Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.991
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Ethnopharmacol ; 330: 118202, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38641078

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Members of Plectranthus genus such as Plectranthus amboinicus (Lour.) Spreng is a well-known folkloric medicine around the globe in treating several human ailments such as cardiovascular, respiratory, digestive, urinary tract, skin and infective diseases. Its therapeutic value is primarily attributed to its essential oil. Although several properties of Plectranthus amboinicus essential oil have been documented, its mechanism of action and safety has not been completely elucidated. AIM OF THE STUDY: To investigate the anti-infective potential of Plectranthus amboinicus essential oil against Klebsiella pneumoniae using in vitro and in vivo bioassays and identify its mode of action. The study was conducted to scientifically validate the traditional usage of Plectranthus amboinicus oil and propose it as a complementary and alternative medication to combat Klebsiella pneumoniae infections due to emerging antibiotic resistance problem. MATERIALS AND METHODS: Plectranthus amboinicus essential oil was extracted through steam distillation and was chemically characterized using Gas Chromatography Mass Spectrometry (GC-MS). The antibacterial activity was assessed using microbroth dilution assay, metabolic viability assay and growth curve analysis. The mode of action was elucidated by the proteomics approach using Nano-LC-MS/MS followed by in silico analysis. The results of proteomic analysis were further validated through several in vitro assays. The cytotoxic nature of the essential oil was also confirmed using adenocarcinomic human alveolar basal epithelial (A549) cells. Furthermore, the safety and in vivo anti-infective efficacy of Plectranthus amboinicus essential oil was evaluated through survival assay, CFU assay and histopathological analysis of vital organs using zebrafish as a model organism. RESULTS: The chemical characterization of Plectranthus amboinicus essential oil revealed that it is predominantly composed of thymol. Thymol rich P. amboinicus essential oil demonstrated potent inhibitory effects on Klebsiella pneumoniae growth, achieving a significant reduction at a concentration of 400 µg/mL within 4 h of treatment The nano-LC-MS/MS approach unveiled that the essential oil exerted its impact by disrupting the antioxidant defense system and efflux pump system of the bacterium, resulting in elevated cellular oxidative stress and affect the biosynthesis of biofilm. The same was validated through several in vitro assays. Furthermore, the toxicity of Plectranthus amboinicus essential oil determined using A549 cells and zebrafish survival assay established a non-toxic concentration of 400 µg/mL and 12.5 µg/mL respectively. The results of anti-infective potential of the essential oil using Zebrafish as a model organism demonstrated significantly improved survival rates, reduced bacterial load, alleviated visible signs of inflammation and mitigated the adverse effects of infection on various organs, as evidenced by histopathological analysis ensuring its safety for potential therapeutic application. CONCLUSION: The executed in vitro and in vivo assays established the effectiveness of essential oil in inhibiting bacterial growth by targeting key proteins associated with the bacterial antioxidant defense system and disrupted the integrity of the cell membrane, highlighting its critical role in addressing the challenge posed by antibiotic-resistant Klebsiella pneumoniae.


Subject(s)
Klebsiella pneumoniae , Oils, Volatile , Plant Leaves , Plectranthus , Proteomics , Klebsiella pneumoniae/drug effects , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Animals , Plectranthus/chemistry , Humans , Plant Leaves/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/isolation & purification , Microbial Sensitivity Tests , Zebrafish , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology
2.
J Hazard Mater ; 470: 134204, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38579586

ABSTRACT

Selenium (Se) plays a critical role in diverse biological processes and is widely used across manufacturing industries. However, the contamination of Se oxyanions also poses a major public health concern. Microbial transformation is a promising approach to detoxify Se oxyanions and produce elemental selenium nanoparticles (SeNPs) with versatile industrial potential. Yeast-like fungi are an important group of environmental microorganisms, but their mechanisms for Se oxyanions reduction remain unknown. In this study, we found that Aureobasidium melanogenum I15 can reduce 1.0 mM selenite by over 90% within 48 h and efficiently form intracellular or extracellular spherical SeNPs. Metabolomic and proteomic analyses disclosed that A. melanogenum I15 evolves a complicated selenite reduction mechanism involving multiple metabolic pathways, including the glutathione/glutathione reductase pathway, the thioredoxin/thioredoxin reductase pathway, the siderophore-mediated pathway, and multiple oxidoreductase-mediated pathways. This study provides the first report on the mechanism of selenite reduction and SeNPs biogenesis in yeast-like fungi and paves an alternative avenue for the bioremediation of selenite contamination and the production of functional organic selenium compounds.


Subject(s)
Ascomycota , Selenious Acid , Selenium , Selenious Acid/metabolism , Selenium/metabolism , Ascomycota/metabolism , Oxidation-Reduction , Nanoparticles/chemistry , Nanoparticles/metabolism , Metal Nanoparticles/chemistry , Biodegradation, Environmental , Fungal Proteins/metabolism , Proteomics
3.
Environ Sci Technol ; 58(15): 6637-6646, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38580315

ABSTRACT

Methanogenesis is a critical process in the carbon cycle that is applied industrially in anaerobic digestion and biogas production. While naturally occurring in diverse environments, methanogenesis requires anaerobic and reduced conditions, although varying degrees of oxygen tolerance have been described. Microaeration is suggested as the next step to increase methane production and improve hydrolysis in digestion processes; therefore, a deeper understanding of the methanogenic response to oxygen stress is needed. To explore the drivers of oxygen tolerance in methanogenesis, two parallel enrichments were performed under the addition of H2/CO2 in an environment without reducing agents and in a redox-buffered environment by adding redox mediator 9,10-anthraquinone-2,7-disulfonate disodium. The cellular response to oxidative conditions is mapped using proteomic analysis. The resulting community showed remarkable tolerance to high-redox environments and was unperturbed in its methane production. Next to the expression of pathways to mitigate reactive oxygen species, the higher redox potential environment showed an increased presence of selenocysteine and selenium-associated pathways. By including sulfur-to-selenium mass shifts in a proteomic database search, we provide the first evidence of the dynamic and large-scale incorporation of selenocysteine as a response to oxidative stress in hydrogenotrophic methanogenesis and the presence of a dynamic selenoproteome.


Subject(s)
Euryarchaeota , Selenium , Methane , Proteomics , Selenocysteine/metabolism , Euryarchaeota/metabolism , Oxidative Stress , Oxygen , Anaerobiosis , Bioreactors
4.
Front Immunol ; 15: 1290504, 2024.
Article in English | MEDLINE | ID: mdl-38571961

ABSTRACT

Organoids present substantial potential for pushing forward preclinical research and personalized medicine by accurately recapitulating tissue and tumor heterogeneity in vitro. However, the lack of standardized protocols for cancer organoid culture has hindered reproducibility. This paper comprehensively reviews the current challenges associated with cancer organoid culture and highlights recent multidisciplinary advancements in the field with a specific focus on standardizing liver cancer organoid culture. We discuss the non-standardized aspects, including tissue sources, processing techniques, medium formulations, and matrix materials, that contribute to technical variability. Furthermore, we emphasize the need to establish reproducible platforms that accurately preserve the genetic, proteomic, morphological, and pharmacotypic features of the parent tumor. At the end of each section, our focus shifts to organoid culture standardization in primary liver cancer. By addressing these challenges, we can enhance the reproducibility and clinical translation of cancer organoid systems, enabling their potential applications in precision medicine, drug screening, and preclinical research.


Subject(s)
Liver Neoplasms , Proteomics , Humans , Reproducibility of Results , Liver Neoplasms/pathology , Drug Evaluation, Preclinical , Organoids
5.
Mar Drugs ; 22(4)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38667804

ABSTRACT

High blood cholesterol levels are a major risk factor for cardiovascular diseases. A purified aqueous extract of Fucus vesiculosus, rich in phlorotannins and peptides, has been described for its potential to inhibit cholesterol biosynthesis and intestinal absorption. In this work, the effect of this extract on intestinal cells' metabolites and proteins was analysed to gain a deeper understanding of its mode of action on lipids' metabolism, particularly concerning the absorption and transport of exogenous cholesterol. Caco-2 cells, differentiated into enterocytes, were exposed to the extract, and analysed by untargeted metabolomics and proteomics. The results of the metabolomic analysis showed statistically significant differences in glutathione content of cells exposed to the extract compared to control cells, along with an increased expression of fatty acid amides in exposed cells. A proteomic analysis showed an increased expression in cells exposed to the extract compared to control cells of FAB1 and NPC1, proteins known to be involved in lipid metabolism and transport. To the extent of our knowledge, this study is the first use of untargeted metabolomics and a proteomic analysis to investigate the effects of F. vesiculosus on differentiated Caco-2 cells, offering insights into the molecular mechanism of the extract's compounds on intestinal cells.


Subject(s)
Fucus , Proteomics , Humans , Caco-2 Cells , Fucus/chemistry , Proteomics/methods , Anticholesteremic Agents/pharmacology , Lipid Metabolism/drug effects , Metabolomics , Cholesterol/metabolism , Intestinal Absorption/drug effects , Plant Extracts/pharmacology , Intestines/drug effects
6.
Anal Bioanal Chem ; 416(14): 3349-3360, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38607384

ABSTRACT

The analysis of almost holistic food profiles has developed considerably over the last years. This has also led to larger amounts of data and the ability to obtain more information about health-beneficial and adverse constituents in food than ever before. Especially in the field of proteomics, software is used for evaluation, and these do not provide specific approaches for unique monitoring questions. An additional and more comprehensive way of evaluation can be done with the programming language Python. It offers broad possibilities by a large ecosystem for mass spectrometric data analysis, but needs to be tailored for specific sets of features, the research questions behind. It also offers the applicability of various machine-learning approaches. The aim of the present study was to develop an algorithm for selecting and identifying potential marker peptides from mass spectrometric data. The workflow is divided into three steps: (I) feature engineering, (II) chemometric data analysis, and (III) feature identification. The first step is the transformation of the mass spectrometric data into a structure, which enables the application of existing data analysis packages in Python. The second step is the data analysis for selecting single features. These features are further processed in the third step, which is the feature identification. The data used exemplarily in this proof-of-principle approach was from a study on the influence of a heat treatment on the milk proteome/peptidome.


Subject(s)
Hot Temperature , Milk , Peptides , Workflow , Milk/chemistry , Animals , Peptides/analysis , Peptides/chemistry , Biomarkers/analysis , Software , Proteomics/methods , Mass Spectrometry/methods , Programming Languages , Algorithms
7.
Fitoterapia ; 175: 105935, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38580032

ABSTRACT

Buyang Huanwu Decoction (BHD) has been effective in treating ischemic stroke (IS). However, its mechanism of action remains unclear. The study intended to explore the potential mechanism of BHD against IS using systems pharmacology, proteomics, and animal experiments. The active components of BHD were identified from UPLC-Q-TOF-MS and literature mining. Systems pharmacology and proteomics were employed to investigate the underlying mechanism of BHD against IS. The AutoDock tool was used for molecular docking. A middle cerebral artery occlusion (MCAO) model rat was utilized to explore the therapeutic benefits of BHD. The rats were divided into sham, model, BHD (5, 10, 20 g/kg, ig) groups. The neurological scores, pathological section characteristics, brain infarct volumes, inflammatory cytokines, and signaling pathways were investigated in vivo experiments. The results of systems pharmacology showed that 13 active compounds and 112 common targets were screened in BHD. The docking results suggested that the active compounds in BHD had a high affinity for the key targets. In vivo experiments demonstrated that BHD exhibited neuroprotective benefits by lowering the neurological score, the volume of the cerebral infarct, the release of inflammatory cytokines, and reducing neuroinflammatory damage in MCAO rats. Furthermore, BHD decreased TNF-α and CD38 levels while increasing ATP2B2, PDE1A, CaMK4, p-PI3K, and p-AKT. Combined with systems pharmacology and proteomic studies, we confirmed that PI3K-Akt and calcium signaling pathways are the key mechanisms for BHD against IS. Furthermore, this study demonstrated the feasibility of combining proteomics with systems pharmacology to study the mechanism of herbal medicine.


Subject(s)
Disease Models, Animal , Drugs, Chinese Herbal , Infarction, Middle Cerebral Artery , Ischemic Stroke , Molecular Docking Simulation , Network Pharmacology , Neuroprotective Agents , Proteomics , Rats, Sprague-Dawley , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Rats , Ischemic Stroke/drug therapy , Male , Neuroprotective Agents/pharmacology , Infarction, Middle Cerebral Artery/drug therapy , Signal Transduction/drug effects , Cytokines/metabolism
8.
J Ethnopharmacol ; 330: 118102, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38561057

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Xiaoqinglong Decotion (XQLD) is a commonly used Chinese herbal formula in clinical practice, especially for allergic diseases such as asthma. However, its intrinsic mechanism for the treatment of neutrophilic asthma (NA) remains unclear. AIM OF THE STUDY: The aim of this study was to evaluate the efficacy and potential mechanisms of XQLD on NA using network pharmacology and in vivo experiments. MATERIALS AND METHODS: First, the active compounds, potential targets and mechanisms of XQLD against NA were initially elucidated by network pharmacology. Then, OVA/CFA-induced NA mice were treated with XQLD to assess its efficacy. Proteins were then analyzed and quantified using a Tandem Mass Tags approach for differentially expressed proteins (DEPs) to further reveal the mechanisms of NA treatment by XQLD. Finally, the hub genes, critical DEPs and potential pathways were validated. RESULTS: 176 active compounds and 180 targets against NA were identified in XQLD. Protein-protein interaction (PPI) network revealed CXCL10, CX3CR1, TLR7, NCF1 and FABP4 as hub genes. In vivo experiments showed that XQLD attenuated inflammatory infiltrates, airway mucus secretion and remodeling in the lungs of NA mice. Moreover, XQLD significantly alleviated airway neutrophil inflammation in NA mice by decreasing the expression of IL-8, MPO and NE. XQLD also reduced the levels of CXCL10, CX3CR1, TLR7, NCF1 and FABP4, which are closely associated with neutrophil inflammation. Proteomics analysis identified 28 overlapping DEPs in the control, NA and XQLD groups, and we found that XQLD inhibited ferroptosis signal pathway (elevated GPX4 and decreased ASCL3) as well as the expression of ARG1, MMP12 and SPP1, while activating the Rap1 signaling pathway. CONCLUSION: This study revealed that inhibition of ARG1, MMP12 and SPP1 expression as well as ferroptosis pathways, and activation of the Rap1 signaling pathway contribute to the therapeutic effect of XQLD on NA.


Subject(s)
Asthma , Drugs, Chinese Herbal , Network Pharmacology , Proteomics , Animals , Asthma/drug therapy , Drugs, Chinese Herbal/pharmacology , Mice , Protein Interaction Maps , Female , Neutrophils/drug effects , Neutrophils/metabolism , Mice, Inbred BALB C , Lung/drug effects , Lung/metabolism , Lung/pathology , Anti-Asthmatic Agents/pharmacology , Disease Models, Animal , Ovalbumin , Male
9.
Food Chem ; 448: 139119, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38547703

ABSTRACT

Buffalo colostrum is the initial mammary secretion after parturition, consisting of nutritional and bioactive components. In this study, we conducted a proteomic analysis of buffalo colostrum whey to identify bioactive proteins and peptides. A total of 107 differentially expressed proteins (DEPs) were identified in buffalo colostrum whey compared to those in mature milk. Gene Ontology analysis revealed that DEPs were primarily associated with immune response and tissue development. KEGG pathway enrichment suggested that colostrum actively enhances nascent immunity involved in interleukin and interferon signaling pathways. Furthermore, candidate antimicrobial peptides (AMPs) of whey protein hydrolysates from buffalo colostrum were characterized, which exhibits broad-spectrum activity against gram-positive and gram-negative pathogens. Overall, this study improves our understanding of protein variations in buffalo lactation, and contributes to the development of AMPs from buffalo colostrum.


Subject(s)
Antimicrobial Peptides , Buffaloes , Colostrum , Milk , Proteomics , Whey Proteins , Animals , Colostrum/chemistry , Colostrum/metabolism , Female , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/analysis , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/metabolism , Milk/chemistry , Whey Proteins/chemistry , Whey Proteins/metabolism , Whey Proteins/analysis , Whey/chemistry , Whey/metabolism
10.
Food Res Int ; 182: 114151, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38519162

ABSTRACT

To better understand the functional mechanism of four types of tea (green tea, black tea, jasmine tea, and dark tea) on the quality of stewed beef, changes in quality characteristics, proteomics, and metabolomics were investigated. Adding these four tea types decreased the pH value, L* value, shear force, and hardness of the stewed beef. Among these groups, black tea (BT) significantly improved the tenderness of the stewed beef. They have substantially impacted pathways related to protein oxidative phosphorylation, fatty acid degradation, amino acid degradation, and peroxisomes in stewed beef. The study identified that Myosin-2, Starch binding domain 1, Heat shock protein beta-6, and Myosin heavy chain four are significantly correlated with the quality characteristics of tea-treated stewed beef, making them potential biomarkers. Green tea (GT), black tea (BT), jasmine tea (JT), and dark tea (DT) led to the downregulation of 20, 36, 38, and 31 metabolites, respectively, which are lipids and lipid-like molecules in the stewed beef. The co-analysis of proteomics and metabolomics revealed that differential proteins significantly impacted metabolites associated with carbohydrates, amino acids, lipids, and other nutrients. This study determined the effects of four types of tea on the quality of stewed beef and their underlying mechanisms, providing valuable insights for applying of tea in meat products. At the same time, it can offer new ideas for developing fresh meat products.


Subject(s)
Camellia sinensis , Red Meat , Animals , Cattle , Proteomics , Multiomics , Red Meat/analysis , Tea/chemistry , Lipids
11.
Int Immunopharmacol ; 130: 111795, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38447418

ABSTRACT

Treg cell-based therapy has exhibited promising efficacy in combatting rheumatoid arthritis (RA). Dihydroartemisinin (DHA) exerts broad immunomodulatory effects across various diseases, with its recent spotlight on T-cell regulation in autoimmune conditions. The modulation of DHA on Treg cells and its therapeutic role in RA has yet to be fully elucidated. This study seeks to unveil the influence of DHA on Treg cells in RA and furnish innovative substantiation for the potential of DHA to ameliorate RA. To this end, we initially scrutinized the impact of DHA-modulated Treg cells on osteoclast (OC) formation in vitro using Treg cell-bone marrow-derived monocyte (BMM) coculture systems. Subsequently, employing the collagen-induced arthritis (CIA) rat model, we validated the efficacy of DHA and probed its influence on Treg cells in the spleen and popliteal lymph nodes (PLN). Finally, leveraging deep proteomic analysis with data-independent acquisition (DIA) and parallel accumulation-serial fragmentation (PASEF) technology, we found the alterations in the Treg cell proteome in PLN by proteomic analysis. Our findings indicate that DHA augmented suppressive Treg cells, thereby impeding OC formation in vitro. Consistently, DHA mitigated erosive joint destruction and osteoclastogenesis by replenishing splenic and joint-draining lymph node Treg cells in CIA rats. Notably, DHA induced alterations in the Treg cell proteome in PLN, manifesting distinct upregulation of alloantigen Col2a1 (Type II collagen alfa 1 chain) and CD8a (T-cell surface glycoprotein CD8 alpha chain) in Treg cells, signifying DHA's targeted modulation of Treg cells, rendering them more adept at sustaining immune tolerance and impeding bone erosion. These results unveil a novel facet of DHA in the treatment of RA.


Subject(s)
Artemisinins , Arthritis, Experimental , Arthritis, Rheumatoid , Osteolysis , Rats , Animals , T-Lymphocytes, Regulatory , Proteome , Proteomics , Joints/pathology , Osteolysis/metabolism
12.
Talanta ; 273: 125869, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38490027

ABSTRACT

High-throughput drug screening (HTDS) has significantly reduced the time and cost of new drug development. Nonetheless, contact-dependent cell-cell communication (CDCCC) may impact the chemosensitivity of tumour cells. There is a pressing need for low-cost single-cell HTDS platforms, alongside a deep comprehension of the mechanisms by which CDCCC affects drug efficacy, to fully unveil the efficacy of anticancer drugs. In this study, we develop a microfluidic chip for single-cell HTDS and evaluate the molecular mechanisms impacted by CDCCC using quantitative mass spectrometry-based proteomics. The chip achieves high-quality drug mixing and single-cell capture, with single-cell drug screening results on the chip showing consistency with those on the 96-well plates under varying concentration gradients. Through quantitative proteomic analysis, we deduce that the absence of CDCCC in single tumour cells can enhance their chemoresistance potential, but simultaneously subject them to stronger proliferation inhibition. Additionally, pathway enrichment analysis suggests that CDCCC could impact several signalling pathways in tumour single cells that regulate vital biological processes such as tumour proliferation, adhesion, and invasion. These results offer valuable insights into the potential connection between CDCCC and the chemosensitivity of tumour cells. This research paves the way for the development of single-cell HTDC platforms and holds the promise of advancing tumour personalized treatment strategies.


Subject(s)
Neoplasms , Proteomics , Humans , Drug Evaluation, Preclinical , Cell Communication , High-Throughput Screening Assays/methods
13.
Chemosphere ; 354: 141633, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38442772

ABSTRACT

The activated sludge method is widely used for the treatment of phenol-containing wastewater, which gives rise to the problem of toxic residual sludge accumulation. Indole-3-acetic acid (IAA), a typical phytohormone, facilitates the microalgal resistance to toxic inhibition while promoting biomass accumulation. In this study, Chlorococcum humicola (C. humicola) was cultured in toxic sludge extract and different concentrations of IAA were used to regulate its physiological properties and enrichment of high value-added products. Ultimately, proteomics analysis was used to reveal the response mechanism of C. humicola to exogenous IAA. The results showed that the IAA concentration of 5 × 10-6 mol/L (M) was most beneficial for C. humicola to cope with the toxic stress in the sludge extract medium, to promote the activity of rubisco enzyme, to enhance the efficiency of photosynthesis, and, finally, to accumulate protein as a percentage of specific dry weight 1.57 times more than that of the control group. Exogenous IAA altered the relative abundance of various amino acids in C. humicola cells, and proteomic analyses showed that exogenous IAA stimulated the algal cells to produce more indole-3-glycerol phosphate (IGP), indole, and serine by up-regulating the enzymes. These precursors are converted to tryptophan under the regulation of tryptophan synthase (A0A383V983), and tryptophan can be metabolized to endogenous IAA to promote the growth of C. humicola. These findings have important implications for the treatment of toxic residual sludge while enriching for high-value amino acids.


Subject(s)
Proteomics , Tryptophan , Tryptophan/metabolism , Sewage , Indoleacetic Acids/pharmacology , Indoleacetic Acids/metabolism , Plant Extracts
14.
Trends Plant Sci ; 29(5): 510-513, 2024 May.
Article in English | MEDLINE | ID: mdl-38485645

ABSTRACT

With the rapid development of molecular sequencing and imaging technology, the multi-omics of medicinal plants enters the single-cell era. We discuss spatial multi-omics applied in medicinal plants, evaluate the special products' biosynthesis pathways, and highlight the applications, perspectives, and challenges of biomanufacturing natural products (NPs).


Subject(s)
Plants, Medicinal , Plants, Medicinal/genetics , Plants, Medicinal/metabolism , Biological Products/metabolism , Genomics/methods , Biosynthetic Pathways/genetics , Metabolomics/methods , Proteomics/methods , Multiomics
15.
Methods Mol Biol ; 2791: 113-119, 2024.
Article in English | MEDLINE | ID: mdl-38532098

ABSTRACT

Two-dimensional gel electrophoresis (2-DE) is a proteomic tool used for the separation of protein mixtures according to protein isoelectric point and molecular mass. Although gel-free quantitative and qualitative proteomic study techniques are now available, 2-DE remains a useful analytical tool. The presented protocol was performed to analyze the flower and leaf proteome of common buckwheat using 24 cm immobilized pH gradient strips (pH 4-7) and visualization of proteins on gels via colloidal Coomassie G-250 staining.


Subject(s)
Fagopyrum , Proteome , Proteome/analysis , Proteomics , Isoelectric Focusing/methods , Plant Leaves/chemistry , Flowers , Electrophoresis, Gel, Two-Dimensional/methods , Gels , Hydrogen-Ion Concentration
16.
J Agric Food Chem ; 72(11): 5645-5658, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38462712

ABSTRACT

The present study evaluated the effects of sodium butyrate (SB) supplementation on exocrine and endocrine pancreatic development in dairy calves. Fourteen male Holstein calves were alimented with either milk or milk supplemented with SB for 70 days. Pancreases were collected for analysis including staining, immunofluorescence, electron microscopy, qRT-PCR, Western blotting, and proteomics. Results indicated increased development in the SB group with increases in organ size, protein levels, and cell growth. There were also exocrine enhancements manifested as higher enzyme activities and gene expressions along with larger zymogen granules. Endocrine benefits included elevated gene expression, more insulin secretion, and larger islets, indicating a rise in ß-cell proliferation. Proteomics and pathway analyses pinpointed the G protein subunit alpha-15 as a pivotal factor in pancreatic and insulin secretion pathways. Overall, SB supplementation enhances pancreatic development by promoting its exocrine and endocrine functions through G protein regulation in dairy calves.


Subject(s)
Dietary Supplements , Proteomics , Animals , Cattle/genetics , Male , Butyric Acid/pharmacology , Dietary Supplements/analysis , Pancreas , GTP-Binding Proteins
17.
Phytomedicine ; 128: 155499, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38492367

ABSTRACT

BACKGROUND: Persicaria capitata (Buch.-Ham. ex D.Don) H.Gross (P. capitata, PCB), a traditional drug of the Miao people in China, is potential traditional drug used for the treatment of diabetic nephropathy (DN). PURPOSE: The purpose of this study is to investigate the function of P. capitata and clarify its protective mechanism against DN. METHODS: We induced DN in the Guizhou miniature pig with injections of streptozotocin, and P. capitata was added to the pigs' diet to treat DN. In week 16, all the animals were slaughtered, samples were collected, and the relative DN indices were measured. 16S rRNA sequencing, metagenomics, metabolomics, RNA sequencing, and proteomics were used to explore the protective mechanism of P. capitata against DN. RESULTS: Dietary supplementation with P. capitata significantly reduced the extent of the disease, not only in term of the relative disease indices but also in hematoxylin-eosin-stained tissues. A multiomic analysis showed that two microbes (Clostridium baratii and Escherichia coli), five metabolites (oleic acid, linoleic acid, 4-phenylbutyric acid, 18-ß-glycyrrhetinic acid, and ergosterol peroxide), four proteins (ENTPD5, EPHX1, ARVCF and TREH), four important mRNAs (encoding ENTPD5, EPHX1, ARVCF, and TREH), six lncRNAs (TCONS_00024194, TCONS_00085825, TCONS_00006937, TCONS_00070981, TCONS_00074099, and TCONS_00097913), and two circRNAs (novel_circ_0001514 and novel_circ_0017507) are all involved in the protective mechanism of P. capitata against DN. CONCLUSIONS: Our results provide multidimensional theoretical support for the study and application of P. capitata.


Subject(s)
Diabetic Nephropathies , Swine, Miniature , Animals , Diabetic Nephropathies/drug therapy , Swine , Diabetes Mellitus, Experimental , Streptozocin , Drugs, Chinese Herbal/pharmacology , Dietary Supplements , Male , Proteomics
18.
J Tradit Chin Med ; 44(2): 277-288, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38504534

ABSTRACT

OBJECTIVE: To analyze the effect and molecular mechanism of Gehua Jiejiu Dizhi decoction (, GJDD) on alcoholic fatty live disease (AFLD) by using proteomic methods. METHODS: The male C57BL/6J mouse were randomly divided into four groups: control group, model group, GJDD group and resveratrol group. After the AFLD model was successfully prepared by intragastric administration of alcohol once on the basis of the Lieber-DeCarli classical method, the GJDD group and resveratrol group were intragastrically administered with GJDD (4900 mg/kg) and resveratrol (400 mg/kg) respectively, once a day for 9 d. The fat deposition of liver tissue was observed and evaluated by oil red O (ORO) staining. 4DLabel-free quantitative proteome method was used to determine and quantify the protein expression in liver tissue of each experimental group. The differentially expressed proteins were screened according to protein expression differential multiples, and then analyzed by Gene ontology classification and Kyoto Encyclopedia of Genes and Genomes pathway enrichment. Finally, expression validation of the differentially co-expressed proteins from control group, model group and GJDD group were verified by targeted proteomics quantification techniques. RESULTS: In semiquantitative analyses of ORO, all kinds of steatosis (ToS, MaS, and MiS) were evaluated higher in AFLD mice compared to those in GJDD or resveratrol-treated mice. 4DLabel-free proteomics analysis results showed that a total of 4513 proteins were identified, of which 3763 proteins were quantified and 946 differentially expressed proteins were screened. Compared with the control group, 145 proteins were up-regulated and 148 proteins were down-regulated in the liver tissue of model group. In addition, compared with the model group, 92 proteins were up-regulated and 135 proteins were down-regulated in the liver tissue of the GJDD group. 15 differentially co-expressed proteins were found between every two groups (model group vs control group, GJDD group vs model group and GJDD group vs control group), which were involved in many biological processes. Among them, 11 differentially co-expressed key proteins (Aox3, H1-5, Fabp5, Ces3a, Nudt7, Serpinb1a, Fkbp11, Rpl22l1, Keg1, Acss2 and Slco1a1) were further identified by targeted proteomic quantitative technology and their expression patterns were consistent with the results of 4D label-free proteomic analysis. CONCLUSIONS: Our study provided proteomics-based evidence that GJDD alleviated AFLD by modulating liver protein expression, likely through the modulation of lipid metabolism, bile acid metabolism and with exertion of antioxidant stress.


Subject(s)
Fatty Liver, Alcoholic , Serpins , Mice , Male , Animals , Fatty Liver, Alcoholic/drug therapy , Fatty Liver, Alcoholic/genetics , Fatty Liver, Alcoholic/metabolism , Antioxidants/metabolism , Proteomics/methods , Resveratrol/metabolism , Physical Exertion , Mice, Inbred C57BL , Liver/metabolism , Lipid Metabolism , Bile Acids and Salts/metabolism , Lipids , Serpins/metabolism , Aldehyde Oxidoreductases/metabolism
19.
J Proteomics ; 299: 105157, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38462170

ABSTRACT

Traditional Chinese medicine has been utilized in China for approximately thousands of years in clinical settings to prevent Alzheimer's disease (AD) and enhance memory, despite the lack of a systematic exploration of its biological underpinnings. Exciting research has corroborated the beneficial effects of tetrahydroxy stilbene glycoside (TSG), an extract derived from Polygonum multiflorum, in delaying learning and memory impairment in a model that mimics AD. Therefore, the primary objective of this study is to investigate the major function of TSG upon protein regulation in AD. Herein, a novel approach, encompassing data independent acquisition (DIA), DIA phosphorylated proteomics, and parallel reaction monitoring (PRM), was utilized to integrate quantitative proteomic data collected from APP/PS1 mouse model exhibiting toxic intracellular aggregation of Aß. Initially, we deliberated upon both single and multi-dimensional data pertaining to AD model mice. Furthermore, we authenticated disparities in protein phosphorylation quantity and expression, phosphorylation function, and ultimately phosphorylation kinase analysis. In order to validate the results, we utilized PRM ion monitoring technology to identify potential protein or peptide biomarkers. In the mixed samples, targeted detection of 50 target proteins revealed that 26 to 33 target proteins were stably detected by PRM. In summary, our findings provide new candidates for AD biomarker, which have been identified and validated through protein researches conducted on mouse brains. This offers a wealth of potential resources for extensive biomarker validation in neurodegenerative diseases. SIGNIFICANCE: DIA phosphorylated proteomics technique was used to detect and analyze phosphorylated proteins in brain tissues of mice with AD. Data were analyzed by various bioinformatics tools to explore the phosphorylation events and characterize them related to TSG. The results of DIA were further verified by PRM. Besides, we mapped the major metabolite classes emerging from the analyses to key biological pathways implicated in AD to understand the potential roles of the molecules and the interactions in triggering symptom onset and progression of AD. Meanwhile, we clarified that in the context of AD onset and TSG intervention, the changes in proteins, protein phosphorylation, phosphorylation kinases, and the internal connections.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/metabolism , Proteomics , Amyloid beta-Protein Precursor , Glycosides , Biomarkers , Mice, Transgenic , Disease Models, Animal , Amyloid beta-Peptides/metabolism
20.
J Ethnopharmacol ; 329: 118099, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38554853

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: As a common chronic inflammatory skin disease, psoriasis is incompletely understood and brings a lot of distress to patients. The estrogen signaling pathway has been implicated in its pathogenesis, making it a potential therapeutic target. Si Cao Formula (SCF) has demonstrated promise in treating psoriasis clinically. However, its molecular mechanisms concerning psoriasis remain largely unexplored. AIM OF THE STUDY: To elucidate the underlying mechanisms of the action of SCF on psoriasis. MATERIALS AND METHODS: Active ingredients were identified by LC-MS/MS. After the treatment with SCF, the exploration of differentially expressed proteins (DEPs) were conducted using tandem mass tag (TMT)-based quantitative proteomics analysis. By GO/KEGG, WikiPathways and network pharmacology, core signaling pathway and protein targets were explored. Consequently, major signaling pathway and protein targets were validated by RT-qPCR, immunoblotting and immunofluorescence. Based on Lipinski's Rule of Five rules and molecular docking, 8 active compounds were identified that acted on the core targets. RESULTS: 41 compounds of SCF and 848 specific targets of these compounds were identified. There were 570 DEPs between IMQ (Imiquimod) and IMQ + SCF group, including 279 up-regulated and 304 down-regulated proteins. GO/KEGG, WikiPathways and network pharmacology revealed estrogen signaling pathway as the paramount pathways, through which SCF functioned on psoriasis. We further show novel ingredients formula of SCF contributes to estrogen signaling intervention, including liquiritin, parvisoflavone B, glycycoumarin, 8-prenylluteone, licochalcone A, licochalcone B, oxymatrine, and 13-Hydroxylupanine, where targeting MAP2K1, ILK, HDAC1 and PRKACA, respectively. Molecular docking proves that they have good binding properties. CONCLUSION: Our results provide an in-depth view of psoriasis pathogenesis and herbal intervention, which expands our understanding of the systemic pharmacology to reveal the multiple ingredients and multiple targets of SCF and focus on one pathway (estrogen signaling pathway) may be a novel therapeutic strategy for psoriasis treatment of herbal medicine.


Subject(s)
Drugs, Chinese Herbal , Estrogens , Molecular Docking Simulation , Network Pharmacology , Psoriasis , Signal Transduction , Psoriasis/drug therapy , Psoriasis/metabolism , Humans , Signal Transduction/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Estrogens/pharmacology , Estrogens/metabolism , HaCaT Cells , Proteomics/methods
SELECTION OF CITATIONS
SEARCH DETAIL