Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 849
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Fitoterapia ; 175: 105942, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38575088

ABSTRACT

Pruni Semen, the dried ripe seed of Prunus humilis, P. japonica, or P. pedunculata as recorded in the Chinese Pharmacopoeia, has been widely used in pharmaceutical and food industries. The adulteration of the marketed product with morphologically similar plants of the same genus has led to variable product quality and clinical effectiveness. This study systematically investigated the phylogenetic relationships, morphological traits, and chemical profiles of 37 Pruni Semen samples from planting bases, markets, and fields. DNA barcoding could successfully distinguish the genuine and counterfeit Pruni Semen, and the results indicated that there was almost no authentic Pruni Semen available in the market. The samples were divided into "big seed" (P. pedunculata and P. salicina seeds) and "small seed" (P. humilis, P. japonica, P. tomentosa, and P. avium seeds) categories based on morphology results. The notable discrepancy in the chemical characteristics of "big seed" and "small seed" was that "small seeds" were rich in flavonoids and low in amygdalin, whereas "big seeds" were the opposite. Furthermore, principal component analysis and clustered heatmap analysis verified the distinguishing features of "big seed" and "small seed" based on morphological and chemical characteristics. This study suggested that a combination of DNA barcoding and morphological and chemical characteristics can aid in the identification and quality evaluation of authentic and adulterated Pruni Semen. These findings may help standardize Pruni Semen available in the market and protect the rights and interests of customers.


Subject(s)
DNA Barcoding, Taxonomic , Phylogeny , Prunus , Seeds , Seeds/chemistry , Prunus/chemistry , Prunus/classification , Prunus/genetics , Amygdalin , Flavonoids/analysis , Drug Contamination , China , Phytochemicals
2.
Sheng Wu Gong Cheng Xue Bao ; 40(1): 239-251, 2024 Jan 25.
Article in Chinese | MEDLINE | ID: mdl-38258644

ABSTRACT

'Zhizhang Guhong Chongcui' is a new cultivar of Prunus mume with cross-cultivar group characteristics. It has typical characteristics of cinnabar purple cultivar group and green calyx cultivar group. It has green calyx, white flower, and light purple xylem, but the mechanism remains unclear. In order to clarify the causes of its cross-cultivar group traits, the color phenotype, anthocyanin content and the expression levels of genes related to anthocyanin synthesis pathway of 'Zhizhang Guhong Chongcui', 'Yuxi Zhusha' and 'Yuxi Bian Lü'e' were determined. It was found that the red degree of petals, sepals and fresh xylem in branches was positively correlated with the total anthocyanin content. MYBɑ1, MYB1, and bHLH3 were the key transcription factor genes that affected the redness of the three cultivars of flowers and xylem. The transcription factors further promoted the high expression of structural genes F3'H, DFR, ANS and UFGT, thereby promoting the production of red traits. Combined with phenotype, anthocyanin content and qRT-PCR results, it was speculated that the white color of petals of 'Zhizhang Guhong Chongcui' were derived from the high expression of FLS, F3'5'H, LAR and ANR genes in other branches of cyanidin synthesis pathway, and the low expression of GST gene. The green color of sepals might be originated from the relatively low expression of F3'H, DFR and ANS genes. The red color of xylem might be derived from the high expression of ANS and UFGT genes. This study made a preliminary explanation for the characteristics of the cross-cultivar group of 'Zhizhang Guhong Chongcui', and provided a reference for molecular breeding of flower color and xylem color of Prunus mume.


Subject(s)
Glutamine/analogs & derivatives , Plant Extracts , Porifera , Prunus , Animals , Anthocyanins , DNA Shuffling , Flowers/genetics , Prunus/genetics
3.
J Plant Res ; 137(1): 95-109, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37938365

ABSTRACT

Prunus mume is an important medicinal plant with ornamental and edible value. Its flowers contain phenylpropanoids, flavonoids and other active components, that have important medicinal and edible value, yet their molecular regulatory mechanisms in P. mume remain unclear. In this study, the content of total flavonoid and total phenylpropanoid of P. mume at different developmental periods was measured first, and the results showed that the content of total flavonoid and total phenylpropanoid gradually decreased in three developmental periods. Then, an integrated analysis of transcriptome and metabolome was conducted on three developmental periods of P. mume to investigate the law of synthetic accumulation for P. mume metabolites, and the key enzyme genes for the biosynthesis of phenylpropanoids and flavonoids were screened out according to the differentially expressed genes (DEGs). A total of 14,332 DEGs and 38 differentially accumulate metabolites (DAMs) were obtained by transcriptomics and metabolomics analysis. The key enzyme genes and metabolites in the bud (HL) were significantly different from those in the half-opening (BK) and full-opening (QK) periods. In the phenylpropanoid and flavonoid biosynthesis pathway, the ion abundance of chlorogenic acid, naringenin, kaempferol, isoquercitrin, rutin and other metabolites decreased with the development of flowers, while the ion abundance of cinnamic acid increased. Key enzyme genes such as HCT, CCR, COMT, CHS, F3H, and FLS positively regulate the downstream metabolites, while PAL, C4H, and 4CL negatively regulate the downstream metabolites. Moreover, the key genes FLS (CL4312-2, CL4312-3, CL4312-4, CL4312-5, CL4312-6) regulating the synthesis of flavonols are highly expressed in bud samples. The dynamic changes of these metabolites were validated by determining the content of 14 phenylpropanoids and flavonoids in P. mume at different developmental periods, and the transcription expression levels of these genes were validated by real-time PCR. Our study provides new insights into the molecular mechanism of phenylpropanoid and flavonoid accumulation in P. mume.


Subject(s)
Prunus , Transcriptome , Prunus/genetics , Gene Expression Profiling , Flavonoids/metabolism , Flowers/physiology , Gene Expression Regulation, Plant
4.
Int J Biol Macromol ; 253(Pt 1): 126650, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37666400

ABSTRACT

Oleosin (OLE) is vital to stabilize lipid droplet for seed triacylglycerol (TAG) storage. This work aimed to determine key OLE and to unravel mechanism that governed seed oil accumulation of Prunus sibirica for developing biodiesel. An integrated assay of global identification of LD-related protein and the cross-accessions/developing stages comparisons associated with oil accumulative amount and OLE transcript level was performed on seeds of 12 plus trees of P. sibirica to identify OLE1 (15.5 kDa) as key oleosin protein crucial for high seed oil accumulation. The OLE1 gene and its promoter were cloned from P. sibirica seeds, and overexpression of PsOLE1 in Arabidopsis was conducted under the controls of native promoter and constitutive CaMV35S promoter, respectively. PsOLE1 promoter had seed-specific cis-elements and showed seed specificity, by which PsOLE1 was specifically expressed in seeds. Ectopic overexpression of PsOLE1, especially driven by its promoter, could facilitate seed development and oil accumulation with an increase in unsaturated FAs, and upregulate transcript of TAG assembly enzymes, but suppress transcript of LD/TAG-hydrolyzed lipases and transporters, revealing a role of native promoter-mediated transcription of PsOLE1 in seed development and oil accumulation. PsOLE1 and its promoter have considerable potential for engineering oil accumulation in oilseed plants.


Subject(s)
Arabidopsis , Prunus , Promoter Regions, Genetic/genetics , Gene Expression Regulation , Arabidopsis/genetics , Arabidopsis/metabolism , Seeds , Plant Oils/metabolism , Gene Expression Regulation, Plant
5.
Molecules ; 28(17)2023 Aug 27.
Article in English | MEDLINE | ID: mdl-37687101

ABSTRACT

Chinese dwarf cherry (Cerasus humilis) is a wild fruit tree and medicinal plant endemic to China. Its fruits are rich in various bioactive compounds, such as flavonoids and carotenoids, which contribute greatly to their high antioxidant capacity. In this study, the contents of bioactive substances (chlorophyll, carotenoids, ascorbic acid, anthocyanin, total flavonoids, and total phenols), antioxidant capacities, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonicacid) (ABTS+) scavenging ability, and ferric-reducing antioxidant power (FRAP)) in differentially pigmented C. humilis fruits of four varieties were determined and compared. The results revealed that anthocyanin, total flavonoids and total phenols were the three main components responsible for the antioxidant activity of C. humilis fruits. 'Jinou No.1' fruits with dark red peel and red flesh had the highest contents of anthocyanin, total flavonoids, and total phenols, as well as the highest antioxidant capacities; 'Nongda No.5' fruits with yellow-green peel and yellow flesh had the highest contents of carotenoids and chlorophyll, while 'Nongda No.6' fruit had the highest ascorbic acid content. To further reveal the molecular mechanism underlying differences in the accumulation of carotenoids and flavonoids among differentially pigmented C. humilis fruits, the expression patterns of structural genes involved in the biosynthesis of the two compounds were investigated. Correlation analysis results revealed that the content of carotenoids in C. humilis fruits was very significantly positively correlated with the expression of the ChCHYB, ChZEP, ChVDE, ChNSY, ChCCD1, ChCCD4, ChNCED1, and ChNCED5 genes (p < 0.01) and significantly negatively correlated with the expression of ChZDS (p < 0.05). The anthocyanin content was very significantly positively correlated with ChCHS, ChFLS, and ChUFGT expression (p < 0.01). The total flavonoid content was very significantly positively correlated with the expression of ChCHS, ChUFGT, and ChC4H (p < 0.01) and significantly positively correlated with ChFLS expression (p < 0.05). This study can provide a basis for understanding the differences in the accumulation of bioactive substances, and is helpful for clarifying the mechanisms underlying the accumulation of various carotenoids and flavonoids among differentially pigmented C. humilis fruits.


Subject(s)
Antioxidants , Prunus , Antioxidants/pharmacology , Fruit , Anthocyanins , Carotenoids , Ascorbic Acid , Flavonoids , Chlorophyll , Phenols
6.
PeerJ ; 11: e15908, 2023.
Article in English | MEDLINE | ID: mdl-37663279

ABSTRACT

Prunus mahaleb L. (mahlab cherry) is a deciduous plant that is native to the Mediterranean region and central Europe with a myriad of medicinal, culinary and cosmetic uses. The present study explored different cultivars of mahlab (white from Egypt and Greece, red from Egypt and post roasting). UPLC-MS led to the detection of 110 primary and secondary metabolites belonging to different classes including phenylpropanoids (hydroxy cinnamates, coumaroyl derivatives), organic acids, coumarins, cyanogenic glycosides, flavonoids, nitrogenous compounds, amino acids and fatty acids, of which 39 are first time to be detected in Prunus mahaleb L. A holistic assessment of metabolites was performed for further analysis of dataset using principal component analysis (PCA) among mahlab cultivars to assess variance within seeds. The results revealed that phenolic acids (coumaric acid-O-hexoside, ferulic acid-O-hexoside, ferulic acid-O-hexoside dimer, dihydrocoumaroyl-O-hexoside dimer and ferulic acid), coumarins (coumarin and herniarin) and amino acids (pyroglutamic acid) were abundant in white mahlab cultivars (cvs.) from different locations. In contrast, red mahlab and its roasted seeds were more rich in organic acids (citric and malic acids), amygdalin derivative and sphingolipids. Orthogonal projections to latent structures discriminant analysis (OPLS-DA) revealed for markers in red mahlab and in response to roasting, where red mahlab was rich in nitrogenous compounds viz. nonamide, deoxy fructosyl leucine, glutaryl carnitine and isoleucine, while roasted product (REM) was found to be enriched in choline.


Subject(s)
Antifibrinolytic Agents , Prunus avium , Prunus , Chemometrics , Chromatography, Liquid , Tandem Mass Spectrometry , Seeds , Amino Acids , Phytochemicals
8.
PeerJ ; 11: e15517, 2023.
Article in English | MEDLINE | ID: mdl-37547716

ABSTRACT

Yanzhiguo [Prunus napaulensis (Ser.) Steud] belongs to Rosaceae family and is consumed as wild fruit, pulp and juice. However, its potential for extracting natural pigment has not yet been explored. Herein, the components in the fresh Yanzhiguo pulp were preliminarily analyzed by liquid chromatography coupled to mass spectrometry. And, the optimal pre-treatment conditions were established for further extraction of Yanzhiguo pigment based on the a* value. Then, by combining the data from single-factor experiments and response surface methodology, the optimal extraction process was established as: 35% EtOH, a liquid-solid ratio of 200:1 mL g-1, an extraction time of 65 min, and an extraction temperature of 100 °C. Moreover, it was found that the a* value and yield had high fitness except when extracted into ethanol (EtOH) with different concentrations. Meanwhile, our result demonstrated Yanzhiguo pigment had high stability in general environments with carmine (a synthetic pigment) as control, except for extreme environments such as direct (hot) sunlight, high temperature (75 °C) and strong alkaline (pH ≥ 11). Also, Yanzhiguo pigment exhibited good antioxidant activity. Our results contribute to more information on Yanzhiguo pigment and promote its application by providing efficient extraction technology.


Subject(s)
Fruit , Plant Extracts , Prunus , Prunus/chemistry , Antioxidants , Plant Extracts/analysis , Chromatography, Liquid , Mass Spectrometry
9.
Zhongguo Zhong Yao Za Zhi ; 48(14): 3753-3764, 2023 Jul.
Article in Chinese | MEDLINE | ID: mdl-37475067

ABSTRACT

Prunus mume is an edible and medicinal material, and Mume Fructus is its processed product, which was first recorded in Shennong's Classic of Materia Medica(Shen Nong Ben Cao Jing). It is an effective drug for stopping diarrhea with astringents and promoting fluid production to quiet ascaris. By consulting the ancient herbal works of the past dynasties, modern codes, and other rela-ted literature, this paper sorted out the medicinal evolution of Mume Fructus, examined the ancient efficacy of Mume Fructus and the main indications, and summarized the inclusion of Mume Fructus in national and provincial standards. It is recorded in the ancient herbal works of the past dynasties that Mume Fructus can be processed by various methods such as roasting, stir-frying or micro-frying, stir-frying with charcoal, single steaming, steaming with wine, and steaming after soaking in wine or vinegar, and prepared into pills, powders, and ointments, which are used in the treatment of fatigue, diabetes, malaria, dysentery, ascariasis, and other diseases. Mume Fructus has been included in nine editions of Chinese Pharmacopoeia and 19 provincial and municipal preparation specifications. The processing method of Mume Fructus is determined, namely, clean P. mume should be softened by moistening in water or steaming and pitted. By reviewing the effects of processing on its chemical composition, pharmacological effects, and its modern clinical application, this paper identified the following issues. The ancient application methods of Mume Fructus are diverse but less commonly used in modern times, there is a lack of standardized research on the processing, and the research on the changes caused by the difference in Mume Fructus before and after processing is not deep. Therefore, it is necessary to further investigate the change pattern of its chemical composition before and after processing and its correlation between its medicinal activity to standardize the processing technology and provide a solid basis for the use of Mume Fructus in parts and its quality control.


Subject(s)
Drugs, Chinese Herbal , Materia Medica , Prunus , Drugs, Chinese Herbal/pharmacology , Materia Medica/analysis , Fruit/chemistry , Quality Control , Prunus/chemistry , Medicine, Chinese Traditional
10.
Nutrients ; 15(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37432298

ABSTRACT

In our previous studies, Prunus spinosa fruit (PSF) ethanol extract was showed to exert antioxidant, antimicrobial, anti-inflammatory and wound healing activities. In the present study, an integrated bioinformatics analysis combined with experimental validation was carried out to investigate the biological mechanism(s) that are responsible for the reported PSF beneficial effects as an antioxidant during a pro-inflammatory TLR4 insult. Bioinformatics analysis using miRNet 2.0 was carried out to address which biological process(es) the extract could be involved in. In addition, Chemprop was employed to identify the key targets of nuclear receptor (NR) signaling and stress response (SR) pathways potentially modulated. The miRNet analysis suggested that the PSF extract mostly activates the biological process of cellular senescence. The Chemprop analysis predicted three possible targets for nine phytochemicals found in the extract: (i) ARE signaling, (ii) mitochondrial membrane potential (MMP) and (iii) p53 SR pathways. The PSF extract antioxidant effect was also experimentally validated in vitro using the human monocyte U937 cell line. Our findings showed that Nrf2 is modulated by the extract with a consequent reduction of the oxidative stress level. This was confirmed by a strong decrease in the amount of reactive oxygen species (ROS) observed in the PSF-treated cells subjected to lipopolysaccharide (LPS) (6 h treatment, 1 µg/mL). No visible effects were observed on p53 and MMP modulation.


Subject(s)
Prunus , Signal Transduction , Prunus/chemistry , Fruit/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Computational Biology , Humans , U937 Cells , Signal Transduction/drug effects , Antioxidants/pharmacology
11.
Phytomedicine ; 119: 154985, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37516090

ABSTRACT

BACKGROUND: Mume Fructus (MF) is the fruit of Prunus mume Sieb. et Zucc, a plant of Rosaceae family. Previous studies demonstrated that MF was capable of ameliorating ulcerative colitis (UC) in mice, its action mechanism needs to be clarified. PURPOSE: This study deciphered whether and how MF extract accelerates colonic mucosal healing, the therapeutic endpoint of UC. METHODS: Biochemical, histopathological and qRT-PCR analyses were utilized to define the therapeutic efficacy of MF on dextran sulfate sodium (DSS)-induced colitis in mice. UHPLC-QTOF-MS/MS-based metabolomics technique was adopted to explore the changes of endogenous metabolites associated with UC and responses to MF intervention. qRT-PCR analysis was performed to confirm the molecular pathway in vivo. The effects of MF and lysophosphatidylcholine (LPC) on cell viability, wound healing, proliferation, and migration were examined through a series of in vitro experiments. Moreover, the effects of different subtypes of phospholipase A2 (PLA2) inhibitors on MF-treated colonic epithelial cells were detected by wound healing test and transwell assay. RESULTS: Orally administered MF could alleviate colitis in mice mainly by accelerating the healing of colonic mucosa. Guided by an unbiased metabolomics screen, we identified LPC synthesis as a major modifying pathway in colitis mice after MF treatment. Notably, MF facilitated the synthesis of LPC by enhancing the expression of PLA2 in colitis mice. Mechanistically, MF and LPC accelerated wound closure by promoting cell migration. Moreover, the promotion of MF on wound healing and migration of colonic epithelial cells was blunted by a cytosolic phospholipase A2 (cPLA2) inhibitor. CONCLUSION: MF can facilitate colonic mucosal healing of mice with colitis through cPLA2-mediated intestinal LPC synthesis, which may become a novel therapeutic agent of UC.


Subject(s)
Colitis, Ulcerative , Colitis , Prunus , Mice , Animals , Dextran Sulfate/adverse effects , Lysophosphatidylcholines/metabolism , Prunus/chemistry , Fruit/chemistry , Tandem Mass Spectrometry , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Colon/pathology , Colitis, Ulcerative/drug therapy , Wound Healing , Intestinal Mucosa/metabolism , Phospholipases A2, Cytosolic/analysis , Phospholipases A2, Cytosolic/metabolism , Phospholipases A2, Cytosolic/pharmacology , Disease Models, Animal , Mice, Inbred C57BL
12.
Hypertens Res ; 46(8): 1923-1933, 2023 08.
Article in English | MEDLINE | ID: mdl-37308550

ABSTRACT

Fruit from the Prunus mume tree is a traditional food in Japan. Recently, bainiku-ekisu, an infused juice concentrate of Japanese Prunus mume, is attracting attention as a health promoting supplement. Angiotensin II (Ang II) plays a central role in development of hypertension. It has been reported that bainiku-ekisu treatment attenuates the growth-promoting signaling induced by Ang II in vascular smooth muscle cells. However, whether bainiku-ekisu has any effect on an animal model of hypertension remains unknown. Therefore, this study was designed to explore the potential anti-hypertensive benefit of bainiku-ekisu utilizing a mouse model of hypertension with Ang II infusion. Male C57BL/6 mice were infused with Ang II for 2 weeks and given 0.1% bainiku-ekisu containing water or normal water for 2 weeks with blood pressure evaluation. After 2 weeks, mice were euthanized, and the aortas were collected for evaluation of remodeling. Aortic medial hypertrophy was observed in control mice after Ang II infusion, which was attenuated in bainiku-ekisu group with Ang II infusion. Bainiku-ekisu further attenuated aortic induction of collagen producing cells and immune cell infiltration. Development of hypertension induced by Ang II was also prevented by bainiku-ekisu. Echocardiograph indicated protection of Ang II-induced cardiac hypertrophy by bainiku-ekisu. In vascular fibroblasts, bainiku-ekisu attenuated vascular cell adhesion molecule-1 induction, an endoplasmic reticulum stress marker, inositol requiring enzyme-1α phosphorylation, and enhancement in glucose consumption in response to Ang II. In conclusion, Bainiku-ekisu prevented Ang II-induced hypertension and inflammatory vascular remodeling. Potential cardiovascular health benefit to taking bainiku-ekisu should be further studied.


Subject(s)
Hypertension , Prunus domestica , Prunus , Mice , Animals , Angiotensin II/pharmacology , Vascular Remodeling/physiology , Mice, Inbred C57BL , Hypertension/chemically induced , Hypertension/drug therapy , Hypertension/metabolism
13.
Int J Biol Macromol ; 245: 125460, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37364806

ABSTRACT

The results of the study of the physicochemical properties of the high-molecular-weight soluble and insoluble components of nectarine cell walls obtained by fruit treatment under conditions that modulate of gastric digestion are presented. Homogenized nectarine fruits were sequentially treated by natural saliva and simulated gastric fluid (SGF) at pH 1.8 and 3.0. The isolated polysaccharides were compared with polysaccharides obtained by sequential extraction of nectarine fruit with cold, hot, and acidified water, solutions of ammonium oxalate and sodium carbonate. As a result, high-molecular-weight water-soluble pectic polysaccharides, weakly bound in the cell wall, were dissolved in the simulated gastric fluid, regardless of pH. Homogalacturonan (HG) and rhamnogalacturonan-I (RG-I) were identified in all pectins. It was shown that their quantity and ability to form highly viscous solutions determine high values of the rheological characteristics of the nectarine mixture formed under simulated gastric conditions. The modifications occurring with the insoluble components under the influence of acidity of SGF were importance. They determined difference in the physicochemical properties of both the insoluble fibres and the nectarine mixtures.


Subject(s)
Cell Wall , Digestion , Fruit , Pectins , Prunus , Stomach , Adsorption , Cell Wall/chemistry , Dietary Fiber , Fruit/chemistry , Fruit/cytology , Glucose/metabolism , Hardness , Hydrogen-Ion Concentration , Pectins/chemistry , Pectins/isolation & purification , Prunus/chemistry , Rheology , Saliva/chemistry , Solubility , Stomach/chemistry , Viscosity , Water/analysis , Water/chemistry , DEAE-Cellulose , Particle Size , Diffusion
14.
Int J Mol Sci ; 24(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37240175

ABSTRACT

Prunus lusitanica L. is a shrub belonging to the genus Prunus L. (Rosaceae family) that produces small fruits with none known application. Thus, the aim of this study was to determine the phenolic profile and some health-promoting activities of hydroethanolic (HE) extracts obtained from P. lusitanica fruits, harvested from three different locations. Qualitative and quantitative analysis of extracts was performed using HPLC/DAD-ESI-MS and antioxidant activity was assessed by in vitro methods. Antiproliferative/cytotoxic activity was determined on Caco-2, HepG2, and RAW 264.7 cells, anti-inflammatory activity was assessed using lipopolysaccharide (LPS)-stimulated RAW 264.7 cells, and the antidiabetic, antiaging, and neurobiological action of extracts was determined in vitro by assessing their inhibitory effect against the activity of α-amylase, α-glucosidase, elastase, tyrosinase, and acetylcholinesterase (AChE). Results showed that P. lusitanica fruit HE extracts from the three different locations showed identical phytochemical profile and bioactivities, although small differences were observed regarding the quantities of some compounds. Extracts of P. lusitanica fruits contain high levels in total phenolic compounds, namely, hydroxycinnamic acids, as well as flavan-3-ols and anthocyanins, primarily cyanidin-3-(6-trans-p-coumaroyl)glucoside. P. lusitanica fruit extracts have a low cytotoxic/antiproliferative effect, with the lowest IC50 value obtained in HepG2 cells (352.6 ± 10.0 µg/mL, at 48 h exposure), but high anti-inflammatory activity (50-60% NO release inhibition, at 100 µg/mL extract) and neuroprotective potential (35-39% AChE inhibition, at 1 mg/mL), and moderate antiaging (9-15% tyrosinase inhibition, at 1 mg/mL) and antidiabetic (9-15% α-glucosidase inhibition, at 1 mg/mL) effects. The bioactive molecules present in the fruits of P. lusitanica deserve to be further explored for the development of new drugs of interest to the pharmaceutical and cosmetic industry.


Subject(s)
Diabetes Mellitus , Neurodegenerative Diseases , Prunus , Humans , Prunus/chemistry , Fruit/chemistry , Anthocyanins/analysis , Monophenol Monooxygenase , Neurodegenerative Diseases/drug therapy , Acetylcholinesterase , Caco-2 Cells , alpha-Glucosidases , Plant Extracts/chemistry , Antioxidants/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/analysis , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/analysis , Phenols/pharmacology , Inflammation/drug therapy
15.
Food Funct ; 14(9): 4380-4391, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37092717

ABSTRACT

Prunus mume is an ancient medicinal herb and food that are commonly used in Asian countries with high nutritional ingredients and biological activities. Polyphenols are important functional components in Prunus mume. To obtain a more efficient extraction process of Prunus mume polyphenols, a single-factor test and response surface method were used. After extraction and purification, the final polyphenol content of Prunus mume (L1) was up to 90%. Biological experiments showed that L1 had high anticancer activity against HeLa (125.28 µg mL-1), HepG2 (117.24 µg mL-1), MCF-7 (170.19 µg mL-1), and A549 (121.78 µg mL-1) in vitro by MTT assay. The combination of DDP and DOX significantly enhanced the anticancer activity of the four cell lines, especially L1-DOX had the smallest IC50 value of 0.04 µg mL-1 against HepG2 cells, indicating the combination of drugs had synergistic effects. It is further demonstrated that L1 could inhibit cell proliferation by inducing apoptosis with ROS detection and confocal fluorescence images. The relative tumor proliferation rate (T/C) was 40.6%, and the tumor inhibition rate was 57.9%, indicating L1 to have no significant toxicity but high anti-HepG2 activity in vivo. Although the study is very limited, it is anticipated to provide a reference for further exploration of the functionality of the plant.


Subject(s)
Plants, Medicinal , Prunus , Polyphenols/pharmacology , Apoptosis
16.
Molecules ; 28(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37110690

ABSTRACT

Prunus spinosa L. fruit, commonly known as blackthorn, is a rich source of bioactive compounds, including flavonoids, anthocyanins, phenolic acids, vitamins, minerals, and organic acids, which exhibit significant antioxidant and antibacterial properties. Notably, flavonoids such as catechin, epicatechin, and rutin have been reported to have protective effects against diabetes, while other flavonoids, including myricetin, quercetin, and kaempferol, exhibit antihypertensive activity. Solvent extraction methods are widely used for the extraction of phenolic compounds from plant sources, owing to their simplicity, efficacy, and broad applicability. Furthermore, modern extraction techniques, such as microwave-assisted extraction (MAE) and ultrasound-assisted extraction (UAE), have been employed to extract polyphenols from Prunus spinosa L. fruits. This review aims to provide a comprehensive analysis of the biologically active compounds found in blackthorn fruits, emphasizing their direct physiological effects on the human body. Additionally, the manuscript highlights the potential applications of blackthorn fruits in various industries, including the food, cosmetics, pharmaceutical, and functional product sectors.


Subject(s)
Antioxidants , Prunus , Humans , Antioxidants/pharmacology , Antioxidants/analysis , Anthocyanins/analysis , Plant Extracts/pharmacology , Plant Extracts/analysis , Phenols/pharmacology , Phenols/analysis , Flavonoids/analysis , Fruit/chemistry
17.
J Ethnopharmacol ; 310: 116378, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-36924865

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional use of Prunus species against skin diseases and especially for skin lightning cosmeceutical purposes is widespread in many cultures. Prunus mahaleb L. is a well known food plant and used in the baking industry for flavoring. The fruit kernels (endocarp) are used in India for hyperpigmentation. AIM OF THE STUDY: To investigate the chemical composition with the antimelanogenesis effect of P. mahaleb seed and kernel extracts and isolated compounds. MATERIALS AND METHODS: Isolation studies performed from the methanol extracts obtained from kernels and structures were determined using NMR and MS analysis. Antimelanogenesis effect was determined by mushroom tyrosinase assay, cellular tyrosinase assay and melanin content assay using B16F10 murine melanoma cells. RESULTS: Five cinnamic acid derivatives were isolated and their structures (2-O-ß-glucopyranosyloxy-4-methoxy-hydrocinnamic acid (1), cis-melilotoside (2), dihydromelilotoside (3), trans-melilotoside (4), 2-O-ß-glucosyloxy-4-methoxy trans-cinnamic acid (5)) were elucidated using advanced spectroscopic methods. Mushroom tyrosinase enzyme inhibition of extracts, fractions and pure compounds obtained from P. mahaleb kernels were investigated and structure-activity relationship revealed. According to a detailed, comprehensive and validated LC-MS/MS technique analysis, vanilic acid (41.407 mg/g), protocatechuic acid (8.992 mg/g) and ferulic acid (4.962 mg/g) in the kernel ethylacetate fraction; quinic acid (14.183 mg/g), fumaric acid (8.349 mg/g) and aconitic acid (5.574 mg/g) were found as major phenolic compounds in the water fraction. The correlation of trace element copper content in extracts and fractions with mushroom enzyme activity was determined. By examining the enzyme kinetics of the compounds with effective cinnamic acid derivatives, inhibition types and enzyme binding constants Ki were calculated. Compounds 1,3 and 5 exhibited high noncompetitive tyrosinase inhibitory activity against L-tyrosine substrates, with IC50 values of 0.22, 0.31 and 0.37 mM respectively. In addition compounds 1, 3 and 5 showed dose-dependent inhibitory effects on intracellular tyrosinase and melanin levels in α-melanocyte-stimulating hormone (α-MSH)-induced B16F10 melanoma cells. CONCLUSIONS: Potent tyrosinase inhibitory compounds and extracts of P. mahaleb kernels suggest that it could be a new, non-toxic and inexpensive resource for the cosmeceutical industry and in skin diseases associated with hyperpigmentation.


Subject(s)
Cinnamates , Melanoma , Monophenol Monooxygenase , Phenols , Animals , Mice , Cosmeceuticals , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Melanins/metabolism , Melanoma/drug therapy , Melanoma/metabolism , Monophenol Monooxygenase/drug effects , Phenols/chemistry , Phenols/isolation & purification , Phenols/pharmacology , Prunus , Cinnamates/chemistry , Cinnamates/isolation & purification , Cinnamates/pharmacology , Antineoplastic Agents/pharmacology
18.
Int J Mol Sci ; 24(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36835346

ABSTRACT

Self-incompatibility in Prunus species is governed by a single locus consisting of two highly multi-allelic and tightly linked genes, one coding for an F-box protein-i.e., SFB in Prunus- controlling the pollen specificity and one coding for an S-RNase gene controlling the pistil specificity. Genotyping the allelic combination in a fruit tree species is an essential procedure both for cross-based breeding and for establishing pollination requirements. Gel-based PCR techniques using primer pairs designed from conserved regions and spanning polymorphic intronic regions are traditionally used for this task. However, with the great advance of massive sequencing techniques and the lowering of sequencing costs, new genotyping-by-sequencing procedures are emerging. The alignment of resequenced individuals to reference genomes, commonly used for polymorphism detection, yields little or no coverage in the S-locus region due to high polymorphism between different alleles within the same species, and cannot be used for this purpose. Using the available sequences of Japanese plum S-loci concatenated in a rosary-like structure as synthetic reference sequence, we describe a procedure to accurately genotype resequenced individuals that allowed the analysis of the S-genotype in 88 Japanese plum cultivars, 74 of them are reported for the first time. In addition to unraveling two new S-alleles from published reference genomes, we identified at least two S-alleles in 74 cultivars. According to their S-allele composition, they were assigned to 22 incompatibility groups, including nine new incompatibility groups reported here for the first time (XXVII-XXXV).


Subject(s)
Prunus domestica , Prunus , Humans , Alleles , Genotype , High-Throughput Nucleotide Sequencing , Plant Breeding , Plant Proteins/genetics , Prunus/genetics , Prunus domestica/genetics , Ribonucleases/genetics , Genetic Loci
19.
Plant Dis ; 107(8): 2316-2319, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36647188

ABSTRACT

A severe outbreak of rust disease was observed on Prunus species, P. persica (peach), P. persica var. nectarina (nectarine), and P. salicina (Japanese plum) cultivated in northern Thailand in the rainy season. Previous reports have identified the causal agents as Tranzschelia discolor and T. pruni-spinosae based on only morphological characteristics. Thus, the aim of this study was to identify rust fungi of Prunus spp. based on morphology and molecular analyses. Between May and July in 2020 and 2022, 18 isolates were collected from five areas in Chiang Mai and Chiang Rai provinces. Symptoms of rust consisted of cinnamon brown pustules of uredinia that were hypophyllous and visible as pale greenish to chlorotic yellowish angular spots on the upper leaf surfaces. Urediniospore shape, size, and color were similar to T. discolor. Molecular analysis of internal transcribed spacer (ITS) and partial 28S large subunit (LSU) region rRNA genes confirmed the isolates to be T. discolor. This is the first report of P. salicina as a host of T. discolor in Thailand.


Subject(s)
Basidiomycota , Prunus domestica , Prunus persica , Prunus , Thailand , Basidiomycota/genetics
20.
Crit Rev Food Sci Nutr ; 63(24): 7091-7107, 2023.
Article in English | MEDLINE | ID: mdl-35199615

ABSTRACT

Prunus mume Sieb. Et Zucc (P. mume) is an acidic fruit native to China (named Chinese Mei or greengage plum). It is currently cultivated in several Asian countries, including Japan ("Ume"), Korea (Maesil), and Vietnam (Mai or Mo). Due to its myriad nutritional and functional properties, it is accepted in different countries, and its characteristics account for its commercialization. In this review, we summarize the information on the bioactive compounds from the fruit of P. mume and their structure-activity relationships (SAR); the pulp has the highest enrichment of bioactive chemicals. The nutritional properties of P. mume and the numerous uses of its by-products make it a potential functional food. P. mume extracts exhibit antioxidant, anticancer, antimicrobial, and anti-hyperuricaemic properties, cardiovascular protective effects, and hormone regulatory properties in various in vitro and in vivo assays. SAR shows that the water solubility, molecular weight, and chemical conformation of P. mume extracts are closely related to their biological activity. However, further studies are needed to evaluate the fruit's potential nutritional and functional therapeutic mechanisms. The industrial process of large-scale production of P. mume and its extracts as functional foods or nutraceuticals needs to be further optimized.


Subject(s)
Prunus , Prunus/chemistry , Fruit/chemistry , Plant Extracts/pharmacology , Plant Extracts/analysis , Structure-Activity Relationship , Dietary Supplements
SELECTION OF CITATIONS
SEARCH DETAIL