Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Food Funct ; 12(24): 12800-12811, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34859812

ABSTRACT

Dendritic cells (DCs) represent a heterogeneous family of immune cells that link innate and adaptive immunity and their activation is linked to metabolic changes that are essential to support their activity and function. Hence, targeting the metabolism of DCs represents an opportunity to modify the inflammatory and immune response. Among the natural matrices, Humulus lupulus (Hop) compounds have recently been shown to exhibit immunomodulatory and anti-inflammatory activity. This study aimed to evaluate the ability of specific Hop fractions to modulate DCs metabolism after stimulation with lipopolysaccharide (LPS) by an untargeted metabolomics approach and compare their effect with flavonol quercetin. Following liquid chromatography-based fractionation, three fractions (A, B, and C) were obtained and tested. Cytokine and gene expression were evaluated using ELISA and qPCR, respectively, while the untargeted metabolomics analysis was performed using a combined HILIC-HRMS and DI-FT-ICR approach. The HOP C fraction and quercetin could both reduce the production of several inflammatory cytokines such as IL-6, IL-1α, IL-1ß, and TNF, but differently from quercetin, the HOP C mechanism is independent of extracellular iron-sequestration and showed significant upregulation of the Nrf2/Nqo1 pathway and Ap-1 compared to quercetin. The untargeted analysis revealed the modulation of several key pathways linked to pro-inflammatory and glycolytic phenotypes. In particular, HOP C treatment could modulate the oxidative step of the pentose phosphate pathway (PPP) and reduce the inflammatory mediator succinate, citrulline, and purine-pyrimidine metabolism, differently from quercetin. These results highlight the potential anti-inflammatory mechanism of specific Hop-derived compounds in restoring the dysregulated metabolism in DCs, which can be used in preventive or adjuvant therapies to suppress the undesirable inflammatory response.


Subject(s)
Citrulline/metabolism , Dendritic Cells/metabolism , Humulus/metabolism , Inflammation/metabolism , Pyrimidines/metabolism , Quercetin/metabolism , Succinic Acid/metabolism , Animals , Anti-Inflammatory Agents/immunology , Anti-Inflammatory Agents/metabolism , Bone Marrow/immunology , Bone Marrow/metabolism , Citrulline/immunology , Dendritic Cells/immunology , Disease Models, Animal , Flavonoids , Humulus/immunology , Inflammation/immunology , Mass Spectrometry/methods , Metabolomics/methods , Mice , Mice, Inbred C57BL , Plant Extracts/immunology , Plant Extracts/metabolism , Purines , Pyrimidines/immunology , Quercetin/immunology , Succinic Acid/immunology
2.
J Biol Chem ; 285(3): 1888-98, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-19923214

ABSTRACT

The Ca2+/calmodulin-dependent protein phosphatase calcineurin is a key mediator in antigen-specific T cell activation. Thus, inhibitors of calcineurin, such as cyclosporin A or FK506, can block T cell activation and are used as immunosuppressive drugs to prevent graft-versus-host reactions and autoimmune diseases. In this study we describe the identification of 2,6- diaryl-substituted pyrimidine derivatives as a new class of calcineurin inhibitors, obtained by screening of a substance library. By rational design of the parent compound we have attained the derivative 6-(3,4-dichloro-phenyl)-4-(N,N-dimethylaminoethylthio)-2-phenyl-pyrimidine (CN585) that noncompetitively and reversibly inhibits calcineurin activity with a K(i) value of 3.8 mum. This derivative specifically inhibits calcineurin without affecting other Ser/Thr protein phosphatases or peptidyl prolyl cis/trans isomerases. CN585 shows potent immunosuppressive effects by inhibiting NFAT nuclear translocation and transactivation, cytokine production, and T cell proliferation. Moreover, the calcineurin inhibitor exhibits no cytotoxicity in the effective concentration range. Therefore, calcineurin inhibition by CN585 may represent a novel promising strategy for immune intervention.


Subject(s)
Calcineurin Inhibitors , Enzyme Inhibitors/pharmacology , Immunosuppressive Agents/pharmacology , Pyrimidines/pharmacology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Calcineurin/metabolism , Cell Proliferation/drug effects , Cytokines/biosynthesis , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/immunology , Enzyme Inhibitors/metabolism , Humans , Immunization , Immunosuppressive Agents/chemistry , Immunosuppressive Agents/immunology , Immunosuppressive Agents/metabolism , Intracellular Space/drug effects , Intracellular Space/metabolism , Jurkat Cells , Leukocytes, Mononuclear/immunology , NFATC Transcription Factors/metabolism , Phosphorylation/drug effects , Pyrimidines/chemistry , Pyrimidines/immunology , Pyrimidines/metabolism , Substrate Specificity , T-Lymphocytes/cytology
SELECTION OF CITATIONS
SEARCH DETAIL