27 c
Article in Spanish | LILACS, DIGIUSAC, LIGCSA | ID: biblio-1348245

ABSTRACT

Neurolaena lobata es utilizada tradicionalmente en Centroamérica para tratar la mordedura de serpiente, pero su efectividad para contrarrestar el envenenamiento producido por Bothrops asper ha sido poco estudiada. Se evaluó la capacidad del extracto etanólico de sus hojas para inhibir las actividades proteolítica, fosfolipasa A2 (PLA2; evaluada como hemólisis indirecta) y coagulante del veneno in vitro. El material vegetal fue colectado en Izabal, Guatemala, secado, se hicieron extracciones con etanol y se evaluó la presencia de actividades proteolítica, PLA2 y coagulante in-trínsecas en ensayos de concentración-actividad. Los efectos inhibitorios de la actividad proteolítica y PLA2 del veneno se evaluaron después de pre-incubar concentraciones variables del extracto con concentraciones fijas de veneno. La inhibición de la actividad coagulante del veneno no fue evaluada porque el extracto presentó actividad anticoagulante intrínseca dependiente de la concentración. El extracto inhibió completamente las actividades proteolítica (CE50 = 15.7 µg/µl) y PLA2 (CE50 = 32.5 µg/µl) del veneno. El análisis fitoquímico utilizando ensayos macro y semimicrométricos de cromatografía en capa fina, demostró la presencia de flavonoides, cumarinas, saponinas, taninos, sesquiterpenlactonas y aceites esenciales en el extracto. Su efecto sobre las proteínas del veneno se evaluó por electroforesis SDS-PAGE, mostrando cambios en el patrón electroforético atribuidos a la formación de complejos moleculares con los metabo-litos del extracto. Los resultados indican que el extracto podría inhibir los efectos tóxicos del veneno inducidos por las metaloproteinasas dependientes de zinc (SVMPs) y PLA2s, pero podría afectar las alteraciones en la coagulación, coadyuvando en la desfibrinogenación inducida por el veneno.


Neurolaena lobata has been used by traditional healers in Central America to treat snakebite, but its ability to neutralize Bothrops asper envenomations needs to be proved. This study evaluated the inhibitory potential of the ethanolic extract of the leaves of N. lobata against proteolytic, phospholipase A2 (PLA2) and coagulant activities of the venom in vitro. Leaves were collected in Izabal, Guatemala, dried, extracted with ethanol and concentration-response assays were conducted to detect intrinsic proteolytic, PLA2 (evaluated as indirect hemolysis) and coagulant activities. Assays for anti-proteolytic and anti-PLA2 activities were performed after pre-incubation of several amounts of extract with a fixed concentration of venom. Inhibition assay for the coagulant effect of the venom was not tested because pre-incubation of thrombin with the extract prolonged the clotting time of plasma in a concentration-dependent manner. Proteolytic (EC50 = 15.7 µg/µl) and PLA2 (EC50 = 32.5 µg/µl) activities of the venom resulted completely inhibited by the extract. Phytochemical profiles, determined by micrometric assays and semi microanalysis by thin layer chro-matography, showed the presence of flavonoids, coumarins, saponins, tannins, sesquiterpene lactones and essential oils in the extract. SDS-PAGE was used to assess the action of the extract on the venom proteins. Results showed changes in the electrophoretic profile, probably due to the formation of insoluble complexes with plant specialized metabolites. These findings demonstrated that the extract could be able to inhibit toxic effects triggered by zinc-dependent snake venom metalloproteinases (SVMPs) y PLA2s but might aggravate the alterations induced by the venom in coagulation.


Subject(s)
Humans , Animals , Antivenins/pharmacology , Plant Extracts/pharmacology , Bothrops , Crotalid Venoms/antagonists & inhibitors , Proteolysis/drug effects , Phospholipase A2 Inhibitors/pharmacology , Plants, Medicinal , Snake Bites/drug therapy , Blood Coagulation/drug effects , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Plant Leaves , Ethanol/therapeutic use , Electrophoresis, Polyacrylamide Gel , Guatemala , Medicine, Traditional
19.
Nutrients ; 12(12)2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33327501

ABSTRACT

Ferrous iron supplementation has been reported to adversely alter the gut microbiota in infants. To date, the impact of iron on the adult microbiota is limited, particularly at low supplementary concentrations. The aim of this research was to explore the impact of low-level iron supplementation on the gut microbiota of healthy and Irritable Bowel Syndrome (IBS) volunteers. Anaerobic, pH-controlled in vitro batch cultures were inoculated with faeces from healthy or IBS donors along with iron (ferrous sulphate, nanoparticulate iron and pea ferritin (50 µmol-1 iron)). The microbiota were explored by fluorescence in situ hybridisation coupled with flow cytometry. Furthermore, metabolite production was assessed by gas chromatography. IBS volunteers had different starting microbial profiles to healthy controls. The sources of iron did not negatively impact the microbial population, with results of pea ferritin supplementation being similar to nanoparticulate iron, whilst ferrous sulphate led to enhanced Bacteroides spp. The metabolite data suggested no shift to potentially negative proteolysis. The results indicate that low doses of iron from the three sources were not detrimental to the gut microbiota. This is the first time that pea ferritin fermentation has been tested and indicates that low dose supplementation of iron is unlikely to be detrimental to the gut microbiota.


Subject(s)
Dietary Supplements , Feces/microbiology , Gastrointestinal Microbiome/drug effects , Iron/pharmacology , Irritable Bowel Syndrome/microbiology , Batch Cell Culture Techniques , Cell Culture Techniques , Fermentation , Ferrous Compounds/pharmacology , Humans , Nanoparticles , Pea Proteins/pharmacology , Proteolysis/drug effects
20.
Molecules ; 25(24)2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33302377

ABSTRACT

Due to the emergence of multidrug-resistant pathogens, it is necessary to develop options to fight infections caused by these agents. Lactoferrin (Lf) is a cationic nonheme multifunctional glycoprotein of the innate immune system of mammals that provides numerous benefits. Lf is bacteriostatic and/or bactericidal, can stimulate cell proliferation and differentiation, facilitate iron absorption, improve neural development and cognition, promote bone growth, prevent cancer and exert anti-inflammatory and immunoregulatory effects. Lactoferrin is present in colostrum and milk and is also produced by the secondary granules of polymorphonuclear leukocytes, which store this glycoprotein and release it at sites of infection. Lf is also present in many fluids and exocrine secretions, on the surfaces of the digestive, respiratory and reproductive systems that are commonly exposed to pathogens. Apo-Lf (an iron-free molecule) can be microbiostatic due to its ability to capture ferric iron, blocking the availability of host iron to pathogens. However, apo-Lf is mostly microbicidal via its interaction with the microbial surface, causing membrane damage and altering its permeability function. Lf can inhibit viral entry by binding to cell receptors or viral particles. Lf is also able to counter different important mechanisms evolved by microbial pathogens to infect and invade the host, such as adherence, colonization, invasion, production of biofilms and production of virulence factors such as proteases and toxins. Lf can also cause mitochondrial and caspase-dependent regulated cell death and apoptosis-like in pathogenic yeasts. All of these mechanisms are important targets for treatment with Lf. Holo-Lf (the iron-saturated molecule) can contain up to two ferric ions and can also be microbicidal against some pathogens. On the other hand, lactoferricins (Lfcins) are peptides derived from the N-terminus of Lf that are produced by proteolysis with pepsin under acidic conditions, and they cause similar effects on pathogens to those caused by the parental Lf. Synthetic analog peptides comprising the N-terminus Lf region similarly exhibit potent antimicrobial properties. Importantly, there are no reported pathogens that are resistant to Lf and Lfcins; in addition, Lf and Lfcins have shown a synergistic effect with antimicrobial and antiviral drugs. Due to the Lf properties being microbiostatic, microbicidal, anti-inflammatory and an immune modulator, it represents an excellent natural alternative either alone or as adjuvant in the combat to antibiotic multidrug-resistant bacteria and other pathogens. This review aimed to evaluate the data that appeared in the literature about the effects of Lf and its derived peptides on pathogenic bacteria, protozoa, fungi and viruses and how Lf and Lfcins inhibit the mechanisms developed by these pathogens to cause disease.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Lactoferrin/chemistry , Lactoferrin/pharmacology , Peptides/chemistry , Peptides/pharmacology , Animals , Anti-Infective Agents/chemical synthesis , Antiparasitic Agents/chemical synthesis , Antiparasitic Agents/chemistry , Antiparasitic Agents/pharmacology , Bacteria/drug effects , Bacterial Adhesion/drug effects , Cell Wall/drug effects , Chemistry Techniques, Synthetic , Fungi/drug effects , Host-Pathogen Interactions , Humans , Peptides/chemical synthesis , Proteolysis/drug effects , Structure-Activity Relationship , Virulence/drug effects , Virulence Factors , Viruses/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL